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GENERALIZED BOUNDARY VALUE PROBLEMS 

WITH LINEAR GROWTH 

VALTER SEDA, Bratislava 

(Received June 5, 1997) 

Abstract. It is shown that for a given system of linearly independent linear continuous 
functionals U : Cn~l —> R, i = 1,.. . , n, the set of all n-th order linear differential equations 
such that the Green function for the corresponding generalized boundary value problem 
(BVP for short) exists is open and dense in the space of all n-th order linear differential 
equations. Then the generic properties of the set of all solutions to nonlinear BVP-s are 
investigated in the case when the nonlinearity in the differential equation has a linear 
majorant. A periodic BVP is also studied. 
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1. INTRODUCTION 

B. Rudolf in [14] has shown that for a given system of linearly independent li­

near continuous functionals U: Cn([a,b],~) -> U, i = 1 , . . . , n , there exists a linear 

differential equation 

(1) (L(:r) =)*<"> + YiPk(t)-(n'k) = 0 , a^t^b 
k=\ 

such that the BVP (1), 

(2) U(x) = 0, i = l,....,n 

has only the trivial solution. This result also holds when the functionals U are 

given in the space C»-1([a>&], R). i n this paper we will prove that the set S of alh 
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differential equations (1) such that (1), (2) has only the trivial solution is open and 

dense in the space of all n-th order linear differential equations and we will derive 

some consequences of that result. Besides the classical existence theorems the generic 

properties of the set of all solutions to nonlinear BVP-s having a linear majorant will 

also be studied. The main tool for showing these properties will be a priori estimates 

like Leray-Schauder estimations. Finally, a special case will be investigated, namely 

the periodic BVP. 

Throughout the paper we will assume that n ^ 1,—oo < a < b < oo, pk & 

C([a, b], R), k = 1 , . . . , n, /;: C ' l _ 1 ([a, b], R) ->• R is a linear continuous functional, 

i = 1 , . . . , n and the functionals U,i = l,..., n, are linearly independent. 

Let C° = (C([a,b], R), ||.| |o) be a Banach space with the sup-norm ||.||o and let the 

topology in C' = C'([a,b], U) be given by the norm ||.| |/, whereby 

Further let C„ = C° x . . . x C° (n times) be the product space with the norm 

| | ( B I , . . . ,xn)\\ = Yl \\xk\\o- Then Cn is a Banach space and the equation (1) can be 
it=i 

represented by the n-tuple (pi, • • • ,p„). 

2. R E G U L A R CASE 

We will start with the following definition. 

Def ini t ion 1. The BVP (1), (2) will be called regular if and only if it has only 

the trivial solution. 

T h e o r e m 1. Let a system of linearly independent linear continuous functionals 

U, i = 1, . . . ,n, be given. Then the set S of all n-tuples ( p i , . . . ,pn) e Cn such that 

the BVP (1), (2) is regular is nonempty, open and dense in the space Cn. 

P r o o f . By the Rudolf theorem, [14], 5 ^ 0 . Suppose that there exists a 

sequence of nontrivial solutions ym to the BVP-s 

( l m ) (Lm(x)=)x(n) + "jrPk,m(t)x<>n-V =0, a<.t<_b 
k=i 

(-) U(x)=0, » = 1,...,„ 

where 

(3) 
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Here pk,m e C°, k = 1 , . . . , n, m = 1,2 

The solutions ym can be normalized by the condition 

(4) (ym(a))2 + (,/m(a))2 + ... + ( y < r i ; (a ) ) 2 = 1. 

By Corollary 4.1, [5], (3) and (4) imply that there is a subsequence ymi of ym and 

a solution y of (1) such that \\(ym„ • • • ,yn?,_1)) - (?/,••• ,y{n~l))\\ ~¥ 0 as I -+ oo. 

Hence y is a nontrivial solution of (1), (2) and thus C n \ 5 is closed. This implies 

that S is open in Cn. 

Now we prove that S is dense in the space C n . Again by the Rudolf theorem, 

there is a differential equation 

(5) x^ + f^rk(t)x^~^=0 
k=i 

such that the BVP (5), (2) is regular. Denote by A: D(A) C C " " 1 -> C the operator 

Ax = J2(Pk(t)-rk(t))x^-k^ 
k=i 

where 

D(A) = {:rg C n _ 1 : U(x) = 0, i = l , . . . , n } . 

Then the linear operator L - A: D(L) C Cn ^ C which is defined on 

(6) D(L) = {x £ Cn : U(x) = 0, i = l , . . . , n } 

is onto and one-to-one. By Lemma 4 ([18], p. 512), its inverse mapping (L - A)~l: 

C -> Cn is continuous and as a mapping from C to C " _ 1 it is completely continuous. 

Since the equation L(x) = 0 is equivalent to the equation 

(7) x = (L-A)-\-A(x)) 

and the operator K = -(L - A)~l o A: £>(A) C C " _ 1 -» C " - 1 is completely 

continuous, either (7) has only the trivial solution or 1 is an eigenvalue of K. In the 

latter case there is an e > 0 such that the equation Ax = (L - A)'1 o (—Ax) as well 

as Lx = ( 1 - \)Ax has only the trivial solution for all A 6 (1 - s, 1) U (1,1 + e ) . This 

means that for these A the BVP L(x) + (\ - l)A(x) = 0, (2) is regular. • 
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Consider now a sequence of generalized boundary conditions 

(2j) ll
i
i)(x)=0, i = l,...,n, 

j = 1,2,.. . , where 
,«> . C n - 1 ^ R 

is a linear continuous functional, t rs l , . . . , n , j — 1,2,. . . and for each j = 1,2,. . . 

the functionals tf\ i = 1 , . . . ,n are linearly independent. 

Denote by Sj the set of all n-tuples (pi, • •., p„) £ C„ such that the BVP (1), (2j) 

is regular. On the basis of the Baire theorem ([13], Theorem 2.2), Theorem 1 implies 

that the set (~) Sj is dense in C„ and hence the following corollary holds. 

Coro l la ry 1. If a sequence of the boundary conditions (2^), j = 1,2, . . . is given, 

then the set of all n-tuples (pi,...,pn) ' C„ for which the BVP-s (1), (2^), j = 

1,2, . . . are reguiar is dense in the space Cn. 

Let {tj}fL0 C [a,b] be an injective sequence of points in [a, b]. A point tj is 

conjugate to t0 for the equation 

(8) x" + pi(t)x' + P2(t> = 0 

([8], p. 216) if and only if the BVP (8), 

x(to) = 0, x(tj) = 0 

is not regular. Hence, by Corollary 1, the set of all pairs (pi,P2) such that all 

conjugate points to t0 in [a, b] for the equation (8) (when they exist) are different 

from {tj}^ is dense in C2. 

Now we introduce the notions which are well-known in the coincidence theory 

developed by J.Mawhin (see e.g. [7]). According to (1), the operator L: D(L) C 

C " " 1 -> C° is defined by 

(9) L(x) = * M + f > ( i ) x < " - * ) , xeD(L) 
k=l 

where D(L) is determined by (6). By the Rudolf theorem L is a Fredholm mapping 

of index zero. Hence, there exist linear continuous projectors P: C n _ 1 -» C 7 1 - 1 , 

Q: C ° - > C° such that 

R(P) = N(L), N(Q) = R(L) 



and 

C"-1 =N{L)®N{P), C° = R{Q) © R{L) 

as topological direct sums. Further, the restriction LP of L to D{L) n N{P) is one-

to-one and onto R{L) so that its algebraic inverse KP: R{L) -* D{L)nN{P) is well 

defined. 

We shall distinguish two cases: Either (1), (2) is regular or not. When the BVP 

(1), (2) is regular, then P{x) = 0, x € C n _ 1 , Q{y) = 0, y e C° and C n _ 1 = N{P), 

C° = R{L). In this case LP = L, KP = L _ 1 . The operator L _ 1 : C° -» D{L) C 

C n _ 1 is constructed with help of the Green function G = G{t, s), a ^ t, s < 6 for the 

BVP (1), (2) given in [18]. L _ 1 is defined in Lemma 1, ([18], p. 510) by the relation 

, 6 

(10) L~l{x){t)= I G{t,s)x{s)ds, a ^ t ^ b , xeC°. 

Further, for each k € { 1 , . . . , n — 1} (if n ^ 2) we have 

(11) {L-1{x))^{t) = J dkG
d

{*,'s)x{s)ds, a ^ t ^ b , x€C°. 

By Lemma 3 ([18], p.512), the function <p{t) = f* \G{t,s)\ds, a ^ t ^ b, is continu­

ous on [a, b] and hence, by the result in [6], p. 187, 

(12) 
rb 

\\L~1\\ = max / \G{t,s)\ds. 
a^í^fe Ja 

ăs. 

A similar relation holds for the norm \\Lk || of the linear operator standing on the 
right-hand side of (11). Hence 

For brevity, in what follows we will write | | i _ 1 | | instead of | | L _ l | | -
Let / = f{t,xu...,xp+1) 6 C{[a,b] x R" + 1 ,R),<, e C([a,&],R), where 0 ^ p <: 

n - 1. The following existence lemma holds for the nonlinear perturbation of the 
regular BVP. 

L e m m a 1. If the BVP (1), (2) is regiiiar and if there exist positive constants 
Ci,. . •, Cp+i, d such that 

p+i 
(14) 5 = V ^ C i | | L - ^ | | < l , 

P + I 

(15) \}{t,Xl,...,xp+1)\ <. Ylck\xk\ + d, a^t^b, xu...,xp+1 £ R 
k=l 

and 
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(16) \g(t)\ ^ M, a Utii b, 

then each possible solution x of the BVP (2), 

(17) L(x) = f(t,x,...,x^)+g(t) 

satisfies a priori estimates 

P+1 

(18) ( min c f c ) I W | p ^ y ; c f e | | : l ;
( f c - 1 > | | o ^ - i - f ( c . + M) , 

fc=i,...,P+l j ^ 1 - d 

and for each g G C° there exists a solution of the BVp (17), (2). 

P r o o f . By means of Lemmas 5 and 6 in [18], p. 516, the problem (17), (2) is 

equivalent to the fixed point problem for the operator 

, 6 

(19) T(x)(t)= G(t,s)[f(s.x(s),...,x^(s))+f)(s)}ds, a ^ t ^ b , x € C 

This operator as a mapping from C to C is completely continuous. By the Leray-

Schauder principle the existence of a fixed point of T will be proved if it is shown 

that the set of all possible solutions of the family of equations 

(20) x = XT(x), 0 < A < 1 

is a priori bounded (in the norm ||.||p) independently of A. 

Let A e [0,1], i be a possible solution of (20) and let k e { 1 , . . • ,p + 1}- Then 

xV>-»(t) = \J ^ ^gfe s)-[f(s, -.(,), . . . , XM (,)) + g(3)] ds, a^t^b, 

and by (12), (13), (15), (16) we have 

,P+1 X 

b = i 

Hence 
p-t-i , P + 1 ч 

S«*ll«(fc-1>||o<*(J2Cł||.e(*-i)||o + t. + « ) 
k=l 4 = 1 ' 

and thus (18) is true. 
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E x a m p l e . Let 0 < r, < 1. Consider the Green function for the problem 

x" = 0, 

(21) z ( 0 ) = 0 , x(l)-x(r,)=0. 

Since 

x(t) = t(l - vr1 [('? - 1) f g(s) ds + j [sg(s) - g(s)] ds] + J (* - s)g(s) ds, 

0 5. i ^ 1, is the unique solution of the BVP x" = g(t), (21), the Green function 

G = G(t, s) for that problem is determined by 

G(t,s) = Gi(t,s) + K(t,s) 0 < _ i , s < _ l 

where 
( - i 0<_ s <_ ri 

G1(t,s) = { 

( t - s 0<_ s ^ i<_ 1 
K(t,s) = \ 

[0 0 < _ i < s < _ l 

and hence G{t,s) < 0 for 0 < s < 1, 0 < i <_ 1, G(i,0) = G( t . l ) = 0, 0 <_ t <_ 1, 

G(0,s) = 0 , 0 <_ s <_ 1. 

Therefore the solution x0(t) = - 1 ( 1 + rj)t + y , 0 <_ i <_ 1 of the problem a;" = 1, 

(21) satisfies |x0(*)| = /„' \G(t,s)\ ds, 0 <_ t <_ 1 and hence 

(22) | | I - - | | = mia : j so (0 l = | ( 1 + r,)2. 

Since ^ f ^ <_ 0 for 0 <_ i <_ 17, 0 <_ s <_ 1, we have 

/ | ^ | ^ | d s = 14(01 <l*o(0). = |(l+»?) 

in [0,??]. A direct calculation gives 

^ 1 | 9 ^ | d s = _ ^ [ 2 f 2 + ^ + 1 _ 2 t ( 1 + i l ) K | ( 1 _ J ? ) ] ^ ^ 

Thus 

(23) ||Lr1H = | ( l + '?). 

By means of (22), (23), Lemma 1 gives an existence statement for the nonlinear BVP 

(21), 

(24) x" = f(t,x,x'), 

which completes the statements in [4], 



R e m a r k 1. Estimations of \\Lk
 l \\ for a BVP of the third and of the fourth order 

can be found in [16], Lemma 3 and in [10], Lemma 4, respectively. 

The existence and uniqueness of a solution to (17), (2) is guaranteed by 

Theorem 2. If the BVP (1), (2) is regular and if there exist constants clt..., cp + i 

such that (14) is true and 

P + 1 

\f(t,xx,...,Xp+i) - f(t,yu...,yp+1)\ ^ ^2ck\xk - yk\, 
k = l 

(25) a^t^b, x1,...,xp+i,y1,...,yp+ieU, 

then the BVP (17), (2) has a unique solution. 

P r o o f . Consider the space Cf = C([a, b], R) provided with the norm ||x||Pii = 
P+1 

J2 ck\\x
<-k-1>\\o- With respect to inequalities 

k=l 

p+1 

( ^ i m i n p+i C f c ) N l p * I W k l * (È C f c ) | | æ 

the norms ||.||p, ||-||p,i are equivalent and hence C\ is a Banach space. Consider the 

operator T: C\ —> C\ given by (19). In view of (25), we have 

P+i 

|,;r(_-i)(a.) _ rc*-i)(sf)|,0 £ | L & | £>«»<*-*> - y ^ l l o 
«K=1 

for each k -* 1 , . . . , p + 1 and x,y € Cf. Thus 

\\T(x)-T(y)WP,i$5\\x-yWP,i, 

which means that T is a strict contraction on Cf. The result follows by the Banach 

fixed point theorem. • 

R e m a r k 2. In the case of homogeneous boundary conditions, Theorem 2 gene­

ralizes Theorem 1.1.1 in [1]. 

Corollary 1 and Lemma 1 imply 

T h e o r e m 3. If a sequence of the boundary conditions (2j), J = 1,2,. . . , is given 

and the function f satisfies the condition 

lim \f(t,xi,...,xp+1)\ 
| - , |+ . . .+ |*„ + , | -»00 \Xl\ + ...+ | . T p + l | 
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uniformly in t e [a,b], then there exists asequence ofn-tuples (pi,m , • . . ,p„,m) € C„, 

m = 1,2,.. . , such that (3) is fulfilled and the BVP (2j), 

(l7m) Lm(x) = f(t,x,...,xW) + g(t) 

has a solution xm,j for each m = 1,2,. . . and each j = 1,2, — 

Another sufficient condition for the existence of a solution to (17), (2) is given in 

the next lemma. 

Lemma 2. Let there exist a sequence ofn-tuples (Pi,m, • •. ,p„,m) S C„, m = 

1,2, . . . such that (3) is satisfied and the BVP (17m), (2) has a solution xm for each 

m — 1 ,2, . . . . Let the sequence {xm} be bounded in Cn~l. Then there exists a 

subsequence {xm ,} of {xm} and a solution x of the problem (17), (2) such that 

xm, -> x as I -> oo in C n . 

P r o o f . By (17m), the sequence {xm} is even bounded in C". Hence, by 

the Ascoli theorem, there exists a subsequence {xm,} of the sequence {xm} and a 

function x € C n _ 1 such that xm, -» x as / -> oo in C"" 1 . In view of (3) and (17m) 

the sequence a;^,' is uniformly convergent on [a, b] and hence x G C n and x m , -4 x 

as ^ -> oo in C n . Thus x is a solution of (17), (2). • 

Now we prove generic properties of the set of all solutions to (17), (2). To that 

aim we need the definition of the range of bifurcation Rb of the BVP (17), (2) (see 

Definition 4.1 in [20], p. 29). For the sake of completeness we will give it here. 

First we introduce the Banach space X0 = (D(L), ||.||„) ([20], p. 28). Then the set 

Rb of all g e C° with the property that there is a solution x of the BVP (17), (2) 

and a sequence gk -> g as k -> oo such that the BVP (17), (2) for g = gk has at 

least two different solutions xk, zk for each k and xk -¥ x, Zu -»• x in X0 for k ->• oo 

is called the range of bifurcation of the BVP (17), (2). 

By Lemma 1, Theorems 4.1 and 4.2 in [20], pp. 31-32, we get the following theorem. 

Theorem 4. If the problem (1), (2) is regular and there exist positive constants 

c\,..., cp+1,d such that (14), (15) are true, then the following statements hold: 

1. For each g e C° the set Sg of all solutions of the BVP (17), (2) is nonempty 

and compact. 

2. IfC° \ Rt, ^ 0, then each component of that set is nonempty, open and hence a 

region. The number ng of solutions of the BVP (17), (2) is finite and constant 

on each component of the set C° \ Rb-

3. IfRb = 0, then the problem (17), (2) has a unique solution for each g € C° and 

this solution continuously depends on g as a mapping from C° onto X0. 
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4. It §£ g C([a, b] X Kp + 1 , R), » = 1 , . . . ,p+ 1, then the open set C° \ Rb is dense 

in C0 and hence, Rb is nowhere dense in C°. 

P r o o f . Since (1), (2) is regular, the operator L given by (9) satisfies the 

assumption (H.l) of Theorem 4.1. Since / is continuous, (H.2) is satisfied and in 

the case that g^- are continuous, (H.4) is fulfilled. By the apriori estimates (18) 

it follows that also (H.3) holds. Then Lemma 1 and Theorems 4.1, 4.2 imply the 

statements. • 

R e m a r k 3. We see that under the assumptions of Theorem 4, uniqueness of the 

BVP (17), (2) implies correctness of that BVP, that is the existence, uniqueness and 

continuous dependence of the solution x of the BVP (17), (2) on g. 

3 . NON REGULAR CASE 

This case is more complicated as the previous one. Now we apply the results of 

[17] and [20]. Denote by F the Nemitskij operator F: C ->C° which is defined by 

(26) F{x) = fox, x- C 

The properties of the operator L and F are given by the following lemma. 

Lemma 3. The following statements hold: 

(i) For each integer k, 0 < k < n - 1, the operator L: D{L) c Ck -> C° is a linear 

Fredholm operator of index zero. 

(ii) If there exists a continuous linear operator A: D{L) C C r -V C° with 0 ^ i• < 

n — 1 such that L - A: D{L) C C -> C° is one-to-one, then L — A is onto, the 

inverse operator {L - A)~l : C° -+ D{L) C C " _ 1 is completely continuous and 

{L — A)~r as a mapping from C° into C is continuous. 

(iii) The operator KP: R{L) C C° -> D{L) n N{P) C C71"1 is completely continu­

ous. 

(iv) F + g: C -> C° is continuous and maps bounded sets in C into bounded sets 

in C°-

(v) F + g: C —> C° is L-completely continuous. 

P r o o f . (i) By the Rudolf theorem, there exists a continuous linear operator 

A: C -> C° with 0 ^ r ^ n - 1 such that L - A: D{L) C C r -> C° is one-to-one. 

Then by Lemmas 1 and 4, [18], the operator L - A: XQ -> C° is a homeomorphism 
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of X0 onto C° and A: X0 -> C° is a linear completely continuous operator. Nikol'skij 

theorem ([20], p. 21) implies that L: X0 -> C° is a linear Predholm operator of index 

zero. The same is true about L: D(L) c C ' - t C°. 

(ii), (iii) If L — A: D(L) C C -> C° is one-to-one, then it is onto, and by Lemma 

4, [18], (L - A)'1: C° -> C " " 1 is completely continuous and (L - A)"1: C° -> C " 

is continuous and hence, by Remark 1 and Lemma 1 in [17], p. 555, the operators 

L: D(L) C C -> C° and LP: D(L) n JV(P) C C -> C " _ 1 are closed and A > : 

A(L) C C° -> C is completely continuous. Since A is continuous also as a mapping 

from C " - 1 to C°, A ' P : A^L) C C ° - > C " - 1 is completely continuous, too. 

(iv) The statement follows from the continuity of the functions / and g. 

(v) Let E C C be a bounded set. Then by (iii) and (iv) the mappings Qo(F + g), 

Kp °(I -Q)o(F + g) are continuous on E and the sets Qo(F + g) (E) and KP o(I-

Q) o (F + g)(E) are relatively compact in C° and in C, respectively. This implies 

the statement. • 

R e m a r k 4. By (iii), the statements (iv), (v) also hold for the restriction F + g: 

Ck-*C°,p<k^n-l. 
On the basis of Theorem 3 ([17], p. 561), the following lemmma holds which is 

analogous to Lemma 1. 

L e m m a 4. Suppose that the BVP (1), (2) is not regular and the following as­

sumptions hold: 

(a) R(L)nN(L) = {0}; 

(b) there exists a continuous linear operator A: C -> C° with 0 ^ r ^ n — 1 such 

that L - A: D(L) C C -> C° is one-to-one; 

(c) there exist constants c 1 ; . . . , cv, d > 0 such that (15) is true. 

Let di > 0 and iet s = max(p, r ) . 
p+i 

(d) The constant c = £ c& satisfies 
k=l 

(27) c<P^rfdT 
where | | A P | | is the norm oi"AP : A(L) C C° -> C. 

Lete = ± 1 . 

(e) There exists an 7?i > 0 with the foiiowing property: 

sF(x + x) + eg + kx £ R(L) 

for all x = x + xe D(L), x e N(L), x e N(P), keU such that 

M . .* Hi, PH. <di||*||. and A->0. 
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Then the problem (17), (2) has a solution. Moreover, if g satisfies (16) and 

(f) there exists an R3 ̂  R2 where 

\\KP\\(d + M) 
2 4(1 - prP||c) - ||A>||c 

such that 
F(x + x)+g<ZR(L) 

for allx = x + xe D(L), x e N(L), x e N(P) satisfying 

M,>Ra, PIL<4PIL, 

then any solution x of the BVP (17), (2) satisfies the inequalities 

(28) \\x\\s < R3 

and 

(29) m < H^llc +\\KP\\(d+M) 
(29) ™><l-\\KP\\cm' + l - | | i i - p | | C • 

P r o o f . On the basis of Lemma 3, the operator L: D(L) C Cs -+ C° satisfies the 

assumptions (Li), (L2) and (L3) in [17], pp. 554-555 with X = Cs, Z = C°, and by 

the assumption (a) of this lemma (L4) is satisfied, too. Lemma 3 with Remark 4 also 

implies that F + g: C s -> C° is continuous, maps bounded sets in Cs into bounded 

sets in C° and is L-completely continuous. By virtue of (15), the assumption (F5) 

of Theorem 3 in [17], p. 561, is satisfied. Then (27) together with the assumption 

(e) imply that also (F6) is fulfilled. By the just mentioned Theorem 3 the existence 

statement follows. 

Now we prove the a priori estimates (28) and (29). By Lemma 1 ([17], p. 555), 

and by (15), (16) any solution x = x + x oi (17), (2), x e N(L), x e N(P), satisfies 

the inequalities 

p | | , < ||K>||||L(.r)||o ^ Hit>||| |F(aO+9 | |o ^ l|/^!|c||.T||s + | | ^ P | | c | | s | | s + | | /<p | | ( d+M) 

and hence (29) is true. Since (27) is equivalent to | | ^ p | | c / ( l - \\KP\\c) < du the 

right-hand side of (29) is less than or equal to d i | | i | | s if and only if 

P U . ^ 2 . 

Hence for | | s | | s ^ R2 we have 

(30) \\x\\, < 4PIU-

By the assumption (f) the solution x of L(x) = F(x) + g cannot satisfy ||S||S ^ R3, 

(30) and thus (28) and (29) are true. • 
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By virtue of Lemma 4 the proof of the following theorem is similar to that of 

Theorem 4. 

T h e o r e m 5. If the problem (1), (2) is not regular, the assumptions (a)-(d) of 

Lemma 4 hoJd, further for each g e C° the assumption (e) of that lemma is satisfied 

and for each M > 0 and each g e C° satisfying (16) the assumption (f) of Lemma 4 

holds, then all statements of Theorem 4 hoJd. 

Consider the BVP (2), 

(17') L(x) = f(t,x) + g(t) + h(t,x,x',... ,x(p)) 

where f e C([a,b] x R,R), ge C([a,b}), f i6C([o,6] x R" + 1 ,R) , 0 < p < n - l . We 

show that under simple assumptions on N(L), R(L) Theorem 5 implies the following 

theorem. 

T h e o r e m 6. Assume that the following conditions are satisfied: 

(i) 

N(L) = {x e D(L): x i saconstanton [a,b]}, 

R(L) = {yeC°: J y(x)dx = 0}; 

(ii) there exists a continuous linear operator A: CT -» C° with 0 ^ r ^ n — 1 such 

that L- A: D(L) C C -> C° is one-to-one; 

(iii) there exist constants c, d, S > 0 such that 

| / ( t , i i ) | < c | a : i | + d , \h(t,xx,... ,xp+1)\ ^ 5 for a <.t < 6, a ^ , . . . , z p + i £ R; 

(iv) 

(31) 2c\\KP\\ < 1 

where \\KP\\ is the norm ofKP: R(L) C C° -+.Cs, s = max(p,r) ; 

(v) for e = 1 or e = - 1 

(32) lim zf(t,x) = oo, lim ef(t,x) = - o o uniformJy in t 6 [a, 6]. 

Then aJJ statements of Theorem 4 hoJd for the BVP (17'), (2). 

P r o o f . We shall show that all assumptions of Theorem 5 concerning the BVP 

(17'), (2) hold and by this theorem Theorem 6 follows. The assumptions (i)-(iii) 
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imply that the problem (1), (2) is not regular and the assumptions (a)-(c) of Lemma 

4 are satisfied where instead of d we have d + S. In view of (31) there exists a d_ 

such that 

(33) 0 < dx < 1 

and (27) is true. Hence the assumption (d) of Lemma 4 is also fulfilled. 

Now with respect to (i) we can choose the projector P(x) = -^ Ja x(t) dt, x £ Cs. 

Then P(x) = x for each x 6 D(L) and x(t) = x + x(t), a ^ t <_ b. On the basis of 

(33), the condition | |x| | , ^ d i p | | s implies that \i(t)\ <. d\\x\, a <. f ^ b and hence 

(34) x(t) ^ (l-di)x for x > 0 and x(t) <. (l-di)x for x < 0, o < t ^ b, x e D(L). 

Suppose further that g satisfies (16). Since F: C -> C° is now determined by the 

relation 

(26') F(x) = / o x + h o x 

and EF(X + x) + eg + kx G R(L) if and only if 

/ e[f(t, x + x(t)) + g(t) + h(t, x + x(t),..., x{p)(t))] dt + kx(b - a) = 0, 

on the basis of (34) we get that both conditions (e) and (f) of Lemma 4 will be 

satisfied if for all sufficiently great \x\ and k ^ 0 we have 

sign [ef(t,x + x(t)) + eg + eh(t,x(t),.. .,x{p)(t)) + kx] = s igns. 

This follows by the boundedness of g, h and (32). The proof is complete. D 

If L(x) = x{n) and the conditions (2) are of the form 

(35) x(i)(a) -x{i)(b) = 0 , i = 0 , . . . , n - l , 

then the condition (i) is satisfied and A = cl: C° -> C° where c ^ 0 is sufficiently 

small and / is the identity in C°. Hence r = 0 and thus s = p in conditions (ii) and 

(iv), respectively. 

Corollary 2. If the conditions (iii), (iv) (with s = p) and (v) of Theorem 6 are 

satisfied, then aJJ statements of Theorem 4 hold for the BVP (35), 

(36) * « =f(t,x)+g(t) + h(t,x,...,x^)). 

R e m a r k 5. The operator Kp for certain periodic BVP-s is constructed in [9], 

[11]. 
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Consider a special case of (36), (35), namely the BVP (35), 

(37) x ( n ) =f(x)+g(t) + h(t,x) 

where / £ C(R, R). Similarly as in [2], the results will depend on the fact whether 

n is odd or even. We will denote the scalar product and the norm in L2([a,b], R) by 

(.,.) and 11-Hi.a, respectively. 

L e m m a 5. Suppose that n = 2m + 1, n ^ 3, e = 1 or e = —1, / satishes the 

condition 

(32') lim ef(x) = co, lim ef(x) = - c o , 

g fulfils (16) and h satisfies 

(38) \h(t,xi)\ ^ 5 for a <. t <. b, xi € R 

with a 5 > 0. Tiien the following statements hold: 

(1) There exists a constant R > 0 such that each possible solution x of the BVP 

(37), (35) where x(t) = x + x(t), a <, t <. b, x = ^ / a
6 x(t)dt, satisfies the 

inequalities 

(39) \x\ < R, 

(40) Hxllo 4 fe-VV (tzl) (M + S). 
3 V 2n 

(2) For each ci > 0 sufficiently small there exists an Ri > 0 such that aii possible 

solutions x(t) =x + x(t), a < t sj b, of (35), 

(41) x < n > - ( l - / . ) e c i X = M [ / ( z )+ !*(*>*)]. 0 < M < 1 

satisfy the inequalities 

(39') |«| ^ Rt 

,„., „.«•(!-)-(>=•)» 
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b-a (b- a\ (b-a\ 
(M + 6), 

P r o o f . 1. If z is a possible solution of (37), (35), then, similarly as in Lemma 1, 

[2], we get 

(~l)-i-\\X('^\\2
L2 = (x^,x') = {f(x(.)),x') + (g,x') + (h(.,x(.)),x') 

and in view of (35), (16), (38) we have 

(42) | | ^ ^ ' | | 2
L 2 ^ ( M + <5)(6-«)| |x' | |0 . 

By Sobolev and Wirtinger inequalities ([12], pp. 216-217), 

(43) | | , ' | l o , 3 - ^ i ^ ( ^ ) ^ | | , ( ^ ) | L , . 

(42) and (43) imply that 

ii*wii,^(^n^;r<«+*> 
and thus 

**»<-* V 3 J V 2 K 

which implies (40). 

If (39) were not true, there would exist solutions xk(t) = xk + ik(t), a ^ t ^ b, 

k = 1 ,2 , . . . of (37), (35) such that either lim xk = oo or lim xk = - c o . Only the 
fc-Kx> fc-^co 

first case will be considered. Then in view of (16), (38), (40) and the first condition 

in (38') f(xk(t))+g(t) + h(t,xk(t)) would be of constant sign for all sufficiently great 

k and hence, x{
k~

l)(b) - x[n'1)(a) ^ 0. This contradiction with (35) proves (39). 

We remark that the contradiction is also attained in the case when xk are solutions 

oix(n) =f(x)+gh(t)+h(t,x,...,x(*i>) and all gk satisfy \gk(t)\ ^M,a^t^b. 

2. If we start with (41) instead of (37) and proceed in the same way as above, we 

come to the inequality 

\\x^\\2
L2^5(b-a)\\X'\\0 

which now replaces (42). This inequality leads to (40'). 

If there existed solutions xk(t) = xk + xk(t), a ^ t ^ 6, k = 1,2,. . . of x M = 

(l-Hk)ec1x+tik[f(x)+h(t,x)\ with lim xk = oo, then with respect to (38), (40') and 

the first condition in (32'), the functions (1 - fik)£dxk(t) + fj.k[f(xk(t)) + h(t,xk(t)] 

would be of constant sign for all sufficiently great k. This again contradicts (35) and 

thus (39') is true. Similarly we proceed in the case when lim xk = —oo. • 
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L e m m a 6. Suppose that n = 2ro, n ^ 2, e = 1 Or £ = —1, / satisfies (32') and 

the following condition: 

There exists 0, 0 <, /3 < ( 5 ^ ) " , such that 

(44) (-l)n/2(f(v)-f(w))(v-w)<.p(v-w)2, v,w€R, 

g fulfils (16) and h satisfies (38). Then the following statements hold: 

(1) There exists a constant R > 0 such that each possible solution x of the BVP 

(37), (35) where x(t) = * + i(t), a <_ t ^ b, x = ^ ^x(t)dt, satisfies the 

inequalities 

(45) |*| <. R, 

(2) For each c j , 0 < Ci < P, Ci sufficiently small, there exists an Ri > 0 such 

that aJJ possible solutions x(t) = £ + £(t), a <. t < 6 of (41), (35) satisfy the 

inequalities 

(45') |*| < * , , 

m i*<(,.^.=!)ri(Si-),(^r. 
P r o o f . 1. If 1 is a possible solution of the BVP (37), (35), then, similarly as 

in the proof of Lemma 2, [2], we get that 

| | x ( » ) | | l . = ( - l ) * ( x ( B ) , x ) 

= ( - l ) * ( / ( * ( . ) ) - / ( * ) , * - * ) + ( - l ) * ( 0 , x ) + ( - l ) t (h(. ,x(.)) ,x). 

Then by (44), (16), (38) 

(47) Hx ( t ) l i . < 0H*lli- + (b-a)(M + S)\\x\\0. 

Again Sobolev and Wirtinger inequalities imply that 

(48) ii.ii-<(5ir)V' ,|I., 

w HKK^'pirr^l--
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From (47), (48) and (49) we get 

2K 

and further 

Mt,s(1-,(^)y'-(- )' (- )- (W+5), 
which implies (46). 

If (45) were not true, then similarly as in the proof of statement 1 in Lemma 5, 

the existence of solutions xk(t) = xk + xk(t), a <_ t <_ b, k = 1,2,... ot. (37), (35) 

with the property lim xk = oo or lim Xk = — oo in view of (46), (16), (38) would 
k-too fc-j-oo 

imply that f(xk(t)) + g(t) + h(t,xk(t)) is of constant sign for all sufficiently great k 

and this would lead to a contradiction with (35). Thus (45) is proved. 

2. Since 0 < c\ < /? and (x,x) = (x,x), each solution x(t) = x + x(t), a <. t <_ b 

of (41), (35) satisfies the inequality 

| |*(t)| |2
L2 <_ [(i _ a)Cl + 00JPH1, + (6 - a )6p | | o 

^ / 3 p | | i . + (b -a )<Jp | |o 

which replaces (47). Therefore (46) with M = 0 implies (46'). The inequality (45') 

can be proved in the same way as (39') has been proved. D 

R e m a r k 6. It is clear that the condition (44) is equivalent to the following 

condition: If n = 4m (n = Am + 2), m >. 1, then the function F(x) = f(x) - 3x 

(F(x) = f(x) + fix) is nonincreasing (nondecreasing) in R. 

T h e o r e m 7. Suppose that n ^ 2, E = 1 or E = -1, f satisfies (32'), h fulfils 

(38) and when n = 2m, there exists ji, 0 ^ P < ( j ^ ) " such that (44) is satisfied. 

Then the statements 1-3 of Theorem 4 hold for the BVP (37), (35). Moreovei', if 

f e CX(U, R) and §£ € C([a, b] x R, R), then also statement 4 of Theorem 4 hoWs 

for that BVP. 

P r o o f . Proceeding in a similar way as in the proof of Theorem 4 we see that 

the assumptions (H.l), (H.2) and in the case that / ' , | | , are continuous, also (H.4) 

of Theorems 4.1 and 4.2, [20], are satisfied. Since the BVP xln~> - ec\x = 0, (35), is 

regular for all sufficiently small c\ > 0, the a priori estimates given in Lemmas 5 and 

6 imply that also (H.3) and (H.5) are fulfilled. Then the result follows by Theorems 

4.1 and 4.2 as well as by Corollary 4.2 in [20]. D 
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By Remark 6, Theorem 3 in [19] and Theorem 5.2 in [20], Theorem 7 implies the 

following corollary. 

Corol lary 3. Suppose that n > 2, £ = 1 or s = - 1 , / satisfies (32'), h fulfils (38) 

with a positive constant 5 and that the following conditions are true: 

(a) If n = 2m + 1, then the function / ( . ) + h(t,.) is either nonincreasing in U or 

nondecreasing in U for every t e [a, b]. 

(b) Ifn = 4m, then the function f(.) + h(t,.) is nonincreasing in R for every t e [a,b] 

and there exists a 0, 0 sj /? < (-?__;Y such that the function /(&) - /3* of the 

variable x is nonincreasing in R. 

(c) If n = 4m — 2, then the function / ( . ) + h(t,.) is nondecreasing in R for every 

t € [a, 6] and there exists a /3, 0 ^ /3 < ( p ^ ) " such that the function f(x) + fix 

of the variable x is nondecreasing in R. Then there exists a closed set Rb C C° 

such that for each g e C°\Rb the BVP (37), (35) has a unique solution, for each 

g G Rb the set Sg of all solutions of that BVP is convex and Rb = i?2, where 

R-2 C Rb is the set of all g <E C° for which the BVP (37), (35) has infinitely 

many solutions. 

R e m a r k 7. We see that under the assumptions of Corollary 3 the following 

alternative holds: Either the BVP (37), (35) has a unique solution or it has infinitely 

many solutions, more precisely a nontrivial convex compact set of solutions. 
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