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(Received June 5, 1997)

Abstract. 1t is shown that for a given system of linearly independent linear continuous
functionals I;: C"~! - R,i=1,...,n, the set of all n-th order linear differential equations
such that the Green function for the corresponding generalized boundary value problem
(BVP for short) exists is open and dense in the space of all n-th order linear differential
equations. Then the generic properties of the set of all solutions to nonlinear BVP-s are
investigated in the case when the nonlinearity in the differential equation has a linear
majorant. A periodic BVP is also studied.
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1. INTRODUCTION

B. Rudolf in [14] has shown that for a given system of linearly independent k-
near continuous functionals /;: C™([a,b],R) = R, i = 1,...,n, there exists a linear
differential equation

(v L) =)™ + 3 g™ =0, agt<h
k=1

such that the BVP (1),
(2) li(x)=0,i=1,...,n

has only the trivial solution. This result also holds when the functionals I; are
given in the space C"~((a,], R). In this paper we will prove that the set S of alk
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differential equations (1) such that (1), (2) has only the trivial solution is open and
dense in the space of all n-th order linear differential equations and we will derive
some consequences of that result. Besides the classical existence theorems the generic
properties of the set of all solutions to nonlinear BVP-s having a linear majorant will
also be studied. The main tool for showing these properties will be a priori estimates
like Leray-Schauder estimations. Finally, a special case will be investigated, namely
the periodic BVP.

Throughout the paper we will assume that n > 1,~00 < a < b < o0, px €
C(la,b),R), k = 1,...,m, li: C*"([a,b],R) — R is a linear continuous functional,
t=1,...,n and the functionals [;, i = 1,...,n, are linearly independent.

Let C% = (C([a, 8], R), ||-lo) be a Banach space with the sup-norm ||.|lo and let the
topology in C! = C!([a,b], R) be given by the norm ||.|l;, whereby

l=ll: = k':%“,l,).(,znz(k)uo’ 1=1,...,n.

Further let C, = C® x ... x C° (n times) be the product space with the norm
n

I{z1, .-,z )l = 3 llzkllo. Then C, is a Banach space and the equation (1) can be
k=1

represented by the_n-tuple (p1,- -+ Pn)-

2. REGULAR CASE

We will start with the following definition.

Definition 1. The BVP (1), (2) will be called regular if and only if it has only
the trivial solution.

Theorem 1. Let a system of linearly independent linear continuous functionals
li,i=1,...,n, be given. Then the set S of all n-tuples (py,...,pn) € C, such that
the BVP (1), (2) is regular is nonempty, open and dense in the space Cy,.

Proof. By the Rudolf theorem, [14], S # @. Suppose that there exists a
sequence of nontrivial solutions y,, to the BVP-s

n

(1m) (Lin(2) 22 + 3" pem()2™ ™ =0, a<t<h
k=1

(2) . Li(z) =0, i=1,....n

where

3 .

(3) ILms -  prm) = (P1s--,pa)| 20 as m — o0,
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Here prm € CO k=1,...,n,m=1,2,....
The solutions y., can be normalized by the condition

@ (Im(@)® + (g (@) + ...+ @ (@) = 1.

By Corollary 4.1, [5], (3) and (4) imply that there is a subsequence y,,, of y, and
a solution y of (1) such that [{(ym... ., 3% ") = (..., u™ )| = 0 as | — .
Hence y is a nontrivial solution of (1), (2) and thus C,, \ S is closed. This implies
that S is open in C,.

Now we prove that S is dense in the space C,. Again by the Rudolf theorem,
there is a differential equation

n
(5) 2+ 3 () H =0
k=1

such that the BVP (5), (2) is regular. Denote by A: D(A) C C™*~* — C the operator

n

Az =" (pe(t) = ()27

k=1

where

DAY ={reC" : li(z)=0,i=1,...,n}
Then the linear operator L — A: D(L) C C™ — C which is defined on
©) D(L)={reC™:L()=0, i=1,..,n}

is onto and one-to-one. By Lemma 4 ([18], p.512), its inverse mapping (L — 4)7*:
C — C™ is continuous and as a mapping from C to C™~! it is completely continuous.
Since the equation L(z) = 0 is equivalent to the equation

) v = (L~ A7 (~A()

and the operator K = —(L — A)™' o A: D(4) ¢ C*! — C™ ! is completely
continuous, either (7) has only the trivial solution or 1 is an eigenvalue of K. In the
latter case there is an £ > 0 such that the equation Az = (L — A)™! o (—Ax) as well
as Lz = (1 - 1) Az has only the trivial solution for all A € (1—¢,1)U(1,1+¢). This
means that for these A the BVP L(z) + (3 — 1)A(z) = 0, (2) is regular. a
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Consider now a sequence of generalized boundary conditions
) (@) =0, i=1..,n,

ji=1,2,..., where
D0t R
is a linear continuous functional, i = 1,...,n, j = 1,2,... and for each j = 1,2, ...
the functionals I§J), i=1,...,n are linearly independent.
Denote by S; the set of all n-tuples (p1,...,pa) € Cr such that the BVP (1), (2;)
is regular. On the basis of the Baire theorem ([13], Theorem 2.2), Theorem 1 implies
I
that the set [0 S; is dense in C,, and hence the following corollary holds.
j=1
Corollary 1. If a sequence of the boundary conditions (2;), § = 1,2,... is given,
then the set of all n-tuples (py,...,pa) € Cn for which the BVP-s (1), (2;), j =
1,2,... are regular is dense in the space C,.
Let {t;}%25 C [a,b] be an injective sequence of points in [a,b]. A point t; is
conjugate to ty for the equation

(8) 2" + pi(t)a’ + pa(t)z =0
(18], p. 216) if and only if the BVP (8),
2(tg) =0, a(t;)=0

is not regular. Hence, by Corollary 1, the set of all pairs (p1,p2) such that all
conjugate points to to in [a,b] for the equation (8) (when they exist) are different
from {t;}32; is dense in Cs.

Now we introduce the notions which are well-known in the coincidence theory
developed by J. Mawhin (see e.g.[7]). According to (1), the operator L: D(L) C
C™~1 — (0 is defined by

9) L{z) =z™ + Zn:pk(t)x("_k), z € D(L)
k=1

where D(L) is determined by (6). By the Rudolf theorem L is a Fredholm mapping
of index zero. Hence, there exist linear continuous projectors P: C*~1 — C"~1,
Q: C° = C° such that

R(P)=N(L), N(Q)=R(L)
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and

C™ = N(L)® N(P), C°=R(Q)®R(L)
as topological direct sums. Further, the restriction Lp of L to D(L) N N(P) is one-
to-one and onto R(L) so that its algebraic inverse Kp: R(L) — D(L)NN(P) is well
defined.

We shall distinguish two cases: Either (1), (2) is regular or not. When the BVP
(1), (2) is regular, then P(z) = 0,2 € C*, Q(y) =0, y € C° and C™~! = N(P),
C® = R(L). In this case Lp = L, Kp = L. The operator L=!: C° — D(L) C
C™~1 is constructed with help of the Green function G = G(t, ), a < t,s < b for the
BVP (1), (2) given in [18]. L™! is defined in Lemma 1, ([18], p. 510) by the relation

(10) L (2)(t) = /bG(t,s)z(s) ds, a<t<b zec

Further, for each k € {1,...,n — 1} (if n > 2) we have

b 9EG(t, 5)

(11) (LY (@) B (t) = e z(s)ds, a<tgb ze€C°
By Lemma 3 ({18], p. 512), the function ¢(t) = f: |G(t,s)|ds, a <t < b, is continu-

ous on [a,b] and hence, by the result in [6], p. 187,

b
(12) 1270 = ma, [ 16910

A similar relation holds for the norm |]L;1|| of the linear operator standing on the
right-hand side of (11). Hence
b, gk
_ 9*G(t,s)
1 —

(13) 12271 = max / |72 as.
For brevity, in what follows we will write ||L5"|| instead of ||[L~1|.

Let f = f(t,z1,...,%p41) € Cla,b] x RP*1 R), g € C([a,b],R), where 0 < p <
n — 1. The following existence lemma holds for the nonlinear perturbation of the
regular BVP.

Lemma 1. If the BVP (1), (2) is regular and if there exist positive constants
c1,.--,Cp+1,d such that

P+l
(14) §=3alLd <,
k=1
pt1
(15) Lf(t, 21, c @) € chlzkl +d, a<t<g<bh 21,...,2p11 €ER
k=1

and
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(o WOl <M, a<t<b

s

then each possible solution = of the BVP (2),
a7 L@) = f(t.z,...,a™) + g(r)
satisfies a priori estimates
pt1 5
(18) ( lmin Hck)ﬂmnl, < AZ—;lckllx“‘—‘)uo S ——(d + M),

k=1,...,p £ 1-0

and for each g € C° there exists a solution of the BVP (17), (2).

Proof. By means of Lemmas 5 and 6 in [18], 1. 516, the problem (17), (2) is
equivalent to the fixed point problem for the operator

b
(19) T(m)(t):/ Gt ) (5.2(6), - 2P () + gls)}ds, a<t<b w€CT

This operator as a mapping from C? to C? is completely continuous. By the Leray-
Schauder principle the existence of a fixed point of 7' will be proved if it is shown
that the set of all possible solutions of the family of equations

(20) z=AT(z), 0<Ag1

<

is a priori bounded (in the norm ||.|l,) independently of A.
Let A € [0,1], z be a possible solution of (20) and let k € {1,...,p+1}. Then

b Ak—
;=D (p) = )\/ %ﬂi‘sl[f(s‘z(s)‘,“w(p)(s)) +g(s)]ds, a<t<b,

and by (12), (13), (15), (16) we have

p+1
IVl < 125 (3 eslt-1o+ d + M)~

j=1
Hence
Pl Pl
chnm(kfﬂuu < J(chnx(k—nno +d+ M)
k=1 k=1
and thus (18) is true. 0
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Example. Let 0 <7 < 1. Consider the Green function for the problem
2" =0,
(21) z(0) =0, =z(1)-z(n) =0.
Since
0 1 ¢
) == [ =) Mo s+ [loats) = atsias] + [ (0= utsras
o ” 0
0 £ ¢ < 1, is the unique solution of the BVP z” = g¢(¢), (21), the Green function
G = G(t,s) for that problem is determined by
P G(t,s) =Gi(t,s) + K(t,s) 0<t,s<1

where
—t 0
Gi(t,s) = 1
1=t g
t—s 0<s<tg
K(t,s) =
0 0<t<s<
and hence G(t,s) < 0for0<s < 1,0<t <1, G0 =G(t1)=0,0gKt<1,
G(0,s)=0,0<s< 1

Therefore the solution zo(t) = ~3(1 +n)t + g, 0 <t <1 of the problem z” =1,
(21) satisfies |zo(t)] = fol |G(t,s)|ds, 0 <t < 1 and hence

S

—1)| — 1 2
(22) 1L I = max lzo(®)] = §(1+m)".
Since 2455 <0 for 0 <t <, 0 < s < 1, we have
119G(t, ) .
[ 1752 ds = oo < lagfol = 30+
in [0,7]. A direct calculation gives

119G (1, 5) 1 a0 1
/0} £ |ds—m[2t +P+1=-2(1+n))<3(1-9), n<t<L

Thus

(23) LT = 51 +m).

By means of (22), (23), Lemma 1 gives an existence statement for the nonlinear BVP
(21),

(24) 2" = f(t,z,2),

which completes the statements in [4].
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Remark 1. Estimations of HL,:l || for a BVP of the third and of the fourth order
can be found in [16], Lemma 3 and in [10], Lemma 4, respectively.

The existence and uniqueness of a solution to (17), (2) is guaranteed by

Theorem 2. If the BVP (1), (2) is regular and if there exist constantscy, . .., cp41
such that (14) is true and

p+1
If(t2se o prt) = FEt,e Ypr1)] € D clee — vl
k=1

(25) ag<t<h Ty, Tpt1s Y- o Ypt1 € R,
then the BVP (17), (2) has a unique solution.

Proof. Consider the space C7 = CP([a,b], R) provided with the norm ||z|,; =

P+l :
S cxllz*~V]lo. With respect to inequalities
k=1

P+l
(g, el < bells < (Yot sy

“p k=1

the norms ||.[Ip, |llls,1 are equivalent and hence C? is a Banach space. Consider the
operator T: CT = C? given by (19). In view of (25), we have

p+1
1T @) = TED@)o < L4 1Y exlla® 2 — 5l
k=1

foreach k=1,...,p+1and z,y € C{. Thus

IT@) = TW)llpn < bllz = yllpa,

which means that T is a strict contraction on C7. The result follows by the Banach
fixed point theorem. a

Remark 2. In the case of homogeneous boundary conditions, Theorem 2 gene-
ralizes Theorem 1.1.1 in [1].

Corollary 1 and Lemma 1 imply

Theorem 3. If a sequence of the boundary conditions (2;), j = 1,2,..., is given
and the function f satisfies the condition

lim if(tﬁzlv>-'yzp+l)l =0
[tz sl oo [Z1] 4o+ {Tppa]
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uniformly in t € {a,b], then there exists a sequence of n-tuples (PL,m, - -, Pa,m) € Cy,
m =1,2,..., such that (3) is fulfilled and the BVP (2;),

(17m) Lon(x) = f(t,z,...,a®) + g(®)

has a solution z, ; for eachm =1,2,... and each j=1,2,....

Another sufficient condition for the existence of a solution to (17), (2) is given in
the next lemma.

Lemma 2. Let there exist a sequence of n-tuples (P1m, ... ,Pnm) € Cny m =
1,2,... such that (3) is satisfied and the BVP (17.,), (2) has a solution ., for each
m = 1,2,... . Let the sequence {z.,} be bounded in C"~'. Then there exists a

subsequence {z,,,} of {zm} and a solution z of the problem (17), (2) such that
Tmy 2z asl—o0inC™.

Proof. By (17n), the sequence {z,,} is even bounded in C". Hence, by
the Ascoli theorem, there exists a subsequence {zm,} of the sequence {zm} and a
function z € C™~1 such that x,,, =+ & as [ = oo in C"1. In view of (3) and (17,,)
the sequence zg,’f,) is uniformly convergent on [a,b) and hence x € C™ and zm, = ©
as { — oo in C™. Thus z is a solution of (17), (2). O

Now we prove generic properties of the set of all solutions to {17), (2). To that
aim we need the definition of the range of bifurcation R, of the BVP (17), (2) (see
Definition 4.1 in {20], p. 29). For the sake of completeness we will give it here.

First we introduce the Banach space Xo = (D(L), [i.{l») ([20], p. 28). Then the set
Ry of all g € C° with the property that there is a solution z of the BVP (17), (2)
and a sequence g, — g as k — oo such that the BVP (17), (2) for g = g« has at
least two different solutions z, zx for each k and z, — z, 2z = z in X for k = o0
is called the range of bifurcation of the BVP (17), (2).

By Lemma 1, Theorems 4.1 and 4.2 in [20], pp- 31-32, we get the following theorem.

Theorem 4. If the problem (1), (2) is regular and there exist positive constants
C€1y..-,Cp+1,d such that (14), (15) are true, then the following statements hold:

1. For each g € C° the set S, of all solutions of the BVP (17), (2) is nonempty
and compact.

2. IfC°\ Ry # 0, then each component of that set is nonempty, open and hence a
region, The number ng of solutions of the BVP (17), (2) is finite and constant
on each component of the set C°\ R,,.

3. If R, =, then the problem (17), (2) has a unique solution for each g € C° and
this solution continuously depends on ¢ as a mapping from C° onto X,.
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4. II'@%% € C([a,b] x RPYY R), i =1,...,p+1, then the open set C°\ Ry is dense
in Cy and hence, Ry is nowhere dense in C°.

Proof. Since (1), (2) is regular, the operator L given by (9) satisfies the
assumption (H.1) of Theorem 4.1. Since f is continuous, (H.2) is satisfied and in
the case that %[: are continuous, (H.4) is fulfilled. By the apriori estimates (18)
it follows that also (H.3) holds. Then Lemma 1 and Theorems 4.1, 4.2 imply the
statements. a

Remark 3. We see that under the assumptions of Theoremn 4, uniqueness of the
BVP (17), (2) implies correctness of that BVP, that is the existence, uniqueness and
continuous dependence of the solution z of the BVP (17), (2) on g.

3. NON REGULAR CASE

This case is more complicated as the previous one. Now we apply the results of
[17] and [20). Denote by F the Nemitskij operator F': C? — C° which is defined by

(26) F(z)=foz, z€C?
The properties of the operator L and F' are given by the following lemma.

Lemma 3. The following statements hold:

(i) For each integer k, 0 < k < n — 1, the operator L: D(L) c C¥ = C? is a linear
Fredholm operator of index zero.

(ii) If there exists a continuous linear operator A: D(L) C C™ — C°® with0 < r <
n —1 such that L — A: D(L) C C™ — C° is one-to-one, then L — A is onto, the
inverse operator (L — A)™': C® — D(L) € C™~! is completely continuous and
(L — A)~! as a mapping from C° into C™ is continuous.

(iii) The operator Kp: R(L) C C° - D(L) N N(P) C C™! is completely continu-
ous.

(iv) F +g: C? = C° is continuous and maps bounded sets in C? into bounded sets
in CO.

(v) F +4g: CP — C° is L-completely continuous.

Proof. (i) By the Rudolf theorem, there exists a continuous linear operator
A: C™ — C° with 0 < 7 € n — 1 such that L — A: D(L) C C™ = C° is one-to-one.
Then by Lemmas 1 and 4, [18], the operator L — A: Xo — C° is a homeomorphism

394



of Xo onto C° and A: Xo — C° is a linear completely continuous operator. Nikolskij
theorem ([20], p. 21) implies that L: Xy — C is a linear Fredholm operator of index
zero. The same is true about L: D(L) C C* — C°.

(i), (iii) If L — A: D(L) C C" — C° is one-to-one, then it is onto, and by Lemma
4, {18}, (L — A)~': C° - C™! is completely continuous and (L — A)~1: C® — C*
is continuous and hence, by Remark 1 and Lemma 1 in [17], p. 555, the operators
L:D(Ly ¢ C" = C° and Lp: D(L)N N(P) C C” — C™! are closed and A'p:
R(L) C C° — C7 is completely continuous. Since A is continuous also as a mapping
from C™=1 to C° Kp: R(L) C C° — C™! is completely continuous, too.

(iv) The statement follows from the continuity of the functions f and g.

(v) Let E C C? be a bounded set. Then by (iii) and (iv) the mappings Qo (F + g),
Kpo(I-Q)o(F+g) are continuous on E and the sets Qo (F+g)(E) and Kpo (I —
Q) o (F + g)(E) are relatively compact in C° and in C?, respectively. This implies
the statement. ]

Remark 4. By (iii), the statements (iv), (v) also hold for the restriction F + g:
CksCO p<hk<n-1.

On the basis of Theorem 3 ([17], p.561), the following lemmma holds which is
analogous to Lemma 1.

Lemma 4. Suppose that the BVP (1), (2) is not regular and the following as-
sumptions hold: -
(a) R(L)YNN(L)={0};
(b) there exists a continuous linear operator A: C” — C° with0 < r < n—1 such
that L — A: D(L) C C" — C° is one-to-one;
(c) there exist constants ci,...,cp, d > 0 such that (15) is true.
Let d; > 0 and let s = max(p,r).
ptl
(d) The constant c= ) c; satisfies
k=1
1 dy

27 < —— ——
@ KA T+ s

where || K p|} is the norm of Kp: R(L) C C° - C*.
Let e = £1.
(e) There exists an Ry > 0 with the following property:

eF(T+8) +eg+ ke ¢ R(L)
forallz =2+ % € D(L),z € N(L), & € N(P), k € R such that
llzlls 2 Ry, NIZ]s < dal|zlls and k> 0.
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Then the problem (17), (2) has a solution. Moreover, if g satisfies (16) and
(f) there exists an Rs > Ry where

IKPli{d + M)

Ry=—-""*"1 """ "7/
27 d(T-[Kplio) - [Krlle

such that
F(E+&)+g¢R(L)
forallz =t +% € D(L), T € N(L), # € N(P) satisfying
Zlls > B, 1IZ]ls < dallZlls,
then any solution x of the BVP (17), (2) satisfies the inequalities
(28) llzlls < Rs .

and

K pllc K pli(d+ M)

29 s < z||s + .
@ Wl < TR e T R e

Proof. On the basis of Lemma 3, the operator L: D(L) C C* — C° satisfies the
assumptions (Ly), (L) and (L3) in [17], pp. 554-555 with X = C*, Z = C°, and by
the assumption (a) of this lemma (L,) is satisfied, too. Lemma 3 with Remark 4 also
implies that F'+ g: C* — C¥ is continuous, maps bounded sets in C* into bounded
sets in C° and is L-completely continuous. By virtue of (15), the assumption (Fs)
of Theorem 3 in [17], p. 561, is satisfied. Then (27) together with the assumption
(e) imply that also (Fe) is fulfilled. By the just mentioned Theorem 3 the existence
statement follows.

Now we prove the a priori estimates (28) and (29). By Lemma 1 ([17}, p.555),
and by (15), (16) any solution z = 7 + & of (17), (2), € N(L), & € N(P), satisfies
the inequalities

IZls < IKPIL @)l < IKPRIIF(@)+gllo < | KpliclZlls+IKpllclzls+ I Kpll(d+M)

and hence (29) is true. Since (27) is equivalent to ||[Kp|lc/(1 — [|Kpllc) < dy, the
right-hand side of (29) is less than or equal to d1 ||Z]l« if and only if

”5“5 2 R‘Z-
Hence for ||Z|s > Ry we have
(30) Ells < dallz]ls-

By the assumption (f) the solution z of L(z) = F(¥) + g cannot satisfy [|Zlls > Rs,
(30) and thus (28) and (29) are true. [}
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By virtue of Lemma 4 the proof of the following theorem is similar to that of
Theorem 4.

Theorem 5. If the problem (1), (2) is not regular, the assumptions (a)~(d) of
Lemma 4 hold, further for each g € C® the assumption (e) of that lemma is satisfied
and for each M > 0 and each g € C° satisfying (16) the assumption (f) of Lemma 4
holds, then all statements of Theorem 4 hold.

Consider the BVP (2),
(17) L(z) = f(t,2) + g(t) + h(t,z,7',...,2®)
where f € C([a,b] x R,R), g € C([a,b]), h € C([a.b] x RP*},R), 0<p<n—1. We

show that under simple assumptions on N(L), R(L) Theorem 5 implies the following
theorem.

Theorem 6. Assume that the following conditions are satisfied:

@
N(L) = {z € D(L): z isaconstanton {a,b]},

R(L)={yecC” [ y(z) da = 0};

(ii) there exists a continuous linear operator A: C7 — C° with0 <7 <n—1such
that L — A: D(L) C C"™ — C° is one-to-one;
(iil) there exist constants c,d,é > 0 such that
[ftz)l < dzal +d, [tz zp)| KO fora <t < b, o, 2p01 €R;
(iv)
(31) 2c||Kpll < 1

where || Kp|| is the norm of Kp: R(L) C C° = .C*, s = max(p,7);
(v) fore=1lore=~-1

(32) lim cf(t,x) =oc0, lim ef(t,x) = —oo uniformly int € [a,b}.
T—00 T——00

Then all statements of Theorem 4 hold for the BVP (17'),(2).

Proof. We shall show that all assumptions of Theorem 5 concerning the BVP
(17'), (2) hold and by this theorem Theorem 6 follows. The assumptions (i)-(iii)
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imply that the problem (1), (2) is not regular and the assumptions (a)-(c) of Lemma
4 are satisfied where instead of d we have d + 4. In view of (31) there exists a d;
such that

(33) 0<d <1

and (27) is true. Hence the assumption (d) of Lemma 4 is also fulfilled.

Now with respect to (i) we can choose the projector P(z) = ;== f: z(t)dt, z € C°.
Then P{z) = z for each € D(L) and z(t) = T + #(t), a < t < b. On the basis of
(33), the condition {|Z||s € d1]}x||s implies that |#(t)] < 1}z, @ < t < b and hence

nn

(34) x(t) = (1-dy)x for z > 0 and 2(t) < (1—-dy)x for 2 <0, a <t < b, 2 € D(L).

Suppose further that g satisfies (16). Since F: C? — C° is now determined by the
relation

(26') F(z)=foxz+hox

and eF(Z + &) + eg + kZ € R(L) if and only if

b
/ e[f(t, 2 +2@) + g(t) + h(t, & + (1), ...,aP())] dt + kz(b— a) =0,

on the basis of (34) we get that both conditions (e) and (f) of Lemma 4 will be
satisfied if for all sufficiently great |Z| and k > 0 we have

sign [e (¢, T + Z(t)) + eg + eh(t,z(8), ... L@ () + kT = sign z.

This follows by the boundedness of g, h and (32). The proof is complete. ]

If L(z) = z(™ and the conditions (2) are of the form
(35) (@) —2D(@) =0, i=0,...,n—1,

then the condition (i) is satisfied and 4 = ¢I: C® — C© where ¢ # 0 is sufficiently
small and [ is the identity in C°. Hence r = 0 and thus s = p in conditions (ii) and
(iv), respectively.

Corollary 2. If the conditions (iii), (iv) (with s = p) and (v) of Theorem 6 are
satisfied, then all statements of Theorem 4 hold for the BVP (35),

(36) =™ = f(t,z) + g(t) + h(t,z,....2P).

Remark 5. The operator INp for certain periodic BVP-s is constructed in [9],
[11].
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Consider a special case of (36), (35), namely the BVP (35),
(37) o™ = f(@) + g(t) + h(t, 2)
where f € C(R, R). Similarly as in [2], the results will depend on the fact whether
n is odd or even. We will denote the scalar product and the norm in L?([a, 8], R) by

(.,.) and |||l 2, respectively.

Lemma 5. Suppose thatn = 2m+1,n 2 3, ¢ = 1 ore = —1, f satisfies the

condition

’ i ) = i ) = —
(32") Ilggosf(l) = o0, $k§lwsf(l) 0,
g fulfils (16) and h satisfies
(38) |h(t,z))| < b fora<t<b, 2 €R
with a § > 0. Then the following statements hold:

(1) There exists a constant R > 0 such that each possible solution = of the BVP
(37), (35) where z(t) = T+ &(t), a < t < b, T = bl—ﬂf: z(t) dt, satisfies the

inequalities
(39) el < R,
1 /b—a\""?(b-a\’
illo < & M +6).
(40) o <3 (522) (45%) wr+9)

(2) For each ¢, > 0 sufficiently small there exists an Ry > 0 such that all possible
solutions z(t) = T + Z(t), a <t < b, of (35),

(41) 2 — (1 — weerz = p[f(z) + h(t,2)], O<p<1
satisfy the inequalities

(39" 17 < By

N 1/b—-a\""?/b-a\?
) o<z () (550)
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Proof. 1.Ifzisa possible solution of (37), (35), then, similarly as in Lemma 1,
(2], we gét

)= 2PN, = @, 2) = (Fe()), ') + (9,2} + (Al 2()), o)
and in view of (35), (16), (38) we have
(42) 12|17, < (M + 86 = @) 1o

By Sobolev and Wirtinger inequalities ({12, pp. 216-217),

ne3

b —a)? (b—a\ "7 | an1
@) R S R el P

(42) and (43) imply that

n=3

)0 < 252 (““)W("'“) (M +6)

2 3 2n

and thus

1/2 n-2
<250 (55) 7 (52) wres,
which implies (40).

If (39) were not true, there would exist solutions zx(t) = ) + Zx(t), a < £ < b,
k=1,2,... of (37), (35) such that either 111’20 Z = 00 Or kli_?:o Zx = —o0. Only the
first case will be considered. Then in view of (16), (38), (40) and the first condition
in (38') f(zx(t)) +g(t) + h(t, zx(t)) would be of constant sign for all sufficiently great
k and hence, zi"'l)(b) - r.;‘"_l)(a) # 0. This contradiction with (35) proves (39).
We remark that the contradiction is also attained in the case when 1z, are solutions
of £ = f(z) + gi(t) + h(t,=,...,zP) and all g, satisfy [gx(t)] < M,a <t <b.

2. If we start with (41) instead of (37) and proceed in the same way as above, we
come to the inequality

[CE3, < 86 - a)lie’llo
which now replaces (42). This inequality leads to (40').

If there existed solutions zx(t) = Zx + Zx(t), a <t < b, k = 1,2,... of z(® =
(1—pr)ecrz+pi [ f (2)+h(t, )] with kli'rgo Zi, = 00, then with respect to (38), (40') and
the first condition in (32'), the functions (1 — p)ecizx (8) + i [f (e (t)) + h(t,mk(t)]
would be of constant sign for all sufficiently great k. This again contradicts (35) and
thus (39') is true. Similarly we proceed in the case when kllngo Tk = —00. [m]
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Lemma 6. Suppose that n =2m, n 22, e =1 ors = -1, f satisfies (32') and
the following condition:
There exists 3,0 8 < (ﬁ—“ﬂ)", such that

(44) DM (f() - fw) (v -w) S Bl ~w)?, vweR,
g fulfils (16) and h satisfies (38). Then the following statements hold:

(1) There exists a constant R > 0 such that each possible solution x of the BVP
(37), (35) where z(t) = T+ &(t), a <t < b, = s [ x(t) dt, satisfies the

inequalities
'(45) |zl < R,
. b—a\"\“11/b—a\2/b—a\*2
(46) ”zlbs{l_ﬁ( 2«)) 5( 2 ) (21-. ) (M +34).

(2) For each ¢;, 0 < ¢ < f3, ¢, sufficiently small, there exists an R, > 0 such
that all possible solutions z(t) = £ + £(t), a < t < b of (41), (35) satisfy the
inequalities
(45") |z} < Ri,

b—a\*\~11/b—a\2/b—a\n-2
4 7 _ —
w) < (1-5(550)) 5(50) (B e

Proof. 1. If z is a possible solution of the BVP (37), (35), then, similarly as
in the proof of Lemma 2, [2], we get that

BT, = (-DE ™, 5)
= (-DE(f(()

~ @),z = %) + (-1 (9.8) + (-1 (h(,2()). ).
Then by (44), (16), (38)
(a7 I < Bl + 0 = (3 + &)zl

Again Sobolev and Wirtinger inequalities imply that

) bater < (45:2) " 1o

b—a\? (b—a\T | (s
(49) <3 (552) (52) T 1=l




From (47). (48) and (49) we get

< (-0 (552)) 552 (5)' (52) T e

and further

ny 1 1 2
b—a b-—a (b—a\% (b-a
! 1- —_— =
'Lz < ( ﬂ(zK)) 5 ( > ) (27() (M +6),
which implies (46).
If (45) were not true, then similarly as in the proof of statement 1 in Lemma 5,

the existence of solutions zx(t) = Zx + x(t), a <b, k=1,2,... of (37), (35)
with the property hm I, = oo or luu Tk = —oo in view of (46), 16) (38) would
oo

imply that f(zj (t)) + g(t) + h(t, u(l) ) is of constant sign for all sufficiently great k
and this would lead to a contradiction with (35). Thus (45) is proved.
2. Since 0 < ¢ < B and (z,%) = (%,), each solution z(t) =Z + &(t), a <t < b
of (41), (35) satisfies the inequality
eI <10 - wes + Bz + (- )6zl
< Bz + (b - )izl

which replaces (47). Therefore (46) with M = 0 implies (46'). The inequality (45)
can be proved in the same way as (39’) has been proved. [m]

Remark 6. It is clear that the condition (44) is equivalent to the following
condition: If n = 4m (n = 4m + 2), m > 1, then the function F(z) = f(z) —
(F(z) = f(z) + Bz) is nonincreasing (nondecreasing) in R.

Theorem 7. Suppose thatn 2 2, e = 1 ore = —1, f satisfies (32'), h fulfils
(38) and when n = 2m, there exists 8, 0 < B < ( '2"'“)" such that (44) is satisfied.
Then the statements 1-3 of Theorem 4 hold for the BVP (37), (35). Moreover, if
f € CHR,R) and g'; € C([a,b] x R, R), then also statement 4 of Theorem 4 holds
for that BVP.

Proof. Proceeding in a similar way as in the proof of Theorem 4 we see that
the assumptions (H.1), (H.2) and in the case that f', g—';, are continuous, also (H.4)
of Theorems 4.1 and 4.2, [20], are satisfied. Since the BVP z{™) — eciz = 0, (35), is
regular for all sufficiently small ¢; > 0, the a priori estimates given in Lemmas 5 and
6 imply that also (H.3) and (H.5) are fulfilled. Then the result follows by Theorens

4.1 and 4.2 as well as by Corollary 4.2 in [20]. O
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By Remark 6, Theorem 3 in [19] and Theorem 5.2 in [20], Theorem 7 implies the
following corollary.

Corollary 3. Suppose that n 2 2, e =1 ore = —1, f satisfies (32'), h fulfils (38)
with a positive constant § and that the following conditions are true:

(a) If n = 2m + 1, then the function f(.) + h(t,.) is either nonincreasing in R or
nondecreasing in R for every t € [a,B].

(b) Ifn = 4m, then the function f(.)+h(t,.) is nonincreasing in R for every t € la, b]
and there exists a 3, 0 < 8 < (b"f‘a)n such that the function f(z) — Bz of the
variable z is nonincreasing in R.

(c) If n = 4m — 2, then the function f(.) + h(t,.) is nondecreasing in R for every
t € {a,b] and there exists a 3,0 < B < (52_"1)" such that the function f(z) + fz
of the variable z is nondecreasing in R. Then there exists a closed set R, C C°
such that for each g € C°\ R, the BVP (37), (35) has a unique solution, for each
g € Ry the set S, of all solutions of that BVP is convex and Ry, = Ry, where
Ry C Ry is the set of all g € C° for which the BVP (37), (35) has infinitely
many solutions.

Remark 7. We see that under the assumptions of Corollary 3 the following
alternative holds: Either the BVP (37), (35) has a unique solution or it has infinitely
many solutions, more precisely a nontrivial convex compact set of solutions.
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