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Summary. Lepagean 2-form as a globally defined, closed counterpart of higher-order
variational equations on fibered manifolds over one-dimensional bases is introduced, and
elementary proofs of the basic theorems concerning the inverse problem of the calculus of
variations, based on the notion of Lepagean 2-form and its properties, are given.
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1. INTRODUCTION

The inverse problem of the calculus of variations has been stated first by Helmholtz
[4] as a problem of the existence of a lagrangian to a given system of second order
ordinary differential equations. In his paper [4] Helmholtz has found necessary con-
ditions for variationality of such equations, now called the Helmholtz conditions; it
has been proved later by Mayer [14] that these conditions are also sufficient. Since
that time the problem has been substantially generalized, enriched, and intensively
studied by many authors using different methods.

Within the range of higher-order calculus of variations on fibered manifolds there
are three basic questions concerned with the inverse problem:

(1) The local inverse problem of the calculus of variations means finding necessary
and sufficient conditions for a system of higher-order partial differential equations
to be identical with a system of the Euler-Lagrange equations of a lagrangian. For
the case of higher-order mechanics it has been solved first by Vanderbauwhede [19]
using Veinberg’s potential operator method [18], and by Macjuk [13] who developed
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Tulczyjew’s approach based on studies of the “Lagrange derivative” [17]. For the
general case (higher-order field theory) necessary and sufficient variationality con-
ditions in an explicit form have been first proved independently by Anderson and
Duchamp [2], using the variational bicomplex (Dedecker and Tulczyjew (3], Tak-
ens [15], Vinogradov [20]), and by Krupka in [7] (see also [8]), using properties of
Lepagean equivalents of lagrangians.

(2) A closely related question to the local inverse problem concerns explicit con-
struction of a lagrangian to a given system of variational equations. It is well-known
how to construct to a system of order r a (local) lagrangian of the same order,
e.g. the so-called Veinberg-Tonti lagrangian [16]. However, there arises a question
of the possibility of lowering the order of this lagrangian. This problem has been
solved completely for the case of higher-order mechanics by Vanderbauwhede [19]
who has shown, within the range of the potential operators theory, that every sys-
tem of higher-order ordinary differential equations possesses a lagrangian of the low-
est possible order, and has found an explicit formula for the construction of such
a lagrangian. In the case of higher-order field theory the problem of possibility of
lowering the order of a lagrangian has been touched in [11]. '

(3) A system of Euler-Lagrange equations on a fibered manifold is globally rep-
resented by the so-called Euler-Lagrange form (Krupka [6]), which in general arises
from locally defined lagrangians. The question of the existence of a globally defined
lagrangian—the globdal inverse problem of the calculus of variations—has been stud-
ied by many authors (Takens [15], Vinogradov [20, 21], Anderson [1], Krupka [11],
and references therein). The paper [11] also solves the problem of the order of global
lagrangians (cf. Anderson and Duchamp [2]).

In the present paper we develop the theory of Lepagean 2-forms, initiated in [12],
and apply it to the inverse problem in higher-order mechanics. We show that the
above mentioned results, which have been obtained by different methods and rather
complicated tools, can be explained and proved within the range of the calculus of
variations on fibered manifolds by straightforward and elementary techniques, based
in fact only on the definition of the Lepagean 2-form and on the Pomcare Lemma
for contact forms.

We work in the category of smooth, finite-dimensional manifolds. We suppose
the reader to be familiar with basic structures used in higher-order calculus of
variations—the theory of higher-order jet prolongations of fibered manifolds, and
the related calculus—the theory of horizontal and contact forms and projectable
vector fields. These prerequisites can be found e.g. in [9]. We use the following
(more or less standard) notation: d the exterior derivative, i the inner product, *
the pull-back, »: Y — X a fibered manifold (dim X = 1), J* the s-jet prolongation
functor, x,: J*Y — X or simply J*Y the s-jet prolongation of 7, 7, ;: J*Y — J*Y,
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0 < k < s, the canonical jet projections, (V,9), ¥ = (t,¢%) a fiber chart on Y,
(Vay¥s), ¥s = (L, 47, - .., ¢7) the associated fiber char on J*Y, V, = n,o(V), QP(J*Y)
the module of (exterior) p-forms on J*Y, Q% (J*Y) the module of x,-horizontal p-
forms on J*Y, ngY(J'Y), 0 < k < s the module of 7, ;-horizontal p-forms on J*Y,
and QP~%*(J*Y), 1 < k < p the module of k-contact p-forms on J*Y . In particular,
Q};I(J *Y') denotes the module of 1-contact 2-forms on J*Y, horizontal with respect
to the projection onto Y. Note that in each fiber chart (V,¢), ¥ = (t,¢°) on Y a
form E € Qi}l(.] *Y) is represented by the chart expression E = E,dq” A dt, where
E, are functions on V,. By h we denote the horizontalization with respect to ,
by p the contactization with respect to 7, by p; the 1-contactization, and by p; the
2-contactization. Recall that for the 1-forms dt, d¢7, 1 < ¢ < s on V, we have

(1.1) hdt = dt, hdgj =g¢j,,dt, pdt=0, pdgj =wj, 0<j<s,
where the standard notation
(1.2) wj =dgj —gj,,dt, 0<j<s

is used. Finally, Elw denotes the restriction of a form E to a set W (i.e. the pull-back
by the canonical inclusion).

2. LEPAGEAN 2-FORMS AND THE INVERSE PROBLEM

First we recall the notion and basic properties. of a Lepagean form, adapted to the
case of a fibered manifold with one-dimensional base. For details and proofs we refer
to Krupka [6, 10].

Proposition 1. Let ¢ € Q!(J*Y). The following five conditions are equivalent:
(1) It holds

(2.1) Tp1.de=E+F,

where E € Q' (J**1Y) and F € Q03(J*+1Y).

(2) p1(73 41 ,de) is a 7,41 0-horizontal form.

(3) For each =, o-projectable vector field §€ on J*Y the form h(i¢de) depends on
the =, o-projection of § only.

(4) For each =, o-vertical vector field § on J*Y, h(igde) = 0.

(5) In each fiber chart (V,¢), ¥ = (t,¢°) on Y

8
(2:2) .0 = Ldt+ Y ity
i=0
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where

s—i—-1
. d¢ aL
2.3 H= Y (), 0<igs
( ) f; Fywd ( ) dtk aq‘a+1+k <

Any 1-form g satisfying one of the equivalent conditions of Proposition 1 is called
a Lepagean I-form. If g is a Lepagean 1-form then the form E defined by (2.1), or
equivalently by

(24) iJnn(E = h(i;-edg)

for each =-vertical vector field £ on Y, is called the Euler-Lagrange form. In each
fiber chart (V,¥), ¥ = (,q°) on Y where g is expressed by (2.2), (2.3) we get

(2.5) ' E = E,(L)° A dt,

- d* oL
2.6 E,(L) =Y (-1)f— 2~
(2.6) (L) g( ) 3 57

and the functions (2.6) are called the Euler-Lagrange ezpressions associated with L.
Note that both ¢ and E depend on h(g) only.

Let » > 1. Any =.-horizontal 1-form A on J'Y is called a lagrangian of order
r for . A Lepagean l-form g is called a Lepagean equivalent of A if h(g) = A.
To every lagrangian there exists a unique Lepagean equivalent, it is denoted by 0.
If A € Q4(JTY) then, in general, 8y € Q}(J?~'Y). The Euler-Lagrange form of
A is denoted by E). The mapping &: A — E) assigning to every lagrangian its
Euler-Lagrange form is called the Euler-Lagrange mapping.

Proposition 2. Let A € Q% (J'Y) be a lagrangian, E) the Euler-Lagrange form
of A,0) the Lepagean equivalent of . Let vy be a section of x. The following four
conditions are equivalent:

(1) For each x-projectable vector field ¢ on Y

.(2.7) J¥ =y iia,maedl) =.0.

(2) For each x-projectable vector field & onY
(2.8) © I i Ey = 0.

(3) The Euler-Lagrange form E) vanishes along Jr, i.e.
(2.9) ExoJ¥y=0.

264



(4) For any fiber chart (V,y) the restriction of v to the set (V) satisfies the
system of ordinary differential equations of order 2r

(2.10) Eo(L)oJ¥y=0, 1<o<m

where E,(L) are defined (2.5), (2.6).

Any of the equivalent equations (2.7)-(2.10) are called the Euler-Lagrange equa-
tions of the lagrangian A, and any (local) section v of  satisfying these conditions
is called an eztremal of A.

Let s > 1, let E € Qp'(J°Y) be a form. E is called variational, or globally
variational, if there exists an integer r > 1 and a lagrangian A € Q4(J"Y) such that
E = E) (up to the projection 73, or 7, 2,.) E is called locally variational if there
exists an open covering {W,} of J*Y such that for every ¢, Elw‘ is variational.

Consider the fibered manifold pr;: R X R™ — R and a system of ordinary differ-
ential equations of order s > 1

) dv 24
(2.11) E'.,(t,‘y",—c-lzt-,.“,—dZT):O, 1<o<m

for sections 7: R — Rx R™, 7(iddom~(7")), defined on open subsets of R. Denoting
by (¢%) the canonical coordinates on R™ we can write (2.11) in an equivalent form

(2.12) E,(t,¢",...,q5)0J'y=0, 1Ko m

Put £ = E,dq’° A dt. The system (2.12) is called variational if the form E is
variational.

Let r, k be integers, r < k, let Wy C J'Y, W2 C J*¥Y be open sets such that
Wi N7 (W2) # 0. Consider two lagrangians A; € Q4(W)1), A2 € Q% (W,). We say
that A; and A, are equivalent if (up to the projection) E), = E), on the common
domain of definition.

We shall start with a fundamental lemma, called the Poincaré Lemma for contact

forms (Krupka [8]). Although the proof is standard we recall it briefly to fix the
notations. ’

Lemma. Let 7: W — U be fibered manifold such that W = U xV, whereU C R
and open interval and V C R™ is an open ball with the centre at the origin. Let k > 1
be an integer, and g € Q.P,.-,W(J *W) a closed p-form of tbe order of contactness k.
Then there exists a (p — 1)-form 1 on J*W of the order of contactness k — 1 such
that dg = p.
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Proof. Let (t,¢%) be the canonical coordinates on W. Define a mapping x;, :
[0,1] x J*W — J*W by

(2.13) Xo (u(t,a%,- ., 47)) = (t,ug’, ..., uq7).

Let ¢ € Q.. (J*W) be a form. Denote ¢ = EcKQS'(’)., ‘where K is a multi-index
labelling exterior products of p factors of d¢, w?, ..., w?_;, denoted by Q(,'(’). Now
since

(2.14) X;wj =¢jdut+wy, 0<jig<s—1,

we obtain

(2.15) - x;e=duAgo+¢,

where g9 and ¢’ do not contain du. More precisely,
(2.16) 00 =5a;QP7Y, ¢ = SbrQP),

where by are given by by = uX(cx o x,), J is a multi-index labelling exterior
products of p — 1 factors of dt, w?, ..., wJ_,, which are denoted by Qf,” '1), and ay
are functions on [0, 1] x J*W. Put

1
(2.17) g=x( / as du) ™.
0

Agis (p—1)-formon J*W, and its order of contactness is k — 1. By a straightforward
computation we get

(2.18) dAp+ Adp = .

By assumption, dg = 0. Hence, putting n = Ag, the proof is completed. a

Note that the mapping A defined by (2.17) maps, for every k, the module
Q5 oEE (J°W) into Q5TEES (0 w).

Now, we shall return to the inverse problem.

Let s > 1 be an integer. A closed form a € Q3,.,,(J*Y) is called a Lepagean
2-form if & = E + F, where E € Q)'(J*Y) and F € Q%%(J*Y) [12]. Taking into
account the definition of a Lepagean 1-form we see immediately that locally a = dg,
where ¢ is a Lepagean 1-form.

!
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Proposition 3. Let a € Q3,_,,(J*Y) be a Lepagean 2-form. Then the form
E = pya is locally variational, and J*Y can be covered by open sets in such a way
that on each of these sets A = h(Aa) = AE is a lagrangian for E.

Proof. By the Poincaré Lemma for contact forms J*Y can be covered by open
sets in such a way that, on each of these sets, « = dn where = Aa = AE + AF,
Evidently, each of the forms 7 is a (locally defined) Lepagean 1-form. This means
that E = E), where A = h(n) = AE. o

The (local) lagrangian

(2.19) A=AE = (q" /1(1«;, ox,)du)dt
0

is called the Veinberg-Tonli lagrangian; note that its order is equal to the order of
the corresponding form E.

Proposition 4. Let s > 1, let a € Q2,.,,(J*Y) be a form. The following
conditions are equivalent: '
(1) « is a Lepagean 2-form.
(2) In each fiber chart (V,v), ¥ = (t,9°) on Y, a is expressed in the form
s—1
(2.20) a=FE,w’ Adt+ Z Fifw? Awf, Fit=—FH,

J,k=1

where the functions E, satisfy

(2:21) e Z( -1) dzk-ta > =0

g7 k=t41

for 0 < £ < s, and FiE are expressed by means of E,, 1 < ¢ € m in the form

L1kt i+t OE
2.22) Fik=_ -1 +‘( ) —  0<j+k<s -1,
( ) ov 2 t.zo ( )J dlt aq, rheiel R {
(2.23) Fit=0, s<j+kg2s-2.

Proof. We recall the proof from [12] (cf. also [5]).
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Suppose (1). Expressing the relation da = 0 in fiber chart (V,¥), ¥ = (t,¢°) on
Y we get the following identities:

(2.24) %?,1 - %IE;"- + 2%}‘,, =0,

(2.25) %% - 2%1?3,’5 —-F%F1=0, 1<k<g<s—~1,
.(2.26) %f; —-2F% 1 =0,

(2:27) %Fﬂf +Fi;V 4+ Fil =0, 1<j,k<s-1,
(2.28) FiVE =0, 1<kgs~1,
(2.29) OFly OFe \OFe o o<iktsst.

L AT

The relations (2.25) and (2.26) enable us to express the functions FOr, 0 < k < s—1
by means of E, in the form

1

—k— )
> (-1)‘-“——3&- 0Sk<s -1

1 L
2 = dtf Ogi 4041

(2.30) F‘?:" =
From (2.27) and (2.28) we get (2.23) and the relations

. ‘—j-k-l — L .
@) mE= 3 o (PrT) SR 2cirkca,

L=0 ¢ dtt ’
and
& E+e-1) d
(2.32) FO% = Z (-1)’=+‘( ‘ )mej‘”, 1<kgs-1

=0 .

Now, the relations (2.21) and (2.22) are obtained after obvious and straightforward
calculations. Finally, we shall show that (2.29) are fulfilled identically. Put

. aF,'k ath aFl:l ' )
(233) G = 6«,? + Oq;;d + oq:;, 0<j,kt<s, 1<o,v,e<m

Differentiating the relations (2.24)-(2.27) with respect to ¢f,, we obtain

ik
(2.34) Gi‘i.’,=é§’%i=0, 0<jk<s, 1<o,v,e<m.
8
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Using (2.27) we get for 1 < j, b, <8, 1< o, v,0<m the relation

d .. . - e
(2.35) 5Cve+ wa:"’" + GV LGl = 0.

Proceeding by induction starting from (2.34) the desired relat.lons G-!,’,‘,‘e 0 for
0< 4,k €< 8, 1< 0,v,0 < m are obtained.

The implication (2) = (1) is proved in an obvious way. O

Corollary. Let o € 93.-,Y(J *Y') be a form satisfying the following two condi-
tions:

(1) a=E+F, where E € Qp'(J*Y) and F € Q%2(J*Y),

(2) p2da=0. '
Then a is closed.

Let E be a locally variational for on J*Y. A Lepagean 2-form is called a Lepagean
equivalent of E if paa = E.

Theorem 1. Every locally variational form on J*Y has a unique Lepagean equiv-
alent, and this is projectable onto J*~'Y.

Proof. Let E € Q};’(J'Y) be a locally variational form. Consider an open
covering {W,} of J*Y such that (i) W, C V,, for every ¢, where (V, ¥) is a fiber chart
onY, (ii) Elw is variational. Let ¢, k be arbitrary such that W, N W, # 0. Denote
by a, (resp. a,;)) a Lepagean equivalent of Elw (resp. E'w ) on W, (resp. W,) (we
can take e.g. a, = d@), where A, is a lagrangian for Elw , and similarly for ay).
Hence, on W, N W, we have a, = E + F, and ax, = E + F, where F, and F, are
2-contact 2-forms. Now, a, — ax = F, — Fy, i.e., since the form a, — a, is closed by
assumption, F, — F = dn for a 1-comtact 1-form 7. This means that a, = a, + dy,
i.e. pydyp = 0. This implies, however, p;dp = 0. Hence dyp = 0, i.e. a, = a, on
W, N Wy, proving the global existence of a Lepagean equivalent of E. Uniqueness is
a direct consequence of Proposition 4.

It remains to show that the Lepagean equivalent of E is projectable onto J*~1Y.
Let (V,9), ¥ = (t,9°) be a fiber chart on Y, let E = E,w’ A dt be the chart
expression of E. According to Proposition 4, the form a defined by (2:20)-(2.23) is
the Lepagean equivalent of E. Since Fit 1< o,v < m, 0 < i,k < s — 1 are dined
on Vo,_1-i—k, a is defined on J2*~1Y. Writing a in the form (of a non-invariant
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decomposition)

-1 s—1s-1~1
(236) o= (E, - > 23t )de" Adt =Y Y 2Fibgl, daf Adt
k=0 i=1 k=0
8=~18-1-4 )
+3 Y Fitdg? ndg
=0 k=0

it suffices to show that the functions Fit, E, — 2F%*-1¢*, 1< o,y < m, 0 < i,k <
8—1 are defined on V,_,. Differentiating the relations (2.24) and (2.25) consecutively
with respect to ¢4,, ¢3,_;, - - -, ¢4, and taking into account that E, are defined on
V,, we obtain that FOF are defined on V,_;. Similar conclusions are made for Fif
with the help of (2.27). Finally, since the conditions (2.21) imply that

(2.37) E, = As + B,,q;,

where A, and B,,, 1 < o,v < m are functions on V,_;, and obviously B,, =
2F0;*=1, we get the desired result. ' (]

HEitsa locally variational form the Lepagean equivalent of E ill be denoted by

ag.
Theorem 1 has the following important consequences:

Corollary 1. Let E € Q) l(J’Y) be a locally variational form. There exists a
unique 2-contact 2-form F € Q%3(J*Y) such that d(E + F) = 0. In each fiber chart
V,¥), v=(t,¢°)onY

c-l

(2.38) F= ) Fitwf Auf,
. .hk‘—

where the functions F = — F}i are defined by (2.22) and (2.23).

Corollary 2. Let r, s be integers. Let E € Q}'I(J‘Y) be a locally variational
form, ag its Lepagean equivalent. Let A be a lagrangian for E, defined on an open
subset of J'Y. Then the form df) is projectable onto an open subset W C J*~'Y
and %3,_; ,_1d0r = ag|,,.

Corollary 3. Consider the Euler-Lagrange mapping &, denote by ker & its kernel.
A lagrangian A € Q% (W) defined on an open subset W of J'Y belongs to ker & if
and only if there exists a closed 1-form ¢ on %, ,_1W such that A = hg.

270



Proof. Let A €kerd,ie. Eyx =0. Then, by Theorem 1, ag, = df) = 0. Since
A = h#), the form hd, is projectable onto W, and locally h@)y = hdf where f is a
function. Since Adf is deﬁned on an open subset of J'Y we conclude that f does

not depend on ¢Z, 1 £ . Now 0 = df, i.e. 0, is projectable onto =, 1 W.
Conversely, if p € Q (r,,,_l W) is closed and such that A = hp we get 0) = 0, = p,
i.e. d0)\ = dp = 0. Hence, E) = 0. a

Notice that by Corollary 3, two lagrangians A; € Q% (W), A2 € Q% (W2) defined
on open sets Wy C J'Y, W, C J¥Y where r < k, such that W) N (W2) # 0, are
equivalent if and only if they differ locally by a “total derivative” hdf where f is a
function depending on ¢, ¢°, ..., qf_, only.

Theorem 1 provides, for the case of higher-order mechanics, an easy solution of
both the local and the global inverse problems of the calculus of variations.

Theorem 2. A form E € Qi,"(J *Y) is locally variational if and only if in each
fiber chart (V,¢), ¥ = (t,9°) on Y the functions E,, 1 < ¢ < m, defined by
E = E,dq° A ddt satisfy the identities

9E, . ¢ 0F, _
(239) aqg - aqt Z;H(_ ) ( ) tk - aq 0, 0<£<s

Proof. If E is locally variational then the assertion follows from Theorem 1
and Proposition 4.

Conversely, suppose that the identities (2.39) are satisfied. Then we can construct

a 2-contact 2-form F and a 2-form a using (2.20) and (2.22). Since, by Proposition

4, a is a Lepagean 2-form we get from Proposition 3 that E is locally variational.

a

The identities (2.39), for the general case (i.e. a system of higher order par-
tial differential equations) are called Anderson-Duchamp-Krupka conditions. For
dim X = 1 and s = 2 they are usually called the. Helmholtz conditions.

Theorem 3. Let E € QI'I(J’Y) be a locally variational form, let ag be its
Lepagean equivalent. Then following four assertions are equzvalent

(1) E is globally variational, :

(2) oag is exact,

(3) there exists a global Lepagean 1-form ¢ on J*~'Y such that p,dp = E,

(4) there exists a global lagrangian A on J'Y such that E' = E,.

Proof. (a) If E is globally variational then there exists a lagrangian A such
that (up to a projection) E = E,. Taking the Lepagean equivalent 8, of A we get
df) = ag, proving the exactness of ag.
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(b) If ag is exact then there is a 1-form g on J*-1Y such that dgp = ag.” By
Proposition 2.4 pydo = E, hence g is a Lepagean 1-form.

(c) If(3) holds then hg is a global lagrangian of order s for E.

(d) The last implications is trivial.

Note that a sufficient condition for any of the assertions of Theorem 3 to be
satisfied is that the de Rham cohomology group H?(Y) be trivial.

In the sequel we shall be interested in the problem of existence of lagrangians of
the lowest possible order, the so-called minimal-order lagrangians for a given locally
variational form. We shall show that this property is closely related to the existence
of a certain canonical form of the Lepagean 2-form.

In what follows, s will be an integer, denoting the minimal order of a locally
variational form E, i.e. £ € Qi}l(J *Y) is supposed not to be 7, r-projectable for any
k < s (equivalently, there is a point z € J*Y such that

JoE,

(2.40) B

(z) #0

for at least one o and v). Further, we shall denote by c the integer equal to 1s if s
is odd, or to 3(s — 1) if 5 is even (i.e. s = 2¢, or s = 2¢ + 1). (]

Proposition 5. Let E € Q},’l(J‘Y) be a locally variational form, let ag be its
Lepagean equivalent. J*='Y can be covered by open sets W such that

(1) for each W there exists a fiber chart (V,¢), ¥ = (t,9°) on Y such that
W CVe, »

(2) there exist functions H, p§, 1 < v < m, 0 < k < s —c— 1 on W such that
the restriction of ag to W can be expressed in the form

s—c—1
(2.41)  ag=-dHAdt+ ) dpfAde.
k=1

Proof. (cf. [12]). The form ag is closed, i.e. there exists a covering of J*~1Y
by open sets W such that (1) every W is a subset of V,_1 where (V,¥), ¥ = (t,¢°) is
a fiber chart on Y, (2) an each W, ag = dg for a 1-form ¢ on W. Using the Poincaré
Lemma for contact forms we obtain (up to a projection)

o 1 s—-1ps—-1 1 .
(2.42) ¢ = Aag = [q’ /o (Eq 0 x,)du]dt+2 [qu;? / (Fi¥ o x,-1)u du]w;.
i=0 0

k=0
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We shall show that there exist functions f, H, pt, 1<v<m, 0 k< s-c~1on
W such that (2.42) can be equivalently expressed in the form

s=c~-1
(2.43) e=-Hdt+ Y phdgl +df.
. k=0

We define a mapping X;—1,5—c: [0,1] x W — W by

x:—l,o—c(”) (t, qca ey q:;c_la ?:_c, ey q:—l))

(2.44) A = (t,q”,...,qf_c-l,uqf_c,...,uq,’__l).
Put .
s~-1 s—-1-k 1 1
e1) f= 5 3 e [ ([ Ehox-iudu) oxemsa-cts
k=s—-c j=0 0 0 o

+ ¢(t, 41", ey qr—c—l)’

where ¢ is an arbitrary function, and define

s~k-1

k _ 4 j k -2
(2.46) Py = J;o 2q1 /0 (ch °X0—1)“d'.‘ _ 8q:,
‘ 1vm, 0Kk<s-c—1,
- .
(2.47) -H= q’j (Eg 0 xs)du
: 0
s—1s-k-1 1 ; )
- Z Z 2q;-'q:+1/ (Fitox,-1)udu - -étl
k=0 j=0 0 ,
Since obviously
af s—k-1 1 » ) - '
@48 5= 2q;.'/ (Fitox,1)udu, s—c<kgs—1,
qk j=0 0

we obtain, substituting into (2.43), the formula (2.42). This completes the 'proof.
' . a

The expression of ag in the form (2.43) will be called the canonical form of the
Lepagean equivalent of a locally variational for E. For any fixed function (¢, ¢¢,
«++195_.—,) the functions H and pE,1<v<m,0<k < s—c—1, defined by (2.47)
and (2.46) will be called a Hamilton function, or a Hamiltonian of E, and a family
of momenta of a locally variational form E (relative to ¢).
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Theorem 4. Let E be a locally variational form of order s, let ¢ be as above.
There exists an open covering of J*=°Y such that on each of its elements there exists
a lagrangian Ay, satisfying E) ., = E.

Proof. Consider an open covering of J*Y such that on each of its elements
there exists a Veinberg-Tonti lagrangian for E. Denote by A this (local) lagrangian

and put Amin = A — hdf, where f is defined by (2.45). Obviously, Amin is a local
lagrangian for E. Using (2.48) and the formulas (2.25), (2.27) we obtain

. 1
(2.49) %"2;‘,'2 =q° / (% - -21F35 - Fj’;,"“) ox,udu

s—k—1
-y 2q,/ ( SFIY 4 FITY 4 FiEY) o xou du
j=1 0

1
- 2«1:’_::/ (Fek=1k 4 probb=1y oy judu=0
0

fors—c+l <kg<s-1,and

OLmin _ o [ (0Es 041 _
(2.50) e q /0 ((')qf - F)y ) oxsudu=0.
Hence for every function ¢, Amin = Lmindt is a lagrangian for E, defined on an open
subset of J*~°Y. a

From the construction of minimal-order lagrangians and from Proposition 5 we get
the relation between minimal-order lagrangians on the one side and Hamiltonians and
momenta on the other.

Proposition 6. (1) Let H, Pk, 1< v <m,0<k<s—c— 1, be a Hamiltonian
and a family of momenta of a Iocally variational form E € Qy'(J*Y), relative to
an arbitrary but fixed function o(t,q®, ..., ¢°_._,), and defined on an open set
U c J*~'Y. Then there exists a mm:mal-order lagrangian Apin of E on 1r,_1 s-cU
such that

(2.51) ) . .P5=(fmin):,_ IQVS"', 0<k$8—0“1r
. s=—c—=1
(2.52) H = —Lmin + z: (Fmin)st! '1a+1»
i=0

where Lmin is defined by “Amin = Lmindt and

s=c—i

. i dk aL in .
(2-53) (flﬁin).c""- Z (_l)k-d_tt 8%;:&’ IQ’SS—C, ISd'sm
k=0
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(2) Let Amin be a minimal-order lagrangian of a locally variational form E €
Q! (J*Y) defined on an open set U C J*~°Y. Let (V, ), ¥ = (t,q°) be a fiber chart
onY such that V,_. C U. Then the functions H, p¥, 1< v < m, 0 ks -c—1,
defined by

(2.54) o P =(fmin)it, 1Sv<m, 0Kkgs—c—1,
s=c-1

(2.55) H = —Lmin + Z (Fmin)iH e
i=0

where Lp;, is defined by Amin = Lmindt and

g=Cc—1 : .
. d* oL,

(2.56) Fmin)y = 2 (D grgas, 1<igs—c, 1<ogm,
k=0 itk

are a Hamiltonian and a family of momenta of E.
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