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Abstract. We characterize ideais of orthoiattices which are congruence kernels. We show 
that every congruence class determines a kernel. 
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The problem whether an ideal of a lattice £ is a kernel of a congruence 8 on 

C was solved by J. Hashimoto in the 50-ties, [2]. By his result, every ideal of C is 

a kernel of some 9 G Con C if and only if C is distributive. However, orthoiattices and 

orthomodular lattices are distributive if and only if they are Boolean algebras. Hence, 

for determining whether an ideal / of an ortholattice £ is a congruence kernel we 

cannot adopt Hashimoto's result. We are going to characterize such ideals by means 

of closedness with respect to suitable terms. 

In accordance with [1], [3], by an ortholattice we mean an algebra 

C = (L, V, A,x , 0,1) 

such that (L, V,A,0,1) is a bounded lattice and x is the unary operation of or-

thocomplementation, i.e. x is order-reversing with respect to the lattice order and 

satisfying the following identities: 

(x-x)x = x, 

x A x~ = 0 and I V I 1 = 1, 

(x A j / ) x = X'x V y x and (a; V j / ) x = xx A j / x , 

0X = 1 and l x = 0. 
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Roughly speaking, ortholattices satisfy all axioms of Boolean algebras except dis-

tributivity. 

By an ideal I of an ortholattice C we mean the lattice ideal of (L, V, A), i.e. 0 7̂  

I C L with 

a,be I => aVb e I 

a e I, x e L => a/\x e I. 

An example of an ortholattice which is neither distributive nor modular is shown 

in Fig. 1: 

F ig . l . 

Let 9 be a congruence on an ortholattice C. By a kernel of 9 we mean the set 

Kex9 = {aeL; (a,0) e 9}. 

R e m a r k s . (1) An ideal of an ortholattice C need not be a kernel of any con

gruence on C. For example, I(x) = {a;, 0} is an ideal of the ortholattice in Fig. 1 but 

it is not a kernel of any 9 6 Con£; if (x,0) e 9 for 9 6 C o n £ then also {y,0) e 9 

but y ^ I(x). 

(2) If an ideal / of an ortholattice £ is a kernel of some 9 e Con C then 9 need 

not be unique. For example, {0} is an ideal of C in Fig. 1 but it is the kernel of 

the identity congruence on C as well as of the congruence given by the partition 

{0}, {x,y}, { s - S i / - } , {1}. 

For characterizing the ideals which are congruence kernels in ortholattices we recall 

the well-known result of A.I . Mal'cev [4]: 

P r o p o s i t i o n . Let A = (A,F) be an algebra, 0 ^ B C A. B is a class of some 

congruence on A if and only if for every c,d e B and each unary polynomial r(x) 

over A, T(C) € B => r(d) € B. 
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Recall that by a unary polynomial T(X) over A = (A, F) we mean a unary function 

r : A -+ A such that there exists an (n + l)-ary term function t(y, x%,..., xn) of type 

F and elements ai,... ,an € A such that T(X) = t(x,a,i,...,an)• 

We are ready to formulate our first result: 

T h e o r e m 1. An ideal I of an ortholattice C is a ierneJ of some 9 e C o n £ if and 

only if for each (n + l)-ary term t, for every 0 ,1 , . . . , an G L and every ii,i2,h 6 I 

we have ( i x A i ( i 2 , a i , . . . , o n ) ) x A f ( j 3 , o i , . . . ,a„) e / . 

P r o o f . Let J be a kernel of some 9 e Con£ , let t be an (n + l)-ary term of 

C and a i , . . . , o n 6 L, h,i2,h 6 /- Since 0 e I we have (h,0) € 0, (*2,0) G 0, 

(i3,0) 6 6*. Moreover, 

(0X A t(0, Ol, . . . , fl„))X A t(0, Oi, . . . , On) = 0, 

whence, by the substitution property of 6, also 

( ( i x A i f e . o i , . . . , a „ ) ) x A t ( i 3 , a i , . . . , o n ) , 0 ) = 

( ( i x A t(i2,ai,..., a „ ) ) x A t(i3,ai ,...,an), 

(0X A i ( 0 ,o i , . . . , o „ ) ) x A i(0,a2, • • • ,o„)) e S 

i.e. (if- A t(i2,ai,,..., an))
x A t ( j 3 , a j , . . . , an) 6 Ker 6 = I. 

Conversely, let / be an ideal of an ortholattice C which satisfies the condition of 

Theorem 1. Suppose i,j el and r( i) e / for a unary polynomial T(X) over C. Hence, 

T(X) —t(x,ai,...,an) for some (n + l)-ary term t and some elements o i , . . •, an 6 L. 

Applying our condition for ii = r(i), i2 = i, h = i , we obtain 

r ( i ) = ( r ( i ) x A r ( i ) ) x A r ( i ) e / . 

By the Proposition, we are done since / is a 0-class of some 9 6 Con C , i.e. J = Ker 0. 

T h e o r e m 2. Let C be an ortholattice. Then for each 6 e ConC, the kernel Ker 9 

is determined by every class of 9. 

P r o o f . Let 9 e Con C and let C be an arbitrary class of 9. Define a subset I 

of C as follows: 

(*) a e I iff there exists c e C such that o A c = 0 and a V c £ C. We prove that 

I = Ker (9. 

(i) 0 e I since c A 0 = 0 and c V 0 = c e C for each ceC. 
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(ii) Let a e I. Denote d = a V c. Then c,d e C imply (c,d) € 0 and d A a = 

(o V c) A a = a whence (o, 0) = (d A a, c A a) € 0, i.e. a e Ker 0. 

(iii) Suppose a € Kerf?. Then (a,0) e 0, thus also ( a x , 1) = ( a x , 0 x ) 6 0. Hence, 

for each c0 e C we have (c0, a x A c0) = (1 A c0, a x A c0) £ 0, i.e. also a x A c0 £ C. 

Further, 

( a x A co, ( a x A c0) V a) = ( (a x A c0) V 0, ( a x A c0) V a) e 0, 

i.e. also ( a x Ac 0)Va € C. We can set c = a x Aco. Then c e C, cf\a = a x A c 0 A a = 0 

and c V o = ( a x A Co) V a € C. By (*) we have a e I. Together, I = Ker0, which 

proves the assertion. D 
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