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EXACT SOLUTIONS OF CAUCHY PROBLEM FOR PARTIAL 
DIFFERENTIAL EQUATIONS WITH DOUBLE CHARACTERISTICS 

AND SINGULAR COEFFICIENTS 

ZHU-JlA LU, Beijing 

(Received April 27, 1994) 

. k - l p k< Summary. Let La<h = (dx-axkdt)(dx-bxkdt)+kbxk~1dt--dx be afamily of operators 

with double characteristics and singular coefficients, where a, b are reals with ab ^ 0 and 
a ^ b, k > 0 is an odd integer. Let Q be the first quadrant in the plane and ff+ the upper 
half-plane. Consider Cauchy problems 

J L0il,u = 0 
( P l ) \u(x,0) = <Mx), 

in Q. or ff+, 

u((x,0) = <pi(x) for x 6 Ř~+ or x € R 

for a > 0, b > 0, and initial-boundary value problems 

1
La>bu = 0 inf2orff+, 

u(x,0) = <p0(x), ut(x,0) = ipi{x) for x € R+" or x 6 R, 

u(0,t) = ip0(t) forteR+", 

Í
La^u = 0 in SI or ff+, 

u(x,0) = <po(x), ut(x,0) = vi(x) for x 6 !+~ or x € R, 

(*,T)€fi O, H + 

for a6 < 0 and 

1
Lai(,u = 0 in ííor ff+, 

u(x,0) = <po(x), u((x,0) = <pi(x) for x 6 Ř+~ or x 6 R, 
u(0,t) = Vo(t), lim " x ( x ' r ) =t/»i(t) fort€Ř+" 

( a:.T»-»(0,t ),*/() £ « 
( . ,T) € Í1 oř H . 

Research supported by the National Natural Science Foundation of Chin; 



for a < 0, 6 < 0. Under appropriate smoothness conditions on <po, f\, V'o and i\>\, we obtain 
different sufficient and necessary conditions for each problem to have classical solutions. 
Moreover, we obtain also explicit expressions of solutions in each case. 

Keywords: exact solutions, Cauchy problem, double characteristics, singular coefficients 

AMS classification: 35C15, 35L99 

1. INTRODUCTION 

Many authors have studied partial differential operators with the principal part 

dxx — x2dtt and some analogues in spaces with higher dimension. These operators 

have double characteristics at every point of the line {(xi,... ,xn,t) e R n + 1 | x\ = 

• • • = xn = 0} with n = 1 or n > 1. For example, Treves [4] discussed uniqueness of 

the Cauchy problem for the partial differential equation 

(1.1) uxx - x2utt + put = 0 

with initial conditions being prescribed on the x-axis, i.e., t = 0, and proved that 

a necessary and sufficient condition for uniqueness of solutions in a certain class of 

functions for the problem is that p ^ 1,3,5, (We have changed here the direction 

of the variable t). Among other things, Menikoff [3] generalized Treves' result to a 

class of operators 

(1.2) P = (dx+ axkdt)(dx - bxkdt) - cxh~1dt 

with a, b e U+,c € C and fc an odd integer, and the corresponding result of his is 

that ^ j - j(k + 1) # 0 or 1 for j = 0 ,1 ,2 , . . . . The author et al. [2] dealt with the 

Cauchy problem and the Goursat problem for the equation (1.1) in a class of smooth 

functions and showed that p ^ 1 ,3 ,5 , . . . is necessary and sufficient for both the 

uniqueness and existence of the solutions for the problems and that only under some 

compatibility conditions with some additional data on the line {(x,t) e R2 | x = 0} 

when p £ { 1 , 3 , 5 , . . . } , solutions of the new problems can exist and be unique. The 

author [1] studied existence in the class of real analytic functions for the Goursat 

problem of the operator (1.2) with a = 6 = 1 and showed that for any c e R when 

fc > 1 it is necessary that the Goursat data satisfy compatibility conditions in order 

to guarantee existence of solutions. 

In the present paper the homogeneous equations La^u = 0 with real a, b, ab ^ 0, 

a ^ b, and an odd integer fc will be considered in the upper half-plane H+, and in 

the first quadrant CI as well. We will deal with the Cauchy problems and the Cauchy 
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problems with some additional (boundary) conditions for the equations La%0u = 0 in 
D, where D = H+ or D = Cl, i.e., the problems (Pi) for a > 0, b > 0, a # 6, (P2) 
and (P3) for ab < 0, and (P4) for a < 0, 6 < 0, a + b. 

Our aim is to prove uniqueness, to obtain sufficient and necessary conditions for 
existence of classical solutions for the problems (Pi)-(P4) and to get explicit expres­
sions of the solutions in terms of the given data f0, <Pi, ip0 and tpi for the problems 
(Pi)-(P4), respectively. In §2 we will prove a lemma which is the base of this pa­
per. In §3 we will deal with the main results, namely, we will state and prove four 
theorems for the problems (Pi)-(P4) and their two corollaries in H+, while the corre­
sponding four theorems and two corollaries for (Pi )-(P4) in SI will be just mentioned, 
of course, without proof. 

2 . A LEMMA AND SOME NOTATION 

It is well known that the operator La<0 has two families of characteristics 

Ci: t + xk+1 = const., 
k + l 

C2:t+ xk+1 = const., 
k + l 

and that each of the families Ci is tangent to one of the families C2 at a point on 
the t-axis, and the inverse is also true. Before stating and proving the lemmas let us 
fix some notation for the sake of convenience and brevity. We introduce a series of 
abbreviations: 

A = A(x,t) = t + -?—xk+1, B = B(x,t) =t + —— xk+1, A= -+f/l - - , 
k+l k+l 

X{a) = ^ l ^ X W = ^ k ^ ^ = l ^ - l ^ ^ = 

A0 = A(x0,t0), B0 = B(x0,t0), Ta = "+4>/-ilt, Tb =
 k+{/-£-*, 

k+l k+l 
A = ± "+} A, B = ± t + , I / _ _ B for x > 0 and x < 0, respectively, 
A0 = A(x0,t0), B0 = B(x0,t0), C0 = {(x,t) e R2 | x = 0, t >- 0}, 
n- = {(x,t)eu2 \A(x,t) <.o, t > o } , n+ = {(x,t)e R2 \A(x,t)>o}, 
n6- = {(x,t)€ R2 I B O M ) <o, t > o } , n+ = {(M)eR 2 1 B ( M ) > o}, 
C0

o) = {(-, t) e R2 | A(x, 0 = 0 } , C{
0

b) = {Or, t) e R2 I B(x, t) = 0}, 
and 
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- i (_) = Vi(_) - ľ-т . ( - ) , -г(_) = Vi(-) _V~ó(-0. 

1 
Фi(0 = V.(0--*-i(0. - 2 (0 = ^ o ( 0 - - W O • 

o 
We are now ready to state the lemma. 

L e m m a . Suppose that a C2-function u(x,t) satisfies La,6~ = 0 in a domain D C 
2 with the property that D n {(_, t) £ R2 | _ = 0} = 0. Let 

(2.1) 

(2.2) 

vi(x,t) =щ(x,t)- ~ux(x,t), 

v2(x,t) =щ(x,t) -__(_,*). 

Then, f o r i = 1,2, the function . is a constant along any connected component in 

D of each curve of the family Ct. 

P r o o f of L e m m a . Take i = 1. Along a connected curve h of the family C1, 

which is in D and satisfies the equation t + -^r_x fc+1 = c with a real c, the function 

Vi(x,t) becomes 

_.(_•) = _i (x, - T - ^ - T - ' S + 1 + c ) . 

A simple computation shows that the derivative of ..(x) with respect to x vanishes. 

In fact, 

d _ vdv1 dv1 dř 

dx L dx dt dx 

= [ ( _ _ - -±--__ + — « - ) + («« - -±-u_t) • (-a~fc)] 

i r _ i 
= --—- I - i , - (a + b)xkuxt + abx2kutt __. 

= ~ih \{dx" a r * a í - ( 3 - _ tefca--u+(fc^':"1«í - - « - ) ] 

~ "ь_^La- = 0. 

Similarly, we have _r-2(_,0 = 0 along each characteristic curve of the family C2. 

The lemma follows. • 
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3. M A I N RESULTS 

T h e o r e m 1. Suppose that the Cauchy data <p0 and <pi satisfy 

(3.1) <p0 e C2(K), <p. e CX(K). 

Then, problem (Pi) in tf+ with a>0,b>0,a^b has a solution u belonging to 

C1(tf+") n C 2( t f+) if and only if 

<p'0(x) 
(3.2) the limit lim — — exists and is finite, j;-*° x .#o 
(3.3) <p0

 JS a n odd function, <p\ is an even function. 

Then, the solution is unique and can be expressed for all (x,t) in tf+ by the 

formula 

(3.4) u(x,t) = - ^ - \ [ sk
Vl(a)d8 + -MB)-\<Po(A)\. 

b-a\_JB a b J 

In addition, we have 

(3.5) ^ e c ° ( t f + ) . 
x" 

R e m a r k 1. It is obvious from the definition of the functions $ i and $2 and 

the oddness of k that the condition (3.3) is equivalent to the two conditions 

(3.6) $1 is an even function, 

$2 is an even function. 

P r o o f of T h e o r e m 1. Suppose that (3.1) holds and that u e C 1 (tf+) n 

C 2 ( t f+) is a solution of Problem (Pi) in tf+ with a > 0, b > 0, and a # 6. For all 

x e i we clearly have 

u(x,0) = <p0(x), ut(x,0) = <px(x) and ux(x,0) = <p'0(x). 

Let (x0,t0) e tf+ with x0 > 0, i.e., (x0,t0) e 0 . The characteristic curve of the 

family Ci through the point (x0,t0) has the form 

(3.7) t+-^-jxk+1=t0 + -^xk
0
+1, x>-0,t>-0, 
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and intersects the positive z-axis at the point (Ao,0), and the i-axis at the point 

(0 ,A 0 ) . Similarly, the characteristic curve of the family C2 through (x0,to) 

(3.8) t + xk+1 =t0 + æ í + 1 , x ^ 0, t ž 0 
k+1 k+1 

intersects the positive z-axis at the point (B0,Q), and the t-axis at the point (0 ,B 0 ) . 

It is known from Lemma that the functions Vi and v2, defined respectively by the 

formulas (2.1) and (2.2), are constant along the characteristic curves (3.7) and (3.8) 

respectively. Thus, we have 

(-*-£?"-) = vi(x0,t0) = vi(A(x0,t0),Q) 

= («• " І«-) 
(A(x„,ł0),0) 

and 

(ut rux) 
\ axk ' 

= ҷ>i(A(x0,t0)) - -<Po(A(xo,to))(A(x0,to)Y 
ь 

= Фi(A(x0,t0)), 

= <Pi(B(x0,t0)) - -<p'o(B(xo,t0))(B(xo,to))-

= MB(x0,t0)). 

Hence we have 

( - - -)ut(xo,t0) = -$i(A(x0,to)) - r$2(B(x0,t0)). 
\a b> a b 

Therefore, integration yields 

[t„ 
(3.9) u(x0,t0)= / ut(x0,t)dt + u(x0,Q) 

Jo 

= JT- [°\-*i(A(xo,t))-U2(B(xo,t))]dt + Mxo). b — aJo'-a b J 
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It is easy to show that 

- f\1(A(x0,t))dt= I ° sk$1(s)ds 
a Jo Jx0 

rAtt I I 
= / sk<p1(s) ds - -<p0(Ao) + -<po(xo), 

Jx0 b b 

l-j\2(B(x0,t))dt = j ^ ° s f c $ 2 ( s )ds 

rBo i i 
= / sk<p1(s) ds - -<po(B0) + -<po(xo)-

Jit, a a 

Substituting these expressions into (3.9) and changing the symbol (x0,*o) to (x,t), 

we obtain in Cl the formula (3.4). 

Similarly, we can get (3.4) for (x, t) G H+ n {(x, t) € R2 | x < 0). 

Then, a simple computation yields that for (x, t) £ H+ and x ^ 0 

(3.10) ux(x,t) = ~ x k \V1(A) - Vl(B) + ~<p'o(B)B-k - \<p'o(A)A~k], 
b — a L a b J 

(3.11) ut(x,t) = J*-\'Vl(A) - \Vl(B) + -<p'0(B)B~k - \<p'0(A)A-k] 
b-ala b ab ab J 

and 

(3.12) 

""<*•*> = b^-a[i^A)A~k - V^B)B~k + ahr'{B)B~k - akr'iA)A~k}> 

where r(x) = <p'0(x)/xk for x ^ 0. Moreover, we can obtain the expressions of uxx 

and uxt in H+ - C0 as well. From (3.11) and since <p0 6 C ^ R ) , ^ € C°(R) and u, 

is continuous at the origin (recall u 6 Cl(H+)), we get 

(_ tlimoo) (<p'0(B)B-k - v'o(A)A~k) = 0, 
<.,«)€H+ , '»3«0 

which is equivalent to the condition (3.2) because of arbitrariness of the difference 

\A-B\ ^ 0 when (x,t) € H+-C0. Hence ut with expression (3.11) and ux/x
k where 

ux is expressed by (3.10) are both in C 1 ( H + ) , and therefore so are v\ and v2. It 
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follows that 

Ч-y^тV-ь-^H^ш"*") 
-.,(o,«„ + ^ т ( - I „ ) « ) 

- ( - " ^ ( ' O + J T K - - ) - ) ) . 

*(^Hi(*+nr*"))--'(^+iTi*1) 
»«1(o,«. + j|T(-»„)'«) 

-HTt'-^-**")} 
i.e., $1 and <f>2 are even functions because of arbitrariness of x0,to € R. 

The above shows the necessity of the conditions (3.2), (3.3), and the uniqueness 
of the solution. 

On the other hand, if the functions <po, <fi satisfy the conditions (3.1)-(3.3) and the 
function u is defined in H+ by the formula (3.4), then it is trivial that u e C°(H+) 
and that u(x,0) = <p0(x) for i S l . 

It follows from (3.1), (3.2), (3.10) and (3.11) that both ux and ut belong to the 
class C°(#+), i.e., u e C1(JT+), and that u((:r,0) = ipi(x) for x € U. 

Differentiating (3.11) again with respect to the variable t we get the expression 
(3.12) of utt in H+, and we see easily from (3.1) that utt £ C°(H+). Similarly we can 
get that uxx e C°(H+),uxt e C°(H+), and combining these with u G C1(H^),utt G 
C°(H+), we conclude that u e C1(ff^) n C2(H+). 

Finally, it is not difficult to verify that Laibu = 0 for (x,t) E H+. It follows by 
combining all which was obtained above that the function u defined by (3.4) is the 
solution of Problem (Pi) in H+ under the conditions (3.1)-(3.3). This completes the 
proof of Theorem 1. • 

For ab < 0 we have 

Theorem 2. Suppose that functions fo, <Pi and ip0 satisfy (3.1) and 

(3.13) rPo G C2(R+")-
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Then problem (P2) in H+ with a > 0 > b has a solution u belonging to C1(H+~) n 
C2(H+) and satisfying (3.5) if and only if the compatibility conditions (3.2), (3.6) 
and 

(3.14) <p0(0) = V-o(O), Vi(0) = Vo(0), 

(3.15) lim - 2 - p = 6*2 (0) 

are satisfied, where the function ipi occurring in the definition of the function \P2 is 
defined by the formula 

(3.16) $i(x) = * i ( - ^ - a ;

f c + 1 ) forx^O. 

Then the solution is unique and can be expressed for (x, t) 6 fit by the formula 
(3.4) and for (x, t) <E 0 + by 

, , oh 
u(x,t) = -

b-а 

rA i rB ^ ţ 
/ sk<p1(s)ds + — фi(s)ds + -<po(0)--<po(A) 

Jo ob J0 а b 

(3.17) + \M0) ~ \fo(B) 

In the case of a < 0 < b we have a similar result. 

P r o o f of T h e o r e m 2. We shall prove the theorem only for a > 0 > b; the 

proof is identical if o < 0 < b. 

Let u e C1(fl+) n C2(H+) be a solution of Problem (P2) in H+ with o > 0 > b 

which satisfies (3.5). Then we can obtain the formula (3.4) in Cl^ by using the same 

method as in the proof of Theorem 1. Therefore the formulas (3.10)-(3.12) for ux, ut 

and utt in il^ follow and we can derive (3.2) because ut is continuous at the origin. 

Now we define 

rh(t)= H m " * ' * , V<>.0, 
"4o° X 

and we have Vi e C°(17) because of (3.5). Let (x, t) e fi n H+. The characteristic 
curve of the family Ci through the point (x, t) intersects, respectively, the positive 
x-axis and the t-axis at (.4,0) and at (0,A), while the characteristic curve of the 
family C2 through the same point intersects the t-axis at (0, B) and the i-axis at no 
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points. According to Lemma, we have 

(3.18) ( u ' ~ i " * ) | =v1(x,t)=v1(A,0)=$1(M 

(ut - - i -u*) I - V2(x< t) = v2(0, B) = <S2(B), 
v a x J\(x,t) 

so 

Ut(x,t) =-^-l-iM)-U2(B)\. 
b — a La 6 J 

Therefore, integration yields 

u(x,t)= f ut(x,T)dT + u(x,-X(h)) 
J-xw 

-é-.LMf-тЧ'*!^) 

_o__ 

Ь - o 

/•Az ^ 2 

/ sVi(s) ds + -^o(O) - -<po(>a) 
Jo a b 

(here we have used the form given by (3.4) for u(x, -X(b))) 

ab 

b-a 

fA 1 fB 1 
/ sk<p1(s)ds + -- fa (s) ds + -<po 

Jo ab Jo a 
(0) 

-_<^(Д) + Ì .Ą,(0)--,ŕo(B)|, 

i.e., (3.17) holds for (x, t) G n n n+. 
Now we have (-a;, t) € (tf+ - n) n n + when (x, t) e n n n + . We obtain as above 

(3.19) (ut - г т « x ) = vi(-x,t) = «i(Л0) = Фi(Л), 
4 Ď x У l(-x,t) 

ftłí - -\ux) = v2(-x,t) = v2(0,B) = Ф2(ß), 
v ax / / ,, 

«.(-*,.) = r---í-#iM)-Í»a(-.)], 
o — a La o J 
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where A = A(-x,t) = - ' W — — (t + —--(-_0*+i) = -.4(x,t). Thus, it is also 
y a V fe + 1 / 

verified that (3.17) holds for (_, t) _ (H+ - it) n n + , and therefore that (3.17) holds 
for (_,t) _ n + . 

It follows from (3.18), (3.19), vi _ C°(i_+) (because of «. _ C°(H+~),ux/x
k € 

C*°(5+)) and Lemma that _i(_,t) = _i(0,A) = - i ( -_, t ) , i.e., 

*(«+RT^)-i*(Tf-^(«+iV")) 
= ̂ (-*V^(-m<--)) 
•>(-f>i5-«")} 

so that (3.6) and (3.16) hold. 
It remains only (3.15) to be verified. 
Differentiating (3.17) we see that for (x,t) G n + 

(3.20) _.(_,*) = -_-_*[-, (,4) + I^(B) _ i ^ ^ ) ^ - - -V_(-»)l, 
o - a L a 6 J 

(3.21) u,(_,Q = ~^-[^i(.4) + l^i(B) - ^(A)A-k - \iHrn] 

and 

(3.22) «,,(_,*) = b_T_[^-MM-* + ̂ [(B) - ^r'(A)A-k - \^(B)}, 

where r(x) = (p'0(x)x~k. Moreover, we can obtain the expressions of uxx and uxt in 
n + . Then the following series of equivalent relations is obvious (it should be noticed 
that we use different expressions (3.22) and (3.12) of utt respectively in the limit 
process (x, t) -» +(x0,t0)b and (x,t) -> -(x0,t0)b ) 

u e C2(H+) <=> utt e C°(H+) 

<£=> lim utt(x,t) = lim utt(x,t) 
(•,.)-H-(«o.to). (»,t)-»-(x0,to). 

«=• lim [<p[(B) - lr'(B)]B~k = JBd^&(<(£?) - ^ J ( B ) ) 

<=.. lim - - M = 6^(0), 
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where (x0,t0) 6 C^ , and the symbols (x,t) -+ ±(x0,t0)b mean respectively (x, t) e 
n+, (x,t) -+ (x0,t0) and (x,t) e f i ( " - c£°, (z,t) -)• (x0,t0). Thus, (3.15) is proved. 

Now, we suppose that (3.2), (3.6), (3.14) hold, and that the function tpi occurring 
in the definition of the function *2 is defined by the formula (3.16) and satisfies 
(3.15). Then it follows from (3.2), (3.6), (3.14) and (3.16) that Vi e C 1 ^ ) and 

(3.23) l i m ^ ^ = V i ( 0 ) . 
*#o x 

Let the function u be defined in n^ by (3.4) and in n+ by (3.17). Then we obtain 
ux,ut and utt in n^ expressed by (3.10), (3.11) and (3.12), and in n+ expressed by 
(3.20), (3.21) and (3.22), respectively. We can also derive the formulas for uxx and 
uxt in n^ and n+ from (3.4) and (3.17).Then it is obvious that u e C°(H+) and 
u(x, 0) = Mx) for x £ R, and that for t ^ 0 

u(0,t)=Mt) 
ab \ fT- v 1 /* 1 

*=* Mt) = r — / s V i W ds + — Ms) ds + -MO) 
b-a[J0 abJo a 

- \MT.) + \MO) - Jito(*)] W 

*=> f'0(t) = MTa) + Ui(t) ~ \MTa)Ta
k 

b b 

(since the values at t = 0 of both sides of (*) are equal because of <po(0) = M®)) 

(taking t = x*+1 for x ^ 0) 
ft T 1 

(3.16). 

Also, it is obvious from the expressions (3.10), (3.20) and (3.11), (3.21) of ux, ut that 
u 6 C 1 ^ - C0

b)) nC J(n+) and u((x,0) = ^ ( x ) for x e R. 
Moreover, we have the equivalent relations 

<=$> lim Du(x, t) = lim Du(x, t) 
(z,i)-H-(*o,io)i, (x,tH-(z0 , (o), , 

(where Du stands for any one of the derivatives ux and ut) 

*=> M0) - -r(0) = Vo(0) - -^i(0), 
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and the last equality follows from (pi(0) = V'o(O) and r(0) = rpi(0). Thus, we can 
derive easily from (3.10), (3.15) and (3.16) that 

lim "* , =ViW. fortJsO, 

so (3.5) holds. As is seen in the first part of the proof, (3.15) guarantees the fact 
u e C2(H+). Then u is in the class C1(H+) nC2(H+) and satisfies La<bu = 0 in H+ 
as is verified easily. Therefore u is a solution of Problem (P2) in H+ with a > 0 > b. 
This completes the proof of Theorem 2. • 

Theorem 3. Suppose that the functions <po, <Pi and tpi satisfy (3.1) and 

(3.24) ^1eC1(R+"). 

Then problem (P3) in H+ with a > 0 > b has a solution u belonging to C1(fl+) n 
C2(H+) if and only if the compatibility conditions (3.6), (3.15) and (3.23) are satis­
fied, where the function ipQ occurring in the definition of the function $ 2 is defined 
by (3.16) and tie equality 

(3.25) Vo(0) = Vo(0). 

Then the solution is unique and can be expressed by the same formulas as in 
Theorem 2 with a > 0 > 6. 

In the case of a < 0 < b we have a similar result. 

The outline for the proof of Theorem 3 is similar to that of Theorem 2. We only 
need to point out, for example, the fact that (3.16), (3.23) and (3.25) imply 

0i(O) = ¥>i(O). 

For a < 0, 6 < 0 and a ^ b, we have 

Theorem 4. Suppose that the functions <po, </>i, il>o and ipi satisfy (3.1), (3.13) 
and (3.24). Then problem (P4) in H+ with a < b < 0 has a solution u belonging to 
C^tf+J n C2(H+) if and only if the compatibility conditions (3.14), (3.15), (3,23) 
and 

(3.26) lim*'1(a;)i-A:=a*'1(0) 
x#0 

hold. 
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Then the solution is unique and can be expressed in Qb by (3.4), in 0 + n Cla by 
(3.17) and in il+ by 

(3-27) rhJ[o\JA Ms)ds + ^MA)-lMB)]-

In the case of b < a < 0 we have a similar result. 

Proo f of T h e o r e m 4. It is clear that we only need to prove the theorem 
with a < b < 0. Let u be a solution of Problem (P4) in H+ with a < 6 < 0 which 
belongs to C 1 ^ ) n C2(H+). Then (3.14) holds because u € Cl(H^.). Let x # 0 
and (r,£) g C J ' , then Lemma yields 

" • ( M ) - r r u*(z-*) ' - " I O M ) = Vi(-4)-77fc¥,o(-4)-

Letting (x, t) -> (0,0) along C0
6) and using the definition of Vi we see that (3.23) 

holds. 
Moreover, the same procedure as shown in the proof of Theorem 2 yields that u 

possesses the forms in H+ described in the theorem, i.e., the solution of Problem 
(P4) is unique. Therefore, we have in fi+ 

ux(x,t) = ~ x k [ V ( B ) - Vi(A) + ip'o(A) - 0o(fl)l, 
b — a La 6 J 

ut(x,t) = jL\±.fr(B) - \MA) + V(A) - U'o(B)} 
b — aiab ab a 6 J 

аnd 

***<> = ê-a I ^ 1 ( B ) " aV1(Л) + Ì^A) ' ^ ' ( ß ) l • 
Thus, checking the continuity of utt at C0

6' and at C0°' respectively we obtain (3.15) 
and (3.26). 

Conversely, it is not difficult to show under all conditions of the theorem for 
a < b < 0 that the function u expressed respectively by (3.4), (3.17) and (3.27) for 
the subdomains il^, fi+ n ft" and S7+ of H+ belongs to C1 (H+) n C2(H+) and that 
u is a solution of Problem (P4) in H+ with a < b < 0. • 

If we study Problems (P2) or (P3) in H+ with a < 0, 6 < 0 and a ^ b, we find from 
Theorem 4 that their solutions exist if some compatibility conditions are satisfied and 
they are not unique at that time. In fact, we have 
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Corollary 1. Suppose that the functions <Po, <Pi and ipt, satisfy (3.1) and (3.13). 

Then, if the solutions in C1(H+~)nC2(H+) of problem (P2) in H+ with o < 0, 6 < 0 

and a ^ b exist, they must not be unique. Moreover, such solutions exist if and only 

if the compatibility conditions (3.2), (3.14) and 

(3.28) the limits lim ^ - and lim (?lM.)'x-k exist, 
x-tO X* »J0 V xk ) 

(3.29) ^ ( o ) = l i m ( ^ 0 ( * ) ^ < ^ ) V * 
l^g V ab ab xk > 

are satisfied. In this case, if a function ip\ € C1(R+) satisfies (3.23) and 

(3.30) Vi(0) = l i m ^ ^ , 
"Jo x 

then the function u expressed in the conclusion of Theorem 4 is a solution of problem 

(P2) in H+ with a < 0, 6 < 0 and a ft b. 

For the proof we only need to notice that the compatibility conditions (3.15) and 

(3.26) in Theorem 4 are equivalent to (3.29) and (3.30), and that there are infinitely 

many functions tpi 6 C,1(R+") satisfying (3.23) and (3.30). 

Corollary 2. Suppose that the functions ipo, tpi and %j)\ satisfy (3.1) and (3.24). 

Then, if the solutions in C 1 ( # + ) D C2(H+) of problem (P3) in H+ with a < 0, 6 < 0 

and a ft b exist, they must not be unique. Moreover, such solutions exist if and only 

if the compatibility conditions (3.23), (3.28) and (3.30) are satisfied. In this case, if 

a function %p0 € C2(U+) satisfies (3.14) and (3.29), then the function u expressed in 

the conclusion of Theorem 4 is a solution of problem (P3) in H+ with a < 0, 6 < 0 

and a ft b. 

One part of the proof follows from Theorem 4 and the fact that the conditions 

(3.15), (3.26) are equivalent to (3.29) and (3.30), while the other part for non-

uniqueness comes from the fact that there are infinitely many functions x[>o 6 C2(U+) 

satisfying (3.14) and (3.29). 

For the case in the first quadrant we can also obtain correspondingly four theorems 

and two corollaries which are almost the same as those for the upper half-plane. 

What it is sufficient to notice in this case is that the data ifii and <p2 satisfy the 

corresponding conditions on R+ only and that all the limits at the origin are one­

sided. Thus, it is clear that the proofs of these unstated theorems and corollaries are 

just parts of proofs of Theorems 1-4 and Corollaries 1-2. 
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In the end, we point out that the properties of the operators La,b studied in this 
paper are different from those of operators, such as L = dxx — dtt, which are of 
principal type because all Laj, have double characteristics at any point on the t-axis 
whereas L has just a simple one everywhere. Also, we notice that different shapes of 
characteristics for pairs (a,b) with various sign yield different well-posed problems, 
namely, the solution is fully determined by the initial conditions for a > 0, b > 0, 
and it is necessary to add one boundary condition for ab < 0 and two boundary 
conditions for o < 0, 6 < 0. 
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