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Abstract. The first author and P. Priifer gave an expiicit ciassification of ail Riemannian 
3-manifoids with distinct constant Ricci eigenvalues and satisfying additional geometrical 
conditions. The aim of the present paper is to get the same classification under weaker 
geometrical conditions. 

Keywords: Riemannian manifold, constant principal Ricci curvatures 

MSC 1991: 53C20, 53C21, 53C25, 53C30, 53B20 

1. INTRODUCTION 

The problem of how many Riemannian metrics exist on the open domains of R3 

with prescribed constant Ricci eigenvalues Qx — Qi i^ ftt was completely solved in 
the series of papers [3], [2] and [7], The main existence theorem says that the local 
isometry classes of these metrics are always parametrized by two arbitrary functions 
of one variable. Some nontrivial explicit examples are presented in [3], as well. 

The case of distinct constant Ricci eigenvalues is more interesting. The problem 
of how many local isometry classes of solutions exist was definitely solved only re
cently in [8]. Here the local isometry classes are parametrized by three arbitrary 
functions of two variables. This improves essentially the earlier result by A. Spiro 
and F. Tricerri [9]. The first nontrivial examples have been presented by K. Yamato 
[11], and some others in [4]. Finally, in [5], nontrivial explicit examples have been 
constructed for every choice of the Ricci eigenvalues Qi> Q2> Q3- (All examples in 
[11] are complete Riemannian manifolds but the range of the admissible triplets of 
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Ricci eigenvalues is restricted by certain algebraic inequalities. Outside this range it 
seems that the corresponding metrics must be always incomplete.) In [6] an explicit 
classification was done under some additional geometric conditions, denoted as (Gl), 
(G2) (see below). The aim of the present paper is to show that the second condition 
is a consequence of the first. This is a nontrivial fact which requires detailed analysis 
of the basic system of PDE for the problem. 

R e m a r k . A Riemannian manifold (Jt,g) is said to be curvature homogeneous 
if, for any pair of points p and q of Jt, there is a linear isometry F: TpJt -4 
TqJt between the corresponding tangent spaces such that F"Rq = Rv (where R 
denotes the curvature tensor of type (0,4)), I. M. Singer in 1960 (see [9]) asked the 
question whether there exist curvature homogeneous spaces which are not locally 
homogeneous. The first example was constructed by K. Sekigawa in 1973 (cf. [5], [6] 
and [1] for more details, further development and references). In dimension three, 
a Riemannian manifold is curvature homogeneous if and only if it has constant Ricci 
eigenvalues. The last fact remains the main motivation for our research, as well as 
the unsolved conjecture of Gromov (cf. Introduction in [10]). 

2. T H E BASIC SYSTEM OF PDE FOR THE PROBLEM 

In this section we recall the basic preparatory results from [5] (omitting routine 
computational details) and we draw some simple consequences of them. 

We assume here that (Jt.g) is a Riemannian 3-manifold of class C°° with dis
tinct constant Ricci eigenvalues QI,Q2,83- Choose an open domain % C Jt and 
a smooth orthonormal moving frame {Ei,E2,Es} consisting of the corresponding 
Ricci eigenvectors at each point of "?/. Denoting by R^ki and R^ the corresponding 
components of the curvature tensor and the Ricci tensor respectively, we obtain 

(1) Ri{ = Bi (i = 1,2,3), Rij = 0 for i £ j , 

(2) -R1212 = A3, #1313 = A-2, #2323 = Xt, where A; are constants, 

Rijki = 0 if at least three indices are distinct. 

Moreover, the numbers Â  are connected with the numbers Qi as follows: 

(3) Xi - X} = -(Qi - Bi), i,j = 1,2,3. 

In a neighborhood °l/v of any point p € "?/ one can construct a local coordinate 
system (w,x,y) such that 

(4) E3 = — on %,. 



Consider the orthonormal cofraiue {to1, J2, to3} which is dual to {.Eij.E2.-E3}- Then 
the coordinate expression of the coframe {w1 ,^2 ,^3} in %, must be of the form 

u.-1 = A dw + B dx, 

(5) w2 =Cdw + Dd:v, 

J1 = dy + G dw + H dx, 

where A,B,C,D,G,H are unknown functions to be determined. 
Now, we shall compute the components wj of the connection form. These are 

determined by the standard formulas 

(6) dw' + VjwJAu;-' = 0 , U J J + U J | = 0 , i,j = 1,2,3. 

We put 

(7) w* = ]T<4u/. 
k 

The components flj of the curvature form are determined by the standard formula 

(8) n*- = dwj + V J w | AwJ'. 

Erom (2) we obtain at once 

du>2 + W3 A u>2 = A3W1 A U J 2 , 

(9) dtvf + w2 A wf = A2W1 A u3, 

dwf + Ctif A U)g = Aiw2 A uA 

Differentiating (9) and substituting (9) and (C) in the new equations, we obtain 

(Aj - A3)CJ2 A UJ3 A UJJ + (A3 - X2)to
l Au 3 A u.f = 0, 

(10) ( A S - A ^ U J 1 AuJ2Awf+ (A2-A1)w2Aw3Au>2
1 = 0 , 

(A2 - A1V1 /\to3 hLo\ + (Xx - X3)w
l Au)2Aw1 = 0 . 

Using the notation (7) we obtain, more explicitly, 

(Ai - A3)<4J + (A3 - A2)(-of2) = 0, 

(11) (A3-A2)af3 + ( A 2 - A 1 ) o 1
1 = 0 , 

(A2 - A, )(-<42) + (Ai - A 3 ) 4 J = 0. 



Putting 

( 1 2 ) Q=£z£-!LZ«L 

A3 - A 2 g3 - Q-2 

(where obviously a ^ 0, — 1), we get (11) in the unified form 

(13) aj2 = aoJ„ a,|j = (a + l)a21, a33 = - ( 2 — )a 2 2 . 

Now, we shall calculate the coefficients aljk using only (5) and (C). First we introduce 
new functions V,£,T (where V 7= 0) by 

(14) V = AD- BC, £ = AH - BG, T = CH - DG. 

We also define a bracket of two functions / , g by 

(15) [f,9} = fv9 -My 

Then we obtain, by a routine calculation, 

(16) oj. = ~(GB'y - HA'y + A'x - B'J, a31 = ~(DA'y - CB'y), 

(17) a'2 = ~(GD'y - HC'y + C'x ~~ D'J, «|2 = ±(AD'„ - BC"y), 

(18) al
33 = l(DG'v - CffJ), <j|3 = ~(AH'V - BG^), 

a23 = 7^m D] + [A,B] - [G,H] + (G'x - H'J), 

(19) a§, = i { [ C , D] - [A,B] + [G.iJ] - (G'x - Hi,)}, 

aJ2 = 2^{P> D] - [A B] - [G, //] + (G'x - #,'„)}. 

(In [5], there is a sign misprint in the last formula.) 

Due to (13), we have only six basic coefficient functions, namely 

a31> a21> a22> a23> a31> a32' 

For the sake of brevity we put 

(20) p = a23, q = a31, r = a\2, s = a22, t = a21, « = a31, 
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Now, taking into account the formulas (13), we can rewrite (1C)-(19) as a system of 

partial differential equations 

A'y = Au + C(r~p), 

B'y = Bu + D(r~p), 

C'y = A(p + q) + aCu, 

(21) D'y = B(p + q) + aDu. 

G'y = (a + l)Ct~-±l-As, 

H'y = (a + l)Dv ~ -±±Bs; 

A'x - B'w = Vt + £u + T(r ~ p), 

(22) c'x ~ D'w = Ds + £(p + q) + aTu, 

G'x - H'w = V(r - q) - -±±£s + (a + l)Tt. 

Next, we express explicitly the conditions (9) for the curvature components. After 

lengthy but routine calculations we obtain the following system of partial differential 

equations (which is again re-arranged in two parts and in which the formulas (13) 

are used): 

At'y + Cs'y + Gp'y - p'u: - AS -CT = 0, 

Bt'y + Ds'y + Hp'y - p'x - BS -CT = 0, 

(23) 
Au' + Cr' - ~±±Gs' + -±±s'w - A(N - m) ~CP = 0, J " a J a 

Bu' + Dr' - -±1HS' + ~±ls'x - B(N - m) ~DP = 0. J J a J a 

Aq'y + aCu'y + (a + \)Gt'y - (a + 1 ) 4 - AK ~ C(L - I) = 0, 

Bq' + aDu' + (a + \)Ht'y ~ (a + l)t'x - BK - D(L - I) = 0; 

Aťx - Bťw + Cs'x - Ds'w + Gp'x - Hp'w ~ V(R - n) - £S - TT = 0, 

Au' - BuL + Cr'x ~ DrĹ ~ ^±ІGs'v + -±±Hs'w a ' a 
(24) -VM - £(N - m) - TP = 0, 

Aq'x - Bq'w + aCu'x - ~Du'w + (o + ľ)Gťx - (a + \)Ht'w 

-VJ - £K - T(L ~l)=0. 



Here nine auxiliary functions are defined by 

J = atq- (a - l)su - (a + 2)tr, 

K _ {°+m°+nts - (Q + i)uq - ( a _ i ) u p i 

_ = 2 ± i s
2 - (a + l)2 t2 - a V + pg - rq + rp, 

M = ±sr + (a ~ l)tu - ^ - s g , 

(25) A? = (a + l)t2 - u2 - - ^ V - pq -pr- qr, 

P = (l- a)pu - (a + l )ru + - ^ ± ' » a + 1 ^ s , 

R = — 42 — s2 - au2 +pq + qr - pr, 

S = -sp- (a + 2)tu - ^ s q , 

T = -atp - (a + 2)tr - (2a + l)su 

and three constants l,m,n are defined by 

(26) / = A l t m = A2, n = A3. 

In the new notation, (12) takes on the form 

(27) a = (l-n)/(n-m). 

3 . A SPECIAL CLASSIFICATION THEOREM 

Let now Ey (7 = 1,2,3) be one of the vector fields consisting of unit Ricci eigen

vectors and consider the following geometrical conditions: 

(Gl) The connection coefficients a)k = g(VEkEj,Ei) are constant along the tra

jectories of jE-p i.e. Ey(djk) = 0. 

(G2) The local group of local diffeomorphisms defined by E-f is volume-preserving, 
i.e. div Ey = 0. 

Here we can assume, without loss of generality, that E7 = £3. This simplifies the 

calculations according to (4). From the condition (Gl) we get at once 

(28) a)k=a)k(w,x) (l^i,j,k^3), 
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i.e., all functions (20) depend only on w and x. Then the system (23) of PDE is 

reduced to 

p'w + AS + CT-0 

p'x + BS + CT = o 

-±-s'w - A(N - m) - OP = 0 

-^•s'x - B(N - m) - DP = 0 

(a + 1 ) 4 + AK + C(L - I) = 0 

(a + 1)4 + BK + D(L - 0 = 0 

Using (13) and the definition of the functions <x1

jk we get 

(29) 

(30) div E'І = Y1 aҺ = ^1 + a ^ " w • 
and hence the condition (G2) means 

(31) u -a\i=0 on %. 

The following theorem was been proved in [6] (here we keep the original notation for 

the curvatures A,): 

Theorem 3.1. Let (yft,<j) be a C°°-Jiieinannian manifold of dimension three 

with distinct constant Ricci eigenavalues. lf(J(,g) satisfies the conditions (Gl) and 

(G2) (with 7 = 3) in a neighbourhood of each point p £ ^//, then there is a dense 

open subset f/ C J( such that, for some neighbourhood Yq of any point q € "^, one 

of the following three cases (i)-(iii) occurs: 

(i) (.'%,g) restricted to Yq is locally isometric to a 3-dimensional Lie group with 

a left-invariant metric. 

(ii) (J(, g) restricted to Yq is locally isometric to a generalized Yamato space. 

This means that the adapted orthonormal coframe {LO1 ,w2 ,LO3} is given with respect 

to an adapted system (w,x,y) of local coordinates by the formulas (5) and 

A = C(tp3-ipi)y + AQ, 

B - D(V3 ~ <Pi)y + Bo, 

(v>i)I» 
c = 

D = 

(аџ>, + (а + 2)ҶPЗ)Ç>.,' 

(afi +(a + 2)Lp-i)ifo' 

G = (a + l)Cíp2y + G0. 

H = (a + l)D<p2y + H0. 



where y?i is an arbitrary non-constant smooth function on U2[w,x], <pi(w,x) ^ 0, 

and tiie functions <p2,<p3 axe defined by 

(a + l)(<p2)
2 + (<px)

2 = A2, -a<pi<p3 = (a + l)A3 +A2 , <p2(w,x) > 0. 

(Mind a misprint in [6] and [1].) 
further, Ao, B0, Go and H0 are any smooth functions of w and x satisfying the 

partial differential equations 

(A0)'x - (B0)'w = (DA0 - CB0)<P2 + (DG0 - CH0)(<pi - <p3), 

(GQ)'X - (H0)'w = (DA0 - CB0)(<Pi + <p3) - (a + 1)(DG0 - CH0)<p2. 

(iii) (-#,(/) restricted to % has, in an adapted system of local coordinates, the 
following form: an orthonormal coframe {ui1,^;2,^3} is again defined by (5) and 

A = A(w,x), B = B(w,x), C = <pAy + C0, D = <pBy + D0, 

G=l(a + l)y^xl<pAy2 + (a + ^yf^sCoy + Go, 

H = \(a + l)<J^h<pBy2 + (a + 1) v l - ^ D o y + H0, 

where A, B, C0, D0, Go, H0, <p are arbitrary smooth functions ofw and x satisfying 
the system of quasilinear partial differential equations 

A'x - B'w = y/^\3(AD0 - BC0), 

(Co); - (D0)'w = <p(AH0 - BG0), 

(Go); - (H0)'w = -<p(AD0 - BCo) + (a + \)v
r^\3(CoH0 - D0G0), 

A<p'x - B<p'w = a\/-X3<p(AD0 - BC0). 

Here tp = <p(w,x) is a non-constant function, and the equality AxA3 = (A2)
2 and the 

inequalities Aj < 0 and A3 < 0 must be satisfied. 

The spaces in the items (i) (iii) are never locally isometric to each other; in 

particular, the cases (ii) and (iii) are never locally homogeneous. 

R e m a r k 3.2. It follows from the considerations in [6] that the converse of 
Theorem 3.1 also holds, i.e., all spaces of types (i), (ii), (iii) satisfy both conditions 
(Gl) and (G2) for some 7 € {1,2,3}. In particular, we have (see [6], Remark 1.3 
and 1.2): 

Proposition 3.3. A locally homogeneous Riemannian 3-manifold with distinct 

Ricci eigenvalues satisfies the condition (G2) for some 7 e {1,2,3}. It belongs to 

type (i) of Theorem 3.1. 
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Proposition 3.4. A Riemannian 3-manifold (y//, g) with distinct constant Ricci 
eigenvalues is locally homogeneous if and only if all connection coefficients a%:k are 
constant (i.e., (Gl) holds simultaneously for 7 = 1,2,3). 

4. THE MAIN RESULT 

In the rest of this paper we will prove the following 

Theorem 4.1 . Let (JZ,g) be a Riemannian 3-manifold with distinct constant 
Ricci eigenvalues satisfying the condition (Gl) for 7 = 3. Tiien (~/M, g) satisfies both 
conditions (Gl) and (G2) for some 7 e {1,2,3}. 

P r o o f . The proof will be decomposed in a number of steps which are presented 
in the subsequent sections. We always suppose that (J/,g) is a 3-manifold with 
distinct constant Ricci eigenvalues and satisfying (Gl) for 7 = 3. Our investigation 
will be always local and, therefore, we will be using all formulas and notation from 
the previous sections. As in [6], we will limit ourselves to a dense open subset °// of 
J( with the following property: for each "basic function" involved, the value of such 
function at p 6 % is either nonzero or the function vanishes in a neighbourhood of p. 
Because the number of "basic functions" involved in the whole procedure is finite, we 
see that the set % is indeed open and dense. By the continuity, it suffices to prove 
the property (G2) on <.V. A typical argument proceeds as follows: if (G2) is not 
satisfied for 7 = 3, i.e., if u ^ 0 in some neighbourhood due to (31), then the space 
is locally homogeneous in this neighbourhood. Hence, according to Propositions 3.3 
and 3.4, the conditions (Gl) and (G2) are satisfied for 7 = 1 or 7 = 2. D 

5. T H E CLASSIFICATION OF POTENTIAL SOLUTIONS 

We start with 

Proposition 5.1. If (Gl) holds on (J/,g), then the functions A, B,C,D from 
(5) satisfy the same partial differential equation 

(32) / ^ - 2 w / ; + p / = 0 

where 

(33) u=\(l + a)u, n = ctu2 + (p - r)(p + q) 

are coefficients not depending on y. 



P r o o f. It follows by a routine calculation from the first four equations of (21). 
D 

Propos i t ion 5.2. For the characteristic roots of the equation (32), we have the 
following cases: 

(i) Elliptic case: u>2 — p < 0. Then each solution of (32) has the form 

(34) / = ew»(h cos(<py) + h Mw)) 

where / j , h are functions ofw, :r only and 

(35) ip = \fp-up. 

(ii) General hyperbolic case: u>2 — /» > 0, p ^ 0. Then each solution of (32) has 
the foi'tn 

(36) / = / l e " " " +/ae-™ 

where u>i 5̂  0)3 and u)i 7̂  0, u>-z ^ 0 depend only on w and x. 
(iii) Special hyperbolic case: u> ^ 0,p = 0. Then each soJution of (32) has the 

form 

(37) / = / , + h^y-

(iv) Parabolic case: u>2 — u = 0,w ^ 0. Then each soJutiojj of (32) has the form 

(38) / = e-»(/, + /2y). 

(v) PJanar case: u> = p = 0. Then each soJution of (32) has the form 

(39) / = h + /2y-

P r o o f . Obvious. D 

Now we see from (33) that the planar case implies u = 0, i.e., d iv£ 3 = 0. This 
case is settled in Theorem 3.1. Similarly, we can exclude the equality u> = 0 (i.e.. 
u = 0) in the cases (i) and (ii). Now, we shall prove the following 

Propos i t ion 5.3. In the cases (i), (ii) and (iv), if u> / 0 and the corresponding 

metric g exists, it must be locally homogeneous. 



P r o o f . Substitute the corresponding expressions (34) or (36) or (38) for the 
functions A, B, C, D in the system of equations (29). An obvious argument using 
the inequality V = AD - BC ± 0 implies 

(40) p'w = p'x = $'w = s'x = t'w = t!r = 0 , 

(41) K = L-l = N-m = P = S = T = 0. 

From (40) it follows that p, s and t. are constants. Then the first, equation (24) gives, 
in addition, 

(42) R-n = 0, 

Writing the algebraic equations (41), (42) explicitly according to the definition for
mulas (25), we obtain (substituting here for the moment X := q, Y := r and Z := u) 

i=±iii=±2lts -(a- l)pZ - (a + 1)XZ = 0, 

-I + t—s2 - (a + lj2t2 + p(X + Y)- XY - a2Z2 = 0, 

-m - ^£-s2 + (a + l)t2 - p(X + Y) - XY - Z2 = 0, 

(43) __±i l___i t s + (i _ a)pZ - (a + 1)YZ = 0, 

-n - s2 - i2 + p(X - Y) + XY - aZ2 = 0, 

h)s ~ — ^ s ^ - (a + 2)tZ = 0, 
-apt - (a + 2)tY - (2a + l)sZ = 0. 

Our next goal is to get explicit expressions for X, Y, Z through the other quantities 
which are already constants. We will denote the corresponding equations in (43) by 
(E1)-(E7) whenever it will be convenient. Now, we proceed as follows: express 
Z2 from the equation (E3) + (E5), express XY from the equation Q ( E 3 ) - ( E 5 ) and 
substitute for Z2 and XY into (E2). We obtain 

(44) 2apX + 2a2pY + 2(a2 + a + l)(s2 - at2) + a2(m + n) - a(n + 0 = 0. 

Now, (EG), (E7) and (44) is a system of linear equations for X, Y and Z whose 
determinant is, up to a nonzero factor, equal to 

(45) p((a + 2)2t2 + (2a + 1 )V) . 

If this determinant is nonzero, then X, Y, Z can be expressed explicitly as rational 
functions of p, s, t, m, I, n, a and hence they are constant. According to Proposi
tion 3.4, the corresponding space (if it exists) is locally homogeneous in a neighbour
hood and we are finished. 
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Let now p = 0 in (45). Then the system of equations (43) can be simplified to the 
form 

i^+^+Hts - (a + 1)XZ = 0, 

-I + 2+_,s* - (a + Iff - XY - a2Z2 = 0, 

_ m _ <_i±>ls
2 + ( a + l)t2 - XY - Z2 = 0, 

(46) Qz±ni2±llts _ ( a + 1 ) y ^ = o, 

- n - s2 - t2 + XY - aZ2 = 0, 

^i2s±llsx - (a + 2)tZ = 0, 

- ( a + 2)tY - (2a + l)sZ = 0. 

If (a + 2)t ^ 0, then the equation (E6) shows that (2a + \)s ± 0 (otherwise Z = 0, 
a contradiction). Then ._ and Y can be expressed from (E6) and (E7) as nonzero 
constant multiples of X, Substituting in (E4) for YZ we see that X is a constant 
and hence Y and Z are also constants. If (2a + \)s / 0, then the equation (E7) 
shows that (a + 2)i =£ 0 and we get the same conclusion. 

Suppose now (a + 2)t = (2a + l)s = 0 and p arbitrary. Then the equations (El) 
and (E4) from (43) can be written in the form 

Z((a + l)X + (a-\)p) = 0, 
(47) 

Z((a + l)Y + (a-l)p)=0. 

Hence, because Z / 0, X and Y are constants. Then Z is also constant, as follows 
from (E3). 

This obviously concludes the proof of Proposition 5.3. D 

6. T H E SPECIAL HYPERBOLIC CASE 

This is the only remaining (and most difficult) case. According to (37) we have 

A = Ax + A2e
2wy, 

B = Bl+B2e
2^, 

•C = d+C2e
2"\ 

D = D1+D2e
2uy, 



(49) 

(50) 

where Aiy B,, C;, Di are functions of w and 2' only. Substituting in (29), we obtain 
a system of 12 equations which are divided into two series: 

A2S + C2T = 0, 

B2S + D2T = 0, 

A2(N - m) + C2P = 0, 

B2(N -m)+D2P = 0, 

A2K + C2(L-l) = 0, 

B2K + D2(L - I) = 0, 

p'v, + AiS + Ci'T = 0, 

p'x+BxS + DiT-Q, 

-s±i.s'„, + AX(N - 77i) + C{P = 0, 

-a±i.s;,; + Bi(N - m) + DiP = 0, 

(a + 1 ) 4 + AJi + C\(L - 0 = 0, 

(a + 1)4 + BiK + Di(L - 0 = 0. 

Now, substituting from (48) in the first four differential equations (21), we obtain 
the following algebraic conditions for the coefficients .4,-, B;, C;, D;: 

uAi+(r-p)d=0, 

uBi + (r - p)Di = 0, 

(p + q)Ai + auCi = 0, 

(p + q)Bi + auDi = 0, 

auA2 + (p- r)C2 = 0, 

(52) auB2 + (P-r)D2=0, 

(p + q)A2-uC2=0, 

(p + q)B2-uD2 = 0. 

These conditions are not linearly independent because, in the special hyperbolic case, 

(53) u = au2 + (p-r)(p + q)=0. 

Hence u> ^ 0 implies 

(54) u^0, p-r =£0, p + q + 0. 



Then the conditions (51), (52) are equivalent to the formulas 

rc M r - uAl r> - uBl r - ouA'2 n - auBz 

(ojj O). — , D\ = —•—, G2 — , V2 = —. 
p — r p — r r — p r — p 

Hence we see that one can never have A\ = B\ = 0, or A2 = B2 = 0. Indeed, using 
(48) we obtain in each case V = AD - BC = 0, which is a contradiction. 

In particular, substituting from (55) into (49) we get 

(r - p)S + auT = 0, 

(56) (r - p)(N - m) + auP = 0, 

(r - p)K + au(L - I) = 0. 

Using (56) and (55), we can rewrite (50) in the form 

ap'w + (a + 1)SA\ = 0, 

ap'x + (a + l)SB\ = 0, 

s' - (N - m)A\ = 0, 
(57) 

s'x- (N - m)B\ = 0, 

at'w + KA\ = 0, 

at'x + KB\ = 0. 

Next, we integrate the last two equations of (21) using the expressions (48). We get, 
using also (55), 

( 5 8 ) G=Gl+-±iAl (J_±_XJ_
AI(^+sy-

a \p-r J au\p-r ) 
(59) H = H\ + -±lBl (--±-a)y-Bl(-^L + *)<?»». 

a \p-r ) au\p-r I 

Here G\ and H\ are new functions of the variables to, x. 

The equations (21) are thus completely solved by the formulas (48), (58), (59) 
together with (55). The functions A\, A2,B\,B2, G\, H\ remain arbitrary functions 
of two variables w, x with the only inequality A\B2 - A2B\ 5̂  0 (see formula (61) 
below). 

Introduce new determinant functions 

(60) U = A\B2 - A2B\, V = A\H\ - B\G\, W = A2H\ - B2G\. 
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Then we can calculate the determinant functions from (14) as follows: 

(a + l)Uue2^' 

r-p 
(61) V = 

(62) e = v+\w- &<* + <P->-W]eto, + ^±DIL{(j} _ r)s _ aut)y^, 
[ auSj) - r) J a(p - r) 

(63) 
_ uV _ \auW (a2ut + (p-r)s)U'\ 2u!y (a + l)u(aut - (p - r)s)U ^ 
~ p-r [p-r a(p-r)2 y (p-r)2 'Ji' 

Now, let us substitute in the first equation (22) from (48), (58), (59), (60)-(63). 
We hence obtain three equations which are independent of y, namely 

(64) [A1)'t-(B1yw=0, 

(65) (A2)'x-(B2y„+
{a + 1)utU-(a + l)UW = 0, 

p-r 
(66) ci(A2u'x - B2u'w)(p - r) + (a + l)u(atu -(p- r)s)U - 0. 

Similarly, substitute in the second equation (22). We obtain only two additional 
equations, namely 

(67) ( C J ) i - ( D i ) r a = 0, 

(68) (C2)'x - (D2)'w = (a + l)(au2W + usU)/(r ~ p). 

Now, (67), (55) and (64) imply 

(69) " l^J,-Bl^J„-°-
Further, (68), (55) and (65) imply 

(70) A2(^-\ -B2(-^-X =t±l)2±^Zl}f}R. 
\p-rjx \p-rjw a(p-r)2 

Next, we shall need 

Proposi t ion 6.1. For each function / 6 {p,q,r,s,t,u} we have 

(71) A1f't-Bifi = 0. 

Hence the functions p, q, r, s, t, u are functionally dependent. 



P r o o f . From (57) we obtain 

(72) Aip'x - Bip'w = 0, Axs'x - Bxs'w = 0, Ast'x - Bxt'w = 0. 

Moreover, the integrability condition for the last two pairs of equations (57) can be 
written, using also (64), in the form 

(73) AxN'x - BxN'w = 0, AXK'X - BXK'W = 0. 

Now, let us introduce new functions 

(74) Y = p + q, Z=p-r, F = u/Z. 

According to (54), all three functions are nonzero. From (53) we get au2 + YZ = 0 
and hence we can express 

(75) u = FZ, Y = -aF2Z. 

The six unknown functions p, q, r, s, t, u are now reduced to five unknown functions 
F, Z, p, s, t on the account of the identity (53). 

The equation (69) now reads 

(76) AxFx~BxFw = 0. 

If we write down the equations (73) explicitly (using the definition formulas (25)), 
we can still simplify them by the identities (72). Next, using the substitutions (74), 
(75) and the identity (76), we are left with the following two equations: 

(ap-(a + l)Z)(A1Z'x-B1Z'w)=0, 

(p+a(a + l)ZF2)(AxZx-BiZ'w)=0. 

An obvious linear combination gives 

(78) (a + l)Z{l + aiF2)(A1Z'x-BlZ'w) = 0 

and, because the coefficient is nonzero, we obtain 

(79) AxZ'x-BxZ'w=0. 

Proposition 6.1 now follows from (72), (76), (79) and the transformation formulas 
(74), (75). D 



Our next goal is to express explicitly the derivatives of the basic functions p, q, 

r, s, t, u. We will again take advantage of the transformation formulas (74), (75). 

First, using (70), (76) and Cramer's rule, we obtain 

K = ~^(aFt + s)FAu 

F!l: = -s^-(aFt + s)FBu 

Next, the equation (66) can be written in the form 

(81) aZ(A2u'x - B2u'J + (a + l)EUu = 0, 

where 

(82) E = atu- Zs. 

Substituting u ~ FZ into (81) and then using (80), we get easily 

(83) A2Z'X - B2Z'W = - 2 ( a + l)FZtU. 

Using (79),(83) and Cramer's rule, we get 

Z'=2(a + l)FZtAi, 
(84) 

Z'x = 2(a + l)FZtBu 

Now, we summarize the formulas (57), (80), (84) and come back to our original 

functions by the transformation formulas (74), (75). After a routine calculation we 

finally get 

_ _ l 2 ± _ S ^ 1 ) P ; _ _ _ ± _ S i ? l i 

= (JV - m)Au s'x = (N- m)Bu 

_ KAi tl _ KB\ 

= s ± l ( 5 - 2w(p + q))Au q'x = 2±i (S - 2w(p + q))Bu 

= -s~(S + 2aut)Al, r'x = -^(S + 2aut)Bu 

= ^^uEAi, u'x = 1$±)uEBu 

Up to now, we have not investigated the differential equations (24) and the last 

equation (22). Substituting in the last equation (22) from (58), (59), (61)-(63), 

(64), (65) and (85), we obtain after a lengthy but routine computation the only new 

condition 

(85) 

(Gi)I - {Hгt = ~ 
(a + l)EV 

a(p — r) 



(88-2) 

Substituting in the first equation of (24), we obtain a new algebraic equation 

(87) (a + 1)(R - n) + a(N - m) + (L - I) = 0. 

A careful check shows that there are no new consequences of the system (24). We 
can summarize: 

Proposition 6.2. In the special hyperbolic case the basic system of partial 
differential equations (21)-(24) is equivalent to the formulas (48), (58), (59), the 
system of five algebraic equations (53), (56), (87) and the system of partial differential 
equations (64), (65), (85) and (86) for the functions of two variables. 

We shall express the algebraic equations (56) and (87) in the new variables F, Z, 
p, s, t (eliminating hence the equation (53)). We obtain four equations 

(88-1) a((2a + l)Fs - (a + 2)t)FZ + 2p(a2tF + s) = 0, 

a2(a + 1)2F2Z2 - 2a3(a + l)pF2Z + a2(2a + l)(a + l)tsF 

- a2p2 + (a + 1 ) V - a2(a + l)t2 + a2m = 0, 

a2(a + 1)2F3Z2 + 2a(a + l)pFZ 

+ a(a(a + l)2t2 - ap2 - (a + l)s2 - a2m + a(a + l)n)F 

+ (a + l)(a + 2)ts = 0, 

(88-4) a(a + 1)F2Z2 + ap(F2 - 1)Z + (a + l)(p2 + s2 + t2 + n) = 0. 

In the last two equations we have expressed the parameter I from the formula (27) 
through a, m and n. 

Now, we continue with 

Proposi t ion 6.3. Ifp = constant on an open domain"/'' C J( then the functions 
q, r, s, t, u are also constant in Y and the corresponding metric g on Y (if it exists) 
is locally homogeneous. 

P r o o f . From (56) and (57) we see that S = T = 0 in f. In the auxiliary 
variables F, Z, p, s, t it means that 

(89) ((2a + l)Fs-(a + 2)t)FZ+'2^^sp = 0, 

((2a + l)Fs - (a + 2)t)Z + 2(a + l)tp = 0. 

This automatically satisfies the equation (88-1). Taking suitable linear combinations 
of the equations (89) we obtain 

(90) p(s - aFt) = 0, (s - aFt) ((2a + l)Fs - (a + 2)t) = 0. 
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At each point x £ V we obtain either 

(i) s - aFt = 0, 
or 

(ii) p = 0 and (2a + l)Fs - (a + 2)t = 0. 

In the first case (i) we make the substitution s = aFt in the second equation of 
(89). We get 

(91) t[((2a + l)aF2 - (a + 2))Z + 2(a + l)p] = 0. 

Let first t = 0 and hence s = 0. We substitute t — s = 0 in the equations (88-2) and 
(88-3). The new equations are equivalent to 

(92) (a + lfF2Z2 - 2a(a + \)pF2Z - p2 + m = 0, 

a ( a + l)2F2Z2 + 2(a + l)pZ + a2(n - m) - ap2 + an = 0. 

The resultant equation of (92) with respect to the variable F2 gives 

(93) 2 ( a + l ) 2 ^ 2 + (a(a+l) 2 (?? , -?? i ) -4a(a+l)p 2 )2+2a 2 (p 2 +am-(a+l)n)p = 0. 

Because n - m ^ 0, either the coefficient of Z2 or the coefficient of Z is nonzero 
and Z must be a constant. From the second equation of (92) we see that also F is 
a constant. 

Let now t =fi 0, then (91) implies 

(94) (2a + l)aF2Z - (a + 2)Z + 2(a + l)p = 0. 

Making the substitution s = aFt into (88-2) and (88-3) we obtain 

(a + 1)2F3Z2 - 2a(a + l)pF2Z + (2a2 + 2a + l ) (a + l)t2F2 

- (a + l)t2 - p2 + m = 0, 

a(a + 1)2F2Z2 + 2(a + \)pZ - a2(a + l)t2F2 

+ (a + l )(a2 + 2a + 2)f2 + a2(n - m) + a(n - p2) = 0. 

Next we calculate the resultant R\ of (94) and (95) with respect to the variable 
F2 and the resultant R2 of (94) and (96) with respect to the same variable. Finally, 
we calculate the resultant equation of the equations Ri = 0 and R2 = 0 with respect 
to the variable t2. We obtain 

(a-l)2pZ2+[(2a + l)(a2 + a + l)(n-m) + 2(a-l)p2]Z 

+ (2a + 1) [2o2???. - (2a2 + 2a + l)n]p + p3 ~ 0. 



We see again that either the coefficient of Z2 or the coefficient of Z is nonzero unless 
2a + 1 = 0,p = 0. In the last case the equations (89) show that t = 0, which is 
a contradiction. We see again that Z = const and F = const in the corresponding 
domain. 

Now, let us discuss the second case (ii). First, suppose that a + 2 = 0, which 
implies s = 0. Substituting a = -2, s = p = 0 in (88-2) and (88-3), we obtain at 
once a contradiction with the inequality i i - m ^ O . 

Let now a + 2^0 and let us make the substitutions p = 0, t = (2a + l)Fs/(a + 2) 
into (88-2) and (88-3). A simple elimination shows again a contradiction with the 
inequality n - m ^ 0. We see that the functions F,Z,p,s,t are constants in "V and 
hence, passing over to the original variables, and using Proposition 3.4, we conclude 
the proof of Proposition 6.3. D 

As a consequence we obtain 

Proposition 6.4. Let (Jl, g) be not locally homogeneous on any open subset. 

Then F, Z, s and t are functions ofp on a dense open subset "?/ C y//. 

P r o o f . Due to Proposition 6.3, p is not constant on any open subset of M. Then 
on a dense open subset ^ of .//( the derivatives p'w and p'x are not simultaneously 
zero. According to Proposition 6.1 and its proof, the functions F, Z, s and t must 
be on "?/ smooth functions of p (see a classical theorem from analysis). D 

From (85) we now obtain the following formulas: 

,, ~a(N -m) 

F'(p) = 

(a + l)S ' 
(atF + s)F 

Here we know that S ^ 0 on ^/ because otherwise (57) implies p'w = p'x = 0, 
a contradiction. D 

Now, we shall consider the equations (88-l)-(88-4) as algebraic equations in which 
p is an independent variable and F, Z, s, t are functions ofp. After differentiation 
with respect to p we substitute for the derivatives from the formulas (98). 

64 



(99-1) 

(99-2) 

We obtain the following equations: 

o3(o2 - 1)F4Z3 - 2a 2 (a 3 F 2 + V)pF2Z2 

+ ([- a3(a + l)(a - l)t2 - a3(2o + l)p2 

+ a(2a + l)(3(a + l)2s2 + a2m)]F2 

-2as(a + l)(a + 2)2tF)Z 

- 2a4(a + l)pt2F2 + 4a2(a + l)(2a + VjpstF 

- 2 [ o V + a 2(o + l)t2 - 3(a + l ) 2s 2 - a2m]p = 0, 

a2(a + 1) [a2(2a + l)sF2 + a2tF - 2(a + lfs]F2Z2 

- 2a3 [a2tF2 - 4(a + l ) 2 sF + at]pFZ 

+ al(a + l)(2a + l)si2F2 

- a2 [ - a2(a + l)(2a - l)t2 - a2(2o - l)p2 

+ (a + l)2(6o + l )s 2 + a2(2a - l)m]t,F 

- 2(a + 1) [(a + 1 ) V + a2m - o2(2a + 3)«2 - 3a2p2]s = 0, 

a2(a + 1)[a2(a + l)tF2 - (3a2 + 6a + 4)sF + (a + 2)t]F2Z2 

+ 2a[a2sF2 + a2(a + l)tF - (3a2 + 6a + 4)s]pFZ 

- a3 [ - a (a + l)2*2 + ap2 + (a + l)s2 + a2m - a (a + l)n]tF2 

+ a[(a + l)(3o + 2)s2 - a 2 (a + l)(3a + 7)t2 + a(4 + 3a)p2 

+ a 2 (a + 2)m - a 2 (a + l)n]sF 

+ (a + 2)[a2(a + l)t2 - (a + l)(2a + 3)s2 + a2p2 - a2m]t = 0, 

a2 [(2a + l)sF3 - a(2a + l ) tF 2 + (2a + 3)sF + (a + 2)t]FZ2 

(99-4) + 2a[(5a + 2)sF2 - ZatF - (a + l)s]pZ 

+ 2[(a + l ) 2s 2 + (a2 + 4a + 2)p2 - (a + l)2(o - 2)t2 + a2m]s = 0. 

Now, repeating the resultant operation more times one can see that the formulas 
(99-1), (99-2) and (99-3) are algebraic consequences of (88-1), (88-2) and (88-3). On 
the other hand, the five equations (88-l)-(88-4) and (99-4) form an algebraically 
independent system (for any admissible choice of the parameters a,m and n). In 
other words, the functions F, Z, p, s, t are constant in the neighbourhood of any 
generic point of (J{,g). According to Proposition 3.4, such a Riemannian manifold, 
if it exists, must be locally homogeneous. This concludes the proof of Theorem 4.1. 

Let us mention that the final procedure yields rather long formulas (for which 
a computer assistance and the Maple software was used). We do not reproduce these 
formulas in full to keep this article in reasonable limits. 
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