Mathematic Bohemia

Zbigniew Jerzy Jakubowski; Krystyna Zyskowska
 On an estimate of a functional in the class of holomorphic univalent functions

Mathematica Bohemica, Vol. 118 (1993), No. 3, 281-296

Persistent URL: http://dml.cz/dmlcz/125927

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON AN ESTIMATE OF A FUNCTIONAL IN THE CLASS OF HOLOMORPHIC UNIVALENT FUNCTIONS

Zbigniew Jerzy Jakubowṣki, Krystyna Zyskowska, Lódź

(Received May 7, 1992)

Summary. Let S denote the class of functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ univalent and holomorphic in the unit disc $\Delta=\{z:|z|<1\}$. In the paper we obtain an estimate of the functional $\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right|^{n}$ in the class S for arbitrarily fixed $c \in R$ and $n=1,2,3, \ldots$. Hence, for some special values of the parameters, we obtain estimates of several interesting functionals and numerous applications. A few open problems of a similar type are also formulated.

Keywords: univalent function, coefficient problem
AMS classification: 30C50

1. Introduction

Let S stand for the well-known class of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots \tag{1.1}
\end{equation*}
$$

holomorphic and univalent in the unit disc $\Delta=\{z:|z|<1\}$. As known, in many papers the functional $\left|a_{3}-c a_{2}^{2}\right|$ was studied for different classes of univalent functions of the form (1.1). The first results are due to Fekete and Szegö [4] and Goluzin [5]. For this reason, we shall call $\left|a_{3}-c a_{2}^{2}\right|$ the Fekete-Szegö-Goluzin functional (abbr. FSG functional). In turn, the interest in studying this functional arises from the possibilities of applying it in many other extremal problems. The studies were also taken up (e.g. [6], [7]) for the purpose of establishing the influence of the coefficient a_{2} on the form of extremal functions with respect to the FSG functional, for instance, by considering the functional $\operatorname{Re}\left[a_{2}^{2}\left(a_{3}-c a_{2}^{2}\right)\right], c \in R, f \in S[6]$ or the functional $a_{2}^{m}\left(a_{3}-c a_{2}^{2}\right), c \in \mathbf{R}, m=0,1,2, \ldots, f \in S_{R} \subset S[7]$.

It is well known that, for each function $f \in S$,

$$
\begin{equation*}
\left|a_{2}\right| \leqslant 2 \tag{1.2}
\end{equation*}
$$

with equality occurring only for the Koebe function

$$
\begin{equation*}
f_{0}(z)=\frac{z}{(1-\varepsilon z)^{2}}, \quad z \in \Delta, \quad|\varepsilon|=1 \tag{1.3}
\end{equation*}
$$

However, the maximum of the FSG functional for $c \in(0,1)([5])$ is not attained for function (1.3).

During the $10^{\text {th }}$ Conference on Analytic Functions at Szczyrk, Zyskowska presented the main result from [10] indirectly connected with the particular case of the FSG functional.

During the discussion, S. Ruscheweyh raised the question concerning the estimation of the functional $\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right|^{2}, c \in R, f \in S$. Hence the idea arises to consider the functional

$$
\begin{equation*}
\mathscr{F}(f)=\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right|^{n}, \quad c \in R, \quad n \in N \equiv\{1,2,3, \ldots\} \tag{1.4}
\end{equation*}
$$

in the class S. The aim of our paper is to determine the maximum of functional (1.4) for all n and c belonging to the respective intervals. For the remaining values of c, we shall give the bounds from above. The set of pairs (c, n) such that the Koebe function is extremal seems to be rather interesting. In the paper we also show some applications and related open problems.

Obviously, from (1.2) and the well-known result of Jenkins [8] we immediately get

$$
\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right|^{n} \leqslant 4 c-3+2^{n} c, \quad c \geqslant 1, \quad n \in \mathbb{N},
$$

with equality occurring only for Koebe function (1.3). Consequently, it would be sufficient to limit our further considerations to the case $c<1$. However, on account of the method applied, our reasoning is carried out for all $c \in \mathbf{R}$.

One also knows that if $f \in S$, then, for all $\theta \in\langle 0,2 \pi)$, the function $f_{\theta}(z)=$ $\mathrm{e}^{\mathrm{i} \rho} f\left(\mathrm{e}^{-\mathrm{i} \theta} z\right), z \in \Delta$, belongs to S, too. Thus, the determination of the maximum of functional (1.4) is equivalent to the determination of the maximum of the functional

$$
\begin{equation*}
G(f)=\operatorname{Re}\left(a_{3}-c a_{2}^{2}\right)+c\left|a_{2}\right|^{n}, \quad f \in S, \quad c \in R, n \in \mathbb{N} . \tag{1.5}
\end{equation*}
$$

2. An application of the Valiron-Landau lemma

From the Löwner theorem we have the following representations:

$$
\begin{gathered}
a_{2}=-2 \int_{0}^{\infty} \mathrm{e}^{-t} k(t) \mathrm{d} t \\
a_{3}=-2 \int_{0}^{\infty} \mathrm{e}^{-2 t} k^{2}(t) \mathrm{d} t+4\left(\int_{0}^{\infty} \mathrm{e}^{-t} k(t) \mathrm{d} t\right)^{2}
\end{gathered}
$$

where $k(t)$ is a piecewise continuous complex-valued function with $|k(t)|=1$ for all t. Setting $k(t)=\mathrm{e}^{\mathrm{i} \theta(t)}$, we obtain

$$
\begin{align*}
G(f)= & 4(1-c)\left[\left(\int_{0}^{\infty} \mathrm{e}^{-t} \cos \theta(t) \mathrm{d} t\right)^{2}-\left(\int_{0}^{\infty} \mathrm{e}^{-t} \sin \theta(t) \mathrm{d} t\right)^{2}\right] \\
& -4 \int_{0}^{\infty} \mathrm{e}^{-2 t} \cos ^{2} \theta(t) \mathrm{d} t+1 \tag{2.1}\\
& +2^{n} c\left[\left(\int_{0}^{\infty} \mathrm{e}^{-t} \cos \theta(t) \mathrm{d} t\right)^{2}+\left(\int_{0}^{\infty} \mathrm{e}^{-t} \sin \theta(t) \mathrm{d} t\right)^{2}\right]^{n / 2}
\end{align*}
$$

Put

$$
\begin{equation*}
u=\int_{0}^{\infty} \mathrm{e}^{-t} \cos \theta(t) \mathrm{d} t, \quad v=\int_{0}^{\infty} \mathrm{e}^{-t} \sin \theta(t) \mathrm{d} t \tag{2.2}
\end{equation*}
$$

Let \boldsymbol{x} be a nonnegative root of the equation

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{e}^{-2 t} \cos ^{2} \theta(t) \mathrm{d} t=w(x) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=\left(x+\frac{1}{2}\right) \mathrm{e}^{-2 x}, \quad x \geqslant 0 \tag{2.4}
\end{equation*}
$$

Then, by the Valiron-Landau lemma [3], we get

$$
\begin{equation*}
\left|\int_{0}^{\infty} e^{-t} \cos \theta(t) d t\right| \leqslant \omega(x) \tag{2.5}
\end{equation*}
$$

with

$$
\omega(x)=(x+1) e^{-x}, \quad x \geqslant 0
$$

where the form of the functions $\theta(t)$ for which the equality sign in (2.5) holds is known.

Since

$$
\begin{equation*}
w(y)=\int_{0}^{\infty} \mathrm{e}^{-2 t} \sin ^{2} \theta(t) d t=\frac{1}{2}-\int_{0}^{\infty} \mathrm{e}^{-2 t} \cos ^{2} \theta(t) \mathrm{d} t=\frac{1}{2}-w(x) \tag{2.6}
\end{equation*}
$$

we also have

$$
\begin{equation*}
\left|\int_{0}^{\infty} \mathrm{e}^{-t} \sin \theta(t) \mathrm{d} t\right| \leqslant \omega(y) \tag{2.7}
\end{equation*}
$$

where $y=w^{-1}\left(\frac{1}{2}-w(x)\right), \quad y \geqslant 0$.
From (2.2) and (2.1) we obtain

$$
\begin{align*}
G(f)= & 4(1-c)\left(u^{2}-v^{2}\right) \\
& -4 \int_{0}^{\infty} \mathrm{e}^{-2 t} \cos ^{2} \theta(t) \mathrm{d} t+1+2^{n} c\left(u^{2}+v^{2}\right)^{n / 2} \tag{2.8}
\end{align*}
$$

Estimate (1.2) and formula (2.2) imply

$$
\begin{equation*}
u^{2}+v^{2} \leqslant 1 . \tag{2.9}
\end{equation*}
$$

By using the Valiron-Landau lemma and taking account of inequality (2.9), the problem of determining the maximum of $G(f)$ will be reduced to the investigation of the maxima of some functions of the variable x (or y) where x is defined by (2.3).

Denote by $G\left(u^{2}, v^{2} ; x\right)$ the right-hand side of (2.8), i.e.

$$
\begin{align*}
G\left(u^{2}, v^{2} ; x\right) \equiv & 4(1-c)\left(u^{2}-v^{2}\right) \\
& -4 w(x)+1+2^{n} c\left(u^{2}+v^{2}\right)^{n / 2}
\end{align*}
$$

Note that, for a fixed admissible x (and, in consuequence, for a certain subclass of S), the form of function (2.8') and (2.5), (2.7), (2.9) imply that the maximum of $G\left(u^{\mathbf{2}}, \boldsymbol{v}^{\mathbf{2}} ; \boldsymbol{x}\right)$ can be attained only in the cases when

$$
\begin{array}{ll}
1^{0} & u^{2}=0 \text { and } v^{2}=0, \\
2^{0} & u^{2}=\omega^{2}(x) \text { and } v^{2}=0, \\
3^{0} & u^{2}=\omega^{2}(x) \text { and } v^{2}=1-u^{2}, \\
4^{0} & u^{2}=1-v^{2} \text { and } v^{2}=\omega^{2}(y), \\
5^{0} & u^{2}=0 \text { and } v^{2}=\omega^{2}(y),
\end{array}
$$

with $x \geqslant 0$ and $y \geqslant 0$.
In this way, we shall obtain the above-mentioned functions of x or y, whose maxima can determine the sought-for maximum of the functional $G(f)$.

From (2.8) and (2.3)-(2.7) we have successively for $c \in R$ and $n \in N$:
by case $1^{0}, G\left(u^{2}, v^{2} ; x\right)=H_{1}(x)$ where

$$
\begin{equation*}
H_{1}(x)=-4\left(x+\frac{1}{2}\right) \mathrm{e}^{-2 x}+1, \quad x \geqslant 0 \tag{2.10}
\end{equation*}
$$

by case $2^{0}, G\left(u^{2}, v^{2} ; x\right)=H_{2}(x)$ where

$$
\begin{align*}
H_{2}(x)= & 4\left[(1-c) x^{2}+(1-2 c) x+\frac{1}{2}-c\right] \mathrm{e}^{-2 x} \tag{2.11}\\
& +1+2^{n} c\left[(x+1) \mathrm{e}^{-x}\right]^{n}, \quad x \geqslant 0
\end{align*}
$$

by case $3^{0}, G\left(u^{2}, v^{2} ; x\right)=H_{3}(x)$ where

$$
\begin{align*}
H_{3}(x)= & 4\left[2(1-c) x^{2}+(3-4 c) x+\frac{3}{2}-2 c\right] \mathrm{e}^{-2 x} \tag{2.12}\\
& +4 c-3+2^{n} c, \quad x \geqslant 0
\end{align*}
$$

by case $4^{0}, G\left(u^{2}, v^{2} ; y\right)=H_{4}(y)$ where

$$
\begin{align*}
H_{4}(y)= & -4\left[2(1-c) y^{2}+(3-4 c) y+\frac{3}{2}-2 c\right] \mathrm{e}^{-2 y} \tag{2.13}\\
& -4 c+3+2^{n} c, \quad y \geqslant 0
\end{align*}
$$

by case $5^{0}, G\left(u^{2}, v^{2} ; y\right)=H_{5}(y)$ where

$$
\begin{align*}
H_{5}(y)= & -4\left[(1-c) y^{2}+(1-2 c) y+\frac{1}{2}-c\right] \mathrm{e}^{-2 y} \tag{2.14}\\
& -1+2^{n} c\left[(y+1) \mathrm{e}^{-y}\right]^{n}, \quad y \geqslant 0 .
\end{align*}
$$

Now, we shall determine the maxima of the functions $H_{k}, k=1,2,3,4,5$, for any fixed $c \in R$ and $n \in N$. It is easily seen that

$$
\begin{equation*}
H_{1}(x) \leqslant H_{1}(\infty)=1, \quad c \in R, \quad n \in \mathbb{N}, \tag{2.15}
\end{equation*}
$$

where H_{1} is defined by formula (2.10).
Examining the function $H_{2}(x)$ given by (2.11), we conclude:
if $n=1$, then

$$
H_{2}(x) \leqslant \begin{cases}H_{2}(0)=3-2 c & \text { when } c \leqslant 0 \tag{2.16}\\ H_{2}\left(x_{0}\right) & \text { when } c>0\end{cases}
$$

where x_{0} is the positive root of the equation

$$
\begin{equation*}
4 \mathrm{e}^{-x}[(1-c) x-c]+c=0 \tag{2.17}
\end{equation*}
$$

if $n=2$, then

$$
\begin{equation*}
H_{2}(x) \leqslant H_{2}(0)=3, \quad c \in \mathbf{R} ; \tag{2.18}
\end{equation*}
$$

if $n \geqslant 3$, then

$$
H_{2}(x) \leqslant \begin{cases}H_{2}\left(x_{1}\right) & \text { when } c<0, \tag{2.19}\\ H_{2}(0)=3-4 c+2^{n} c & \text { when } c \geqslant 0,\end{cases}
$$

where x_{1} is the positive root of the equation

$$
\begin{equation*}
8 \mathrm{e}^{-x}[(1-c) x-c]+2^{n} n c\left[(x+1) \mathrm{e}^{-x}\right]^{n-1}=0 \tag{2.20}
\end{equation*}
$$

In turn, examining the function $H_{3}(x)$ given by (2.12), we obtain, for $n \in N$,

$$
H_{3}(x) \leqslant \begin{cases}H_{3}(0)=3-4 c+2^{n} c & \text { when } c \leqslant \frac{1}{2} \tag{2.21}\\ H_{3}\left(x_{2}\right) & \text { when } \frac{1}{2}<c<1 \\ H_{3}(\infty)=-3+4 c+2^{n} c & \text { when } c \geqslant 1\end{cases}
$$

where $x_{2}=(2 c-1) / 2(1-c)$.
From the examination of the function $H_{4}(y)$ given by (2.13) we have, for $n \in \mathbb{N}$,

$$
H_{4}(y) \leqslant \begin{cases}H_{4}(\infty)=3-4 c+2^{n} c & \text { when } c<\frac{3}{4}, \tag{2.22}\\ H_{4}(0)=-3+4 c+2^{n} c & \text { when } c \geqslant \frac{3}{4} .\end{cases}
$$

Finally, from the investigation of the function $H_{5}(y)$ given by formula (2.14) we get:
if $n=1$, then

$$
H_{5}(y) \leqslant \begin{cases}H_{5}(\infty)=-1 & \text { when } c \leqslant 0 \tag{2.23}\\ H_{5}\left(y_{0}\right) & \text { when } 0<c<\frac{1}{3} \\ H_{5}(0)=3(2 c-1) & \text { when } c \geqslant \frac{1}{3}\end{cases}
$$

where y_{0} is the greater positive root of the equation

$$
\begin{equation*}
4 \mathrm{e}^{-y}[(1-c) y-c]-c=0 ; \tag{2.24}
\end{equation*}
$$

if $n \geqslant 2$, then

$$
H_{5}(y) \leqslant \begin{cases}H_{5}(\infty)=-1 & \text { when } c<2 /\left(4+2^{n}\right) \tag{2.25}\\ H_{5}(0)=-3+4 c+2^{n} c & \text { when } c \geqslant 2 /\left(4+2^{n}\right)\end{cases}
$$

3. Main theorems

Next, we shall carry out a comparison of the estimates of functions $H_{k}, k=$ $1,2,3,4,5$, obtained for suitable values of c and n.

The estimates of the functions $H_{2}(x)$ and $H_{5}(y)$ imply that it is necessary to consider separately the cases $n=1, n=2$ and $n \geqslant 3$, for suitable values of $c \in \mathbf{R}$.

Let $n=1$. From (2.15), (2.16), (2.21), (2.22) and (2.23) it follows that, for any function $f \in S$,

$$
G(f) \leqslant \begin{cases}\max \{1,3-2 c,-1\} & \text { when } c \leqslant 0, \\ \max \left\{1, H_{2}\left(x_{0}\right), 3-2 c, H_{5}\left(y_{0}\right)\right\} & \text { when } 0<c<\frac{1}{3}, \\ \max \left\{1, H_{2}\left(x_{0}\right), 3-2 c, 3(2 c-1)\right\} & \text { when } \frac{1}{3} \leqslant c \leqslant \frac{1}{2}, \\ \max \left\{1, H_{2}\left(x_{0}\right), H_{3}\left(x_{2}\right), 3-2 c, 3(2 c-1)\right\} & \text { when } \frac{1}{2}<c<\frac{3}{4}, \\ \max \left\{1, H_{2}\left(x_{0}\right), H_{3}\left(x_{2}\right), 3(2 c-1)\right\} & \text { when } \frac{3}{4} \leqslant c<1, \\ \max \left\{1, H_{2}\left(x_{0}\right), 3(2 c-1)\right\} & \text { when } c \geqslant 1,\end{cases}
$$

where H_{2}, H_{3}, H_{5} are given by (2.11), (2.12), (2.14), while x_{0} and y_{0} are the positive roots of equations (2.17) and (2.24), respectively and $x_{2}=(2 c-1) / 2(1-c)$.

From the examination of the function $H_{2}(x)$ defined by (2.11) it follows that $H_{2}\left(x_{0}\right)>3-2 c=H_{2}(0)$ and $H_{2}\left(x_{0}\right)>1=H_{2}(\infty)$ where x_{0} is the root of equation (2.17). It is easily verified that $H_{5}\left(y_{0}\right)<1$ where H_{5} is given by (2.14) and y_{0} is the root of equation (2.24). It can be shown that if $c \leqslant \frac{1}{2}$, then the function $H_{3}(x)$ defined by (2.12) is decreasing; hence $H_{3}(0)=3-2 c>3(2 c-1)=H_{3}(\infty)$. If $c>\frac{1}{2}$, it suffices to examine the function $H_{3}(x)$ and the difference $H_{3}(x)-H_{2}(x)$. Then we obtain that $H_{2}\left(x_{0}\right)>H_{3}\left(x_{2}\right)$ if $\frac{1}{2}<c<c^{*}$, whereas $H_{3}\left(x_{2}\right)>H_{2}\left(x_{0}\right)$ if $c^{*} \leqslant c<1$, with c^{*} being the only root of the equation

$$
\begin{equation*}
\mathrm{e}^{(2 c-1) / 2(c-1)}-3 c+2=0 \tag{3.1}
\end{equation*}
$$

x_{0} being the positive root of equation (2.17), and $x_{2}=(2 c-1) / 2(1-c)$. Moreover, $H_{3}(\infty)=3(2 c-1)>H_{2}\left(x_{0}\right)$ if $c \geqslant 1$.

Consequently, if $n=1$, then, for each function $f \in S$, the following estimate of functional (1.5) holds:

$$
G(f) \leqslant \begin{cases}H_{2}(0)=3-2 c & \text { when } c \leqslant 0 \tag{3.2}\\ H_{2}\left(x_{0}\right) & \text { when } 0<c<c^{*} \\ H_{3}\left(x_{2}\right) & \text { when } c^{*} \leqslant c<1 \\ H_{3}(\infty)=3(2 c-1) & \text { when } c \geqslant 1\end{cases}
$$

where H_{2}, H_{3} are defined by formulae (2.11), (2.12), x_{0} is the only root of equation (2.17), $x_{2}=(2 c-1) / 2(1-c)$ and c^{*} is the only root of equation (3.1).

Next, let $n=2$. From (2.15), (2.18), (2.21), (2.22) and (2.25) it follows that, for any function $f \in S$,

$$
G(f) \leqslant \begin{cases}\max \{1,3,-1\} & \text { when } c<\frac{1}{4} \\ \max \{1,3,8 c-3\} & \text { when } \frac{1}{4} \leqslant c \leqslant \frac{1}{2} \\ \max \left\{1,3, H_{3}\left(x_{2}\right), 8 c-3\right\} & \text { when } \frac{1}{2}<c<1 \\ \max \{1,3,8 c-3\} & \text { when } c \geqslant 1\end{cases}
$$

In this case, the examination of the function H_{3} yields $H_{3}\left(x_{2}\right)>3=H_{3}(0)$ when $c \in\left(\frac{1}{2}, \frac{3}{4}\right)$, and $H_{3}\left(x_{2}\right)>8 c-3=H_{3}(\infty)$ when $c \in\left(\frac{3}{4}, 1\right), x_{2}=(2 c-1) / 2(1-c)$.

So, in this case, the following estimate of functional (1.5) holds:

$$
G(f) \leqslant \begin{cases}H_{3}(0)=3 & \text { when } c \leqslant \frac{1}{2} \tag{3.3}\\ H_{3}\left(x_{2}\right) & \text { when } \frac{1}{2}<c<1 \\ H_{3}(\infty)=8 c-3 & \text { when } c \geqslant 1\end{cases}
$$

where H_{3} is defined by formula (2.12), and $x_{2}=(2 c-1) / 2(1-c)$.
Finally, consider the case when $n \geqslant 3$. From (2.15), (2.19), (2.21), (2.22) and (2.25) it follows that, for any function $f \in S$,

$$
G(f) \leqslant \begin{cases}\max \left\{1, H_{2}\left(x_{1}\right), 3-4 c+2^{n} c,-1\right\} & \text { when } c<0 \\ \max \left\{1,3-4 c+2^{n} c,-1\right\} & \text { when } 0 \leqslant c<\frac{2}{4+2^{n}} \\ \max \left\{1,3-4 c+2^{n} c,-3+4 c+2^{n} c\right\} & \text { when } \frac{2}{4+2^{n}} \leqslant c \leqslant \frac{1}{2} \\ \max \left\{1,3-4 c+2^{n} c, H_{3}\left(x_{2}\right),-3+4 c+2^{n} c\right\} & \text { when } \frac{1}{2}<c<1 \\ \max \left\{1,3-4 c+2^{n} c,-3+4 c+2^{n} c\right\} & \text { when } c \geqslant 1\end{cases}
$$

where H_{2}, H_{3} are given by (2.11), (2.12), while x_{1} is the only root of equation (2.20) and $x_{2}=(2 c-1) / 2(1-c)$.

From the examination of the function H_{2} in this case it follows that $H_{2}\left(x_{1}\right)>$ $3-4 c+2^{n} c=H_{2}(0)$ and $H_{2}\left(x_{1}\right)>1$. Whereas, examining the function H_{3}, we obtain in this case that $H_{3}\left(x_{2}\right)>3-4 c+2^{n} c=H_{3}(0)>H_{3}(\infty)$ when $c \in\left(\frac{1}{2}, \frac{3}{4}\right)$, while $H_{3}\left(x_{2}\right)>-3+4 c+2^{n} c=H_{3}(\infty)>H_{3}(0)$ when $c \in\left(\frac{3}{4}, 1\right)$.

Consequently, if $n \geqslant 3$, then, for each function $f \in S$, the following estimate of functional (1.5) holds:

$$
G(f) \leqslant \begin{cases}H_{2}\left(x_{1}\right) & \text { when } c<0 \tag{3.4}\\ H_{3}(0)=3-4 c+2^{n} c & \text { when } 0 \leqslant c \leqslant \frac{1}{2} \\ H_{3}\left(x_{2}\right) & \text { when } \frac{1}{2}<c<1 \\ H_{3}(\infty)=-3+4 c+2^{n} c & \text { when } c \geqslant 1\end{cases}
$$

where H_{2}, H_{3} are defined by formulae (2.11), (2.12), x_{1} is the root of equation (2.20) and $x_{2}=(2 c-1) / 2(1-c)$.

We shall next examine whether, and for which $c \in R$, estimates (3.2), (3.3) and (3.4) are sharp.

Let us first notice that, in those estimates from (3.2), (3.3) and (3.4) in which the maximum of the function H_{k} is attained at the points 0 or ∞, the extremal function is Koebe function (1.3).

In the case $n=1$, equality in (3.2) takes place for Koebe function (1.3) with $\varepsilon= \pm 1$ when $c \leqslant 0$ and with $\varepsilon= \pm i$ when $c \geqslant 1$.

If $n=2$, equality in (3.3) takes place for Koebe function (1.3) with $\varepsilon= \pm 1$ when $c \leqslant \frac{1}{2}$ and with $\varepsilon= \pm i$ when $c \geqslant 1$.

Similarly, in the case $n \geqslant 3$, equality in (3.4) holds for Koebe function (1.3) with $\varepsilon= \pm 1$ when $0 \leqslant c \leqslant \frac{1}{2}$ and with $\varepsilon= \pm i$ when $c \geqslant 1$.

Next, we shall prove that estimates (3.2) for $0<c<c^{*}$ and (3.4) for $c<0$ are sharp.

It is sufficient to prove the latter case, the proof of the former is analogous.
In order to show that, for $c<0$, estimate (3.4) in the class S is sharp, it is enough to prove, in view of case 2^{0} from Section 2 and on account of the ValironLandau lemma, that there exists a function $\theta_{*}(t)$ for which $\boldsymbol{v}^{2}=0$, i.e. (compare [3], pp. 104-107)

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t} \sin \theta_{*}(t) d t=0 \tag{3.5}
\end{equation*}
$$

and $\left|\mathrm{e}^{-t} \cos \theta_{*}(t)\right|=\varphi(t)$ where

$$
\varphi(t)= \begin{cases}\mathrm{e}^{-x} & \text { for } 0 \leqslant t \leqslant x \\ \mathrm{e}^{-t} & \text { for } \quad x<t<\infty\end{cases}
$$

Let $x_{1}, x_{1}>0$, be a solution of equation (2.20), whereas $\theta_{*}(t)$ a function defined by the formulae

$$
\cos \theta_{*}(t)=\left\{\begin{array}{lll}
\mathrm{e}^{t-x_{1}} & \text { for } 0 \leqslant t \leqslant x_{1} \\
1 & \text { for } & x_{1}<t<\infty
\end{array}\right.
$$

Then

$$
\sin \theta_{*}(t)= \begin{cases} \pm \sqrt{1-\mathrm{e}^{2\left(t-x_{i}\right)}} & \text { for } 0 \leqslant t \leqslant x_{1} \\ 0 & \text { for } x_{1}<t<\infty\end{cases}
$$

whence one can easily obtain the formulae for the function $k_{*}(t)=\mathrm{e}^{i \theta_{0}(t)}$.

Choosing different signs in portions of the interval $\left\langle 0, x_{1}\right\rangle$, one can satisfy condition (3.5). Indeed, let us consider, for instance, the function

$$
\begin{aligned}
\psi(\tau)= & \int_{0}^{\tau} \mathrm{e}^{-t} \sqrt{1-\mathrm{e}^{2\left(t-x_{1}\right)}} \mathrm{d} t \\
& -\int_{\tau}^{x_{1}} \mathrm{e}^{-t} \sqrt{1-\mathrm{e}^{2\left(t-x_{1}\right)}} \mathrm{d} t, \quad \tau \in\left\langle 0, x_{1}\right\rangle
\end{aligned}
$$

It is continuous in the interval $\left\langle 0, x_{1}\right\rangle, \psi(0)<0, \psi\left(x_{1}\right)>0$, thus there exists a point $\tau_{0} \in\left(0, x_{1}\right)$ such that $\psi\left(\tau_{0}\right)=0$. Putting then

$$
\sin \theta_{*}(t)= \begin{cases}\sqrt{1-\mathrm{e}^{2\left(t-x_{1}\right)}} & \text { for } 0 \leqslant t \leqslant \tau_{0} \\ -\sqrt{1-\mathrm{e}^{2\left(t-x_{1}\right)}} & \text { for } \tau_{0} \leqslant t \leqslant x_{1}, \\ 0 & \text { for } x_{1}<t<\infty\end{cases}
$$

we eventually obtain condition (3.5).
Let us observe that the functions $H_{3}(x)$ and $H_{4}(y)$ given by formulae (2.12) and (2.13), respectively, have been obtained in the case when $u^{2}+v^{2}=1$ (compare 3^{0}, 4^{0}). It is known from estimate (1.2) that this equality is possible only for Koebe function (1.3). From (1.5) and (1.3), putting $\varepsilon=\mathrm{e}^{i \varphi}, 0 \leqslant \varphi<2 \pi$, we get

$$
G\left(f_{0}\right)=(3-4 c) \cos 2 \varphi+2^{n} c, \quad c \in R, \quad n \in N
$$

It is easily verified that

$$
G\left(f_{0}\right) \leqslant \max _{0 \leqslant \varphi \leqslant 2 \pi}\left[(3-4 c) \cos 2 \varphi+2^{n} c\right]=\left\{\begin{array}{cl}
3-4 c+2^{n} c & \text { when } c<\frac{3}{4} \\
-3+4 c+2^{n} c & \text { when } c \geqslant \frac{3}{4}
\end{array}\right.
$$

$n \in \mathbb{N}$.
Thus, this implies that, in cases 3^{0} and 4^{0}, we can find a sharp estimate of the functional $G(f)$ at the points $(0,1),(1,0)$ only. In the remaining cases, we shall only get an estimate from above. Such cases take place for those n and c for which, in (3.2), (3.3) or (3.4), the value of the function H_{3} at the point $x_{2}=(2 c-1) / 2(1-c)$ occurs. For, then, we should have $u^{2}+v^{2}=1,|u|=\omega\left(x_{2}\right)$ and, respectively, $|v|=\left|\int_{0}^{\infty} \mathrm{e}^{-t} \sin \theta(t) d t\right|$. Consequently, for those c for which the value of the function H_{3} occurs and for a fixed x, the polygon with vertices given by the conditions $1^{0}-5^{0}$ seems too large.

Thereby, (3.2), (3.3), (3.4) and (1.5) and (1.4) imply the following

Theorem 1. If $f \in S$ is any function of form (1.1), then we have

$$
\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right| \leqslant \begin{cases}3-2 c & \text { when } c \leqslant 0 \\ c\left(x_{0}+1\right) \mathrm{e}^{-x_{0}}+2 \mathrm{e}^{-2 x_{0}}+1 & \text { when } 0<c<c^{*} \\ H_{3}\left(x_{2}\right) & \text { when } c^{*} \leqslant c<1 \\ 3(2 c-1) & \text { when } c \geqslant 1\end{cases}
$$

where x_{0} is the only root of the equation

$$
4 \mathrm{e}^{-x}[(1-c) x-c]+c=0
$$

H_{3} is defined by formula (2.12), $x_{2}=(2 c-1) / 2(1-c)$, while c^{*} is the only root of equation (3.1). For any $c<c^{*}$ and $c \geqslant 1$, there exist functions of the class S for which the equality sign in the above estimates takes place.

Theorem 2. If $f \in S$ is any function of form (1.1), then we have

$$
\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right|^{2} \leqslant \begin{cases}3 & \text { when } c \leqslant \frac{1}{2} \\ H_{3}\left(x_{2}\right) & \text { when } \frac{1}{2}<c<1 \\ 8 c-3 & \text { when } c \geqslant 1\end{cases}
$$

where H_{3} is given by (2.12) and $x_{2}=(2 c-1) / 2(1-c)$. For each $c \leqslant \frac{1}{2}$ and each $c \geqslant 1$, there exist functions of the class S for which the equality sign in the above estimates takes place.

Theorem 3. If $f \in S$ is any function of form (1.1), n-any integer number, $n \geqslant 3$, then we have

$$
\left|a_{3}-c a_{2}^{2}\right|+c\left|a_{2}\right|^{n} \leqslant \begin{cases}-c(n-2) 2^{n-1}\left[\left(x_{1}+1\right) \mathrm{e}^{-x_{1}}\right]^{n} & \\ +2 \mathrm{e}^{-2 x_{1}}+1 & \text { when } c<0 \\ 3-4 c+2^{n} c & \text { when } 0 \leqslant c \leqslant \frac{1}{2} \\ H_{3}\left(x_{2}\right) & \text { when } \frac{1}{2}<c<1 \\ -3+4 c+2^{n} c & \text { when } c \geqslant 1\end{cases}
$$

where x_{1} is the positive root of the equation

$$
8 \mathrm{e}^{-x}[(1-c) x-c]+c n 2^{n}\left[(x+1) \mathrm{e}^{-x}\right]^{n-1}=0,
$$

H_{3} is given by (2.12), and $x_{2}=(2 c-1) / 2(1-c)$. For any $c \leqslant \frac{1}{2}$ and $c \geqslant 1$ there exist functions of the class S for which the equality sign in the above estimates takes place.

4. Applications

We shall give some simple applications of the results obtained, admitting that some of them are known.

Let us put, for example,

$$
\begin{array}{ll}
g_{1}(z)=[f(1 / z)]^{-1}=z+a_{0}^{(1)}+a_{1}^{(1)} / z+\ldots, & 1<|z|<\infty \\
g_{2}(z)=z \sqrt{f\left(z^{2}\right) / z^{2}}=z+a_{2}^{(2)} z^{3}+a_{3}^{(2)} z^{5}+\ldots, & z \in \Delta, \\
g_{3}(z)=\log [f(z) / z]=2\left(a_{1}^{(3)} z+a_{2}^{(3)} z^{2}+\ldots\right), & z \in \Delta, \\
g_{4}(z)=1 / f^{\prime}(z)=1+a_{1}^{(4)} z+a_{2}^{(4)} z^{2}+\ldots, & z \in \Delta, \\
g_{5}(w)=f^{-1}(w)=w+a_{2}^{(5)} w^{2}+a_{3}^{(5)} w^{3}+\ldots, & |w|<\frac{1}{4} \\
g_{6}(z)=[z / f(z)]^{k}=1+a_{1}^{(6)} z+a_{2}^{(6)} z^{2}+\ldots, & z \in \Delta, \tag{4.6}\\
& k=2,3 \ldots
\end{array}
$$

(g_{5} denotes the inverse function of f).
Making use of Theorems 1, 2 and the relations between the coefficients a_{2}, a_{3} in expansion (1.1) and suitable coefficients $a_{l}^{(p)}$ in (4.1)-(4.6), we obtain, for instance, the following eestimates:

$$
\begin{gathered}
\left|a_{1}^{(1)}\right|+\left|a_{0}^{(1)}\right| \leqslant 3 \\
\left|a_{3}^{(2)}\right|+\frac{1}{2}\left|a_{2}^{(2)}\right|^{2} \leqslant \frac{3}{2} \\
\left|a_{2}^{(3)}\right|+\left|a_{1}^{(3)}\right|^{2} \leqslant \frac{3}{2} \\
2\left|a_{2}^{(3)}\right|+\left|a_{1}^{(3)}\right| \leqslant 1+2 \mathrm{e}^{-2 x_{0}}+\frac{1}{2}\left(x_{0}+1\right) \mathrm{e}^{-x_{0}}
\end{gathered}
$$

where x_{0} is the root of the equation $4 \mathrm{e}^{-x}(x-1)+1=0$;

$$
\begin{gathered}
\left|a_{2}^{(4)}\right|+\left|a_{1}^{(4)}\right|^{2} \leqslant 23 \\
\left|a_{3}^{(5)}\right|+2\left|a_{2}^{(5)}\right|^{2} \leqslant 13 ; \\
\left|a_{2}^{(6)}\right|+\frac{k+1}{2}\left|a_{1}^{(6)}\right| \leqslant 3 k^{2}, \quad k=2,3, \ldots
\end{gathered}
$$

5. On the class $S\left(\left|a_{2}\right|\right)$

Let $S\left(\left|a_{2}\right|\right)$ denote a subclass of the family S of functions (1.1) with a fixed $\left|a_{2}\right| \in$ $\langle 0,2\rangle$. Note that modifying the procedure presented before, we can examine the maximum of functional (1.5) in the class $S\left(\left|a_{2}\right|\right)$. The consideration will be carried out in the case $n=2$.

From (2.1), (2.2) and (2.8') we then have

$$
\begin{equation*}
G(f)=(2 c-1)\left|a_{2}\right|^{2}+8(1-c) u^{2}-4 \int_{0}^{\infty} e^{-2 t} \cos ^{2} \theta(t) \mathrm{d} t+1 \tag{5.1}
\end{equation*}
$$

With no loss of generality we may assume that

$$
u=\int_{0}^{\infty} e^{-t} \cos \theta(t) d t \in\langle 0,1\rangle
$$

In virtue of the variational lemma from I. E. Bazylevič's paper [1], it is known that, among all admissible functions $\theta(t)$ taking values such that $u=A_{0} \in\langle 0,1\rangle$, the minimum of the integral $\int_{0}^{\infty} y^{2}(t) \mathrm{d} t$, where $y(t)=\mathrm{e}^{-t} \cos \theta(t)$, is attained for the function $y_{0}(t)=\min \left[\mathrm{e}^{-t}, C\right]$. The constant C satisfies the equality

$$
\int_{0}^{\infty} y_{0}(t) \mathrm{d} t=A_{0}
$$

Let $y_{0}(t)=\mathrm{e}^{-x}$ for $t \in\langle 0, x\rangle$ and $y_{0}(t)=\mathrm{e}^{-t}$ for $t \geqslant x$. We shall then get $A_{0}=\omega(x)$. As $A_{0} \in\langle 0,1\rangle$ is arbitrarily fixed, there exists exactly one $x \in\langle 0, \infty)$ satisfying the above equation. Moreover,

$$
\int_{0}^{\infty}\left(\mathrm{e}^{-t} \cos \theta(t)\right)^{2} \mathrm{~d} t \geqslant \int_{0}^{\infty} y_{0}^{2}(t) \mathrm{d} t=w(x)
$$

In the problem considered, we have $0 \leqslant u=A_{0} \leqslant \frac{1}{2}\left|a_{2}\right| \leqslant 1$, the function ω being decreasing, thus the subsequent considerations should be confined to those x for which $A_{0}=\omega(x) \leqslant \frac{1}{2}\left|a_{2}\right|$.

Let $\tilde{x}=\tilde{x}\left(\left|a_{2}\right|\right)$ stand for a root of the equation

$$
\begin{equation*}
\omega(x)=\frac{1}{2}\left|a_{2}\right| \tag{5.2}
\end{equation*}
$$

So, in view of (5.1), we are to estimate the function

$$
\begin{equation*}
\tilde{H}_{3}(x)=8(1-c) \omega^{2}(x)-4 w(x)+1 ; \quad x \geqslant \tilde{x} \tag{5.3}
\end{equation*}
$$

where $\omega(x)=(x+1) \mathrm{e}^{-x}, w(x)=\left(x+\frac{1}{2}\right) \mathrm{e}^{-2 x}$ (cf. Section 2). Since $\tilde{H}_{3}^{\prime}(x)=$ $-8 x \mathrm{e}^{-2 x}[2(1-c) x+1-2 c], x \geqslant \tilde{x}$, therefore, for $c \geqslant 1$, we have $\max \tilde{H}_{3}(x)=$ $\tilde{H}_{3}(\infty)=1$, whereas for $c \leqslant \frac{1}{2}, \max \tilde{H}_{3}(x)=\tilde{H}_{3}(\tilde{x})$.

Let $\frac{1}{2}<c<1$. Then $\tilde{H}_{3}^{\prime}(x)>0$ for $0<x<x_{2}$ and $\tilde{H}_{3}^{\prime}(x)<0$ for $x>x_{2}$ where $x_{2}=(2 c-1) / 2(1-c)>0$. Hence $\max \tilde{H}_{3}(x)=\tilde{H}_{3}\left(x_{2}\right)$ when $\tilde{x} \leqslant x_{2}$ and $\max \tilde{H}_{3}(x)=\tilde{H}_{3}(\tilde{x})$ when $\tilde{x}>x_{2}$. The formula for x_{2} and (5.2) imply that

$$
\max \tilde{H}_{3}(x)= \begin{cases}\tilde{H}_{3}\left(x_{2}\right) & \text { when }\left|a_{2}\right| \geqslant 2 \omega\left(x_{2}\right) \\ \tilde{H}_{3}(\tilde{x}) & \text { when }\left|a_{2}\right| \leqslant 2 \omega\left(x_{2}\right)\end{cases}
$$

From (5.2), (5.3) and the analysis we have carried out we obtain
Theorem 4. If a function f of form (1.1) belongs to the class $S\left(\left|a_{2}\right|\right)$, then

$$
\begin{equation*}
\operatorname{Re}\left(a_{3}-c a_{2}^{2}\right)+c\left|a_{2}\right|^{2} \leqslant 4 e^{-2 \tilde{x}}\left(\tilde{x}^{2}+\tilde{x}+\frac{1}{2}\right)+1 \tag{5.4}
\end{equation*}
$$

when $c \leqslant \frac{1}{2}, \quad\left|a_{2}\right| \leqslant 2$,

$$
\begin{align*}
& \operatorname{Re}\left(a_{3}-c a_{2}^{2}\right)+c\left|a_{2}\right|^{2} \leqslant 4 \mathrm{e}^{-2 \tilde{x}}\left(\tilde{x}^{2}+\tilde{x}+\frac{1}{2}\right)+1 \tag{5.5}\\
& \text { when } \frac{1}{2}<c<1, \quad\left|a_{2}\right| \leqslant 2 \omega\left(x_{2}\right),
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Re}\left(a_{3}-c a_{2}^{2}\right)+c\left|a_{2}\right|^{2} \leqslant(2 c-1)\left|a_{2}\right|^{2}+2 \mathrm{e}^{-2 x_{2}}+1 \tag{5.6}\\
& \\
& \quad \text { when } \frac{1}{2}<c<1,2 \omega\left(x_{2}\right) \leqslant\left|a_{2}\right| \leqslant 2
\end{align*}
$$

(5.7) $\operatorname{Re}\left(a_{3}-c a_{2}^{2}\right)+c\left|a_{2}\right|^{2} \leqslant(2 c-1)\left|a_{2}\right|^{2}+1$
when $c \geqslant 1,\left|a_{2}\right| \leqslant 2$,
where $\omega(x)=(x+1) \mathrm{e}^{-x}, x_{2}=(2 c-1) / 2(1-c), \omega(\tilde{x})=\frac{1}{2}\left|a_{2}\right|, \tilde{x} \geqslant 0$.
The equality in (5.4) and (5.5) can hold only if $u=\frac{1}{2}\left|a_{2}\right|, v=0, \omega(x)=u$, $w(x)=\int_{0}^{\infty} y^{2}(t) \mathrm{d} t$ with the corresponding x. So, in cases (5.4) and (5.5), we have the conditions

$$
\begin{align*}
\int_{0}^{\infty} e^{-t} \cos \theta(t) d t & =\omega(\tilde{x}) \tag{5.8}\\
\int_{0}^{\infty} e^{-t} \sin \theta(t) d t & =0 \tag{5.9}\\
\int_{0}^{\infty} e^{-2 t} \cos ^{2} \theta(t) d t & =w(\tilde{x}) \tag{5.10}
\end{align*}
$$

If, however, the equality in (5.10) holds, then $\mathrm{e}^{-t} \cos \theta(t)=y_{0}(t)$ with $x=\tilde{x}$. Consequently, $\cos \theta(t)=\mathrm{e}^{-\tilde{x}+t}$ for $t \leqslant \tilde{x}$ and $\cos \theta(t)=1$ for $t \geqslant \tilde{x}$. Then, of course, $u=\omega(\tilde{x})$ and one may choose $\sin \theta(t)$ (cf. the proof of the estimate in Theorem 3) so that (5.9) takes place. Consequently, estimates (5.4) and (5.5) are sharp.

In the case of the equality in (5.6), the relations $u=\omega\left(x_{2}\right), \int_{0}^{\infty} \mathrm{e}^{-2 t} \cos ^{2} \theta(t) \mathrm{d} t=$ $w\left(x_{2}\right)$ and $\omega(\tilde{x})=\frac{1}{2}\left|a_{2}\right|, \tilde{x}<x_{2}$ should hold. In the last case, the equalities $x=\infty$, $\int_{0}^{\infty} y^{2}(t) \mathrm{d} t=w(\infty)=0$ necessarily hold, so $u=0,|\sin \theta(t)|=1$ and $\left|a_{2}\right|=2|v|$. Let

$$
v=v(\tau)=\int_{0}^{\tau} \mathrm{e}^{-t} \mathrm{~d} t-\int_{\tau}^{\infty} \mathrm{e}^{-t} \mathrm{~d} t, \quad \tau \geqslant 0
$$

Thus there exists, in this case, a function of the class $S\left(\left|a_{2}\right|\right), 0 \leqslant\left|a_{2}\right| \leqslant 2$, realizing in (5.7) the equality sign.

From (5.4), (5.6) and (5.7) we immediately obtain the above Theorem 2.
Analogous investigations for $\boldsymbol{n} \neq \mathbf{2}$ have not been the aim of the present paper.

6. OPEN PROBLEMS

To conclude with, let us notice that functional (1.4) can be modified a little. In particular, it seems interesting to investigate, for example, the following functionals defined on the class S :

$$
\begin{gather*}
\left|a_{3}-\alpha a_{2}^{2}\right|+\left|\alpha a_{2}^{n}\right|, \quad \alpha \in C, \quad n \in N \\
\left|a_{3}-\alpha a_{2}^{2}\right|+\beta\left|a_{2}\right|^{n}, \quad \alpha \in C, \quad \beta \in R, \quad n \in N, \tag{6.1}\\
\left|a_{3}-\alpha a_{2}^{2}\right|+\alpha\left|a_{2}\right|^{n}, \quad \alpha<0, \quad n \in \mathbb{N} \tag{6.2}
\end{gather*}
$$

In the case of (6.2), the problem concerns the determination of the minimum of this functional. Case (6.1) when $n=1$ will provide, in particular, an estimate of the sum of the moduli of coefficients in various classes associated with the class S (see 4. Applications).

Of course, it remains open to determine in Theorems 1,2 and 3 sharp estimates in the intervals $c^{*} \leqslant c<1$ and $\frac{1}{2}<c<1$. In spite of several different attempts, these cases have resisted so far.

Acknowledgement. The authors thank Professor S. Ruscheweyh for his valuable remarks offered in the course of the preparation of this paper.

References

[1] I.E. Bazilevic: Domains of principal coefficients of bounded univalent functions of p-tuple symmetry, Mat. Sb. 49 (1957), no. 4, 409-428. (In Russian.)
[2] L. Bieberbach: Uber die Koeffizienten derjenigen Potenzreihen, welche schlichte Abbildung des Einheitskreises vermitteln, Preuss. Akad. der Wiss. Sitzungsb. 38 (1916), 940-955, Berlin.
[3] P.L. Duren: Univalent functions, vol. 259, Grundlehren der math. Wissenschaften, 1983.
[4] M. Fekete, G. Szegö: Eine Bemerkung über ungerate schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 30, 85-89.
[5] G.M. Goluzin: Some questions of the theory of univalent functions, Trudy Mat. Inst. Steklov 27 (1949), 51-56. (In Russian.)
[6] Z.J. Jakubowski, W. Majchrzak, A. Szwankowski: On some extremal problem in the class S of functions holomorphic and univalent in the unit disc, Ann. UMCS 40 (1986), 63-75 (1988).
[7] Z.J. Jakubowski, A. Szwankowski: On some extremal problem in the class of holomorphic symmetric univalent functions, Commentationes Mathematicae 29 (1990), 195-207.
[8] J.A. Jenkins: On certain coefficients on univalent functions, Princ. Univ. Press, New Jersey, 1960, pp. 159-194.
[9] K. Löwner: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Mat. Ann. 89 (1923), 103-121.
[10] K. Zyskowska: On an estimate of some functional in the class of odd bounded univalent functions, Acta Universitatis Lodziensis 5 (1992), 169-191.

Authors' address: Chair of Special Functions, Lódź University, Banacha 22, 90-238, Lódź; Poland.

