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NEARLУ DISJOINT SEQUENCES IN CONVERGENCE Ѓ-GROUPS 

JÁN JAKUBÍK, KoŠІCЄ 

(Received January 12, 1998) 

Abstract. For an abelian lattice ordered group G let conv G be the system of all com
patible convergences on G; this system is a meet semilattice but in general it fails to be a 
lattice. Let and be the convergence on G which is generated by the set of all nearly disjoint 
sequences in G, and let a be any element of conv G. In the present paper we prove that the 
join and V a does exist in conv G. 
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All ("-groups (= lattice ordered groups) considered in the present paper are assumed 
to be abelian. 

For a convergence £-group we apply the same notation and definitions as in [2]. 
Let G be an f-group. A sequence (an) in G+ is said to be nearly disjoint if there 

exists a positive integer in such that a„(i) A an(2) = 0 whenever n ( l ) and n(2) are 
distinct positive integers with n(i) ^ m for i = 1,2. 

We prove that for each f-group G there exists a convergence a on G such that, 
whenever (xn) is a nearly disjoint sequence in G+, then xn -»,, 0. 

This yields that there exists a convergence an<t on G such that a w is generated 
by the set of all nearly disjoint sequences in G+. 

We denote by conv G the system of all convergences on G; this system is partially 
ordered by the set-theoretical inclusion. Each interval of conv G is a complete lattice, 
but if a- and a2 are elements of conv G, then the join a- Va2 need not exist in conv G. 

We show that the join and V a does exist in conv G for each element a of conv G. 
For a similar result concerning disjoint sequences in a Boolean algebra cf. [3] (the 

distinction is in the point that in the present paper we do not assume the Urysohn 
property for a convergence, while in [3] the Urysohn property was supposed to bo 
valid). 
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A convergence f-group (G,a) will be called strong if for each g G G with g > 0 
there exists a sequence (xn) in the interval [Q,g] such that xn -+a 0 and zn(i) # i'n(2) 
whenever n ( l ) , n(2) are distinct positive integers. We use nearly disjoint sequences to 
construct a proper class of nonisomorphic types of archimedean strong convergence 
^-groups. 

1. CONVERGENCES GENERATED BY NEARLY DISJOINT SEQUENCES 

In this section we assume that G is an £-group. The symbol N denotes the set of 
all positive integers. 

For the sake of completeness, we recall the following notation and definition con
cerning the notion of convergence in G as applied in [2]. 

Let g G G and (gn) £ GN . If gn = g for each n e N , then we write (gn) — const g. 
For (hn) G GN we put (hn) ~ (gn) if there i s m e N such that hn — gn for each 
n 6 N with n ^ m. 

A convex subsemigroup a of the lattice ordered semigroup (GK)+ = (G+)N is said 

to be a convergence on G if it satisfies the following conditions: 

(I) If (gn) 6 a, then each subsequence of (gn) belongs to a. 
(IV) Let (gn) 6 a and (hn) G (G+) N . If (/in) - (gn), then (ft„) G a. 
(Ill) Let g £ G. Then const p € a if and only if g = 0. 

We denote by D(G) the system of all nearly disjoint sequences in G+. Consider 
the following condition for a sequence (an) in G+: 

(*) For each m G N, the relation / \ a„ = 0 is valid. 
n^m 

1.1. L e m m a . Let (bn) be a sequence in G+ satisfying the condition (*). Further, 
iet k £ M and for each i G {1,2 , . . . ,£ :} Jet (x{

n) be an element of D(G). Then the 
sequence 

(xn +xl + ... + xk
n + bn) 

satisfies the condition (*). 

Proof . We put 
un = x\ + xn + ... + xh

n + bn 

for each n € N. We proceed by induction with respect to k. 
Let k — 1. By way of contradiction, suppose that (un) does not satisfy the 

condition (*). Hence there are m G N and 0 < c G G such that the relation 

c s: 4 + bn 

is valid for each n G N with n>, m. 
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We shall repeatedly use Riesz Decomposition Theorem. It yields that for each 
n >• m there are cn and cn such that 

4 e [0, xn], c\ e [0, bn], c = cn + c2
n. 

If cn = 0 for each n ^ m, then c = cn for each n >• m. This is impossible since 
(bn) satisfies the condition (*). 

Hence there is n(l) >- m such that en{1) > 0. Let n >- n(l) + 1. Then 

c n A c n { 1 ) ^ 4 A 4 { 1 ) = 0 , c,\{1)^c, 

thus cLjj < c'n < bn. We have arrived at a contradiction with the condition (*) for 
(bn). Hence the assertion is valid for k = 1. 

Let k > 1 and suppose that the assertion holds for fc — 1. By way of contradiction, 
suppose that it does not hold for k. Hence there exist m € N and 0 < c 6 G such 
that 

c 5g x„ + x2
n + ... + xn + bn 

is valid for each n>- m. Thus for each such n there are cn,cn and c„ in G such that 

c = c
l
n + cn + cn, 

cn e [0, x\ + x\ +... + xk
n

l], 4 e [o, x% 4 e [o, bn]. 

If cn = 0 for each n >• m, then 

c sc a-„ + s n + ... + xk~l + bn 

for each » >- m, which is a contradiction with the induction assumption. 
Thus there exists n(l) >• m with 4 { 1 ) > 0. Put n%\ = n(l) + 1 and let n>- m\. 

Then 
cn(l) ^ c> 4(1) A 4 < a

n(l) A On = 0, 

whence 4 { 1 ) ^ cn + cn. Therefore 

Cn(l) < 4 + Xl + • • • + Xhn~l + K 

for each n>. n%\. This is again a contradiction with the induction assumption. D 

1.2. Corollary. Let fc £ N and foi each i € {1,2,..., fc} Jet (xn) be an eJement 
of D(G). Then the sequence (xn + xn + ... + xn) satisfies the condition (*). 

A nonempty subset X of (G+)N is said to be regular if there exists a e convG 
such that X C a. 



1 .3. Lemma. Let X be a nonempty subset of (G+)h . Then the following 
conditions are equivalent: 

(i) X is regular. 
(ii) Whenever 0 < c 6 G, (xn), (xn),..., (xn) 6 X, (yn) is a subsequence of (xn) 

for• % = 1 ,2 , . . . , k, and K, rn e N satisfy 

c ^ K(y\ + y\ + ... + yn) 

for each n e N with n ^ rn, then c = 0. 

P r o o f . This is a consequence of Proposition 2.3 in [2]. D 

1.4. L e m m a . The set D(G) is regular. 

P r o o f . Let (xn), (x2
n),..., (xn) be elements of D(G). For each i '6 { l ,2 , . . . , f e} 

let (y„) be a subsequence of (xn). If K e N, then (Kyn) belongs to D(G) for 
i = 1 ,2 , . . . , fe. Now it suffices to apply 1.2 and 1.3. D 

Let J j i X C (G + ) N and a e convG. Suppose that 

(i) X C a; 
(ii) whenever fi 6 convG and X C (3, then a C [}. 

Under these conditions the convergence a is said to be generated by the set X. 
We denote by D\(G) the set of all sequences (un) which satisfy the following 

condition: there exist (xn), (xn),..., (xn) in D(G) such that 

un = xn + x'n + ... + xn 

for each n 6 N. 
From Proposition 2.3 in [2] we obtain 

1.5. L e m m a . Let X be a regular subset of (G+)N and let (zn) be a sequence 
in G+. Then the following conditions are equivalent: 

(i) (zn) belongs to the convergence on G which is generated by X. 
(ii) There exist ( 4 ) , ( 4 ) , . . . , (xk

H) e X, K e M, m e N and (y\), (yl),..., (y*) e 
(G+)N such that (yn) is a subsequence of (xn) (i = 1,2,..., k) and 

zn^K(yi + yl + ...+yn) 

is valid for each n € N with n ^ m. 

Let the meaning of an tj be as in the introduction; in view of 1.4, and does exist. 

1.6. P r o p o s i t i o n . -Di(G) = a n ( j . 
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P r o o f . It is clear that D(G) C and and hence Di(G) C and- Let (zn) G and. 
We apply 1.5 for X = 2?(G). Then (under the notation as in 1.5) (Kyn) e D(G) for 
i = 1 ,2 , . . . , k, and for each n >. 771 the element zn can be written in the form 

zn = tl + ^ + ... + tn 

with tn e [0, Kyl
n}, i = 1,2, . . . , k. Thus (t'n) G D(G) for i = 1 ,2, . . . , k and hence 

(zn) eDx(G). a 

1.7. L e m m a . Let a e convG, X = aU and. Then X is regular. 

P r o o f . This is a consequence of 1.1 and 1.6. D 

From 1.7 and from Proposition 2.1 in [2] we obtain 

1.8. T h e o r e m . Let a e convG. Then the join a V and does exist in convG. 

2. STRONG CONVERGENCE £-GROUPS 

We apply the notion of strong convergence £-group as defined in the introduction. 

2.1. E x a m p l e . Let R be the set of all reals with the usual topology and let 
# be the additive group of all continuous real functions on R, The set # is partially 
ordered coordinate-wise. Then # is an archimedean <?-group. Put a = D\(H). In 
view of 1.6, ( # , a) is a convergence £-group. Let 0 < / € # . There exist / „ G [0,/] 
(n G N) such that / „ > 0 for each n e N and /„(i) A /n(2) = 0 whenever n ( l ) and 
n(2) are distinct positive integers. Thus / „ -+a 0. Therefore the convergence £-group 
( # , a) is strong. 

2.2. E x a m p l e . Let J be a nonempty set and for each i e I let Hi = H, where 
# is as in 2.1. Put 

# ( j ) = n Hi. 

iel 

Then H is an archimedean £-group. 
For i e I and / G #(!") let f be the component of / in # ; . Let 0 < / G 

# ( / ) . Thus there is i G I such that /* > 0. Then in view of the properties of 
# (cf. 2.1) there exist / „ G [0,/] (n G H) such that / „ > 0 for each n G N and 
/„(!) A/„(2) = 0 whenever n( l ) ,n(2) are distinct positive integers. Thus / „ —>a 0, 
where a = D\(#(/)). Hence (H(I),a) is a strong convergence £-group. 

Let Jr and h be nonempty sets such that 

(1) eardi i ^ card/ 2 . 
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It is easy to verify that the £-group H is directly indecomposable. If an £-group has 
a direct product decomposition with nonzero directly indecomposable direct factors, 
then this direct decomposition is uniquely determined (this is a consequence of the 
well-known Shimbireva's theorem [4] on the existence of a common refinement of any 
two direct product decompositions of a directed group; cf. also Fuchs [1]). Hence 
the number of nonzero directly indecomposable direct factors of H(fk) is equal to 
c a r d 4 (k = 1,2). This yields that whenever (1) holds, then H((h) and (H(J2) 
are not isomorphic. Therefore the convergence ^-groups (H(fi),Di(H(fi))) and 
(H(f2),Di(H(f2))) are not isomorphic. 

From this we conclude 

2 .3 . P r o p o s i t i o n . There exists a proper class of nonisomorphic types of archi-
medean strong convergence (.-groups. 

Let us denote by S the class of all ^-groups G having the property that there is 
a € conv G such that (G, a) is a strong convergence £-group. 

It is easy to verify that the class S is closed with respect to ^-subgroups and with 
respect to direct products. The following example shows that S is not closed with 
respect to homomorphisms. Hence S fails to be a variety. 

2.4. E x a m p l e . Let 2. and R be the additive group of all integers or of all 
reals, respectively, with the natural linear order. Pu t 

G = 2 o R , 

where the symbol o denotes the lexicographic product. Then G G S, but the factor 
£-group G/R (being isomorphic to Z) does not belong to S. 

We remark without proof that S is a radical class of ^-groups. 
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