Mathematic Bohemia

Radomír Halaš

Congruences and ideals on left divisible involutory groupoids

Mathematica Bohemica, Vol. 121 (1996), No. 3, 269-272

Persistent URL: http://dml.cz/dmlcz/125991

Terms of use:

(C) Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

CONGRUENCES AND IDEALS ON LEFT DIVISIBLE INVOLUTORY GROUPOIDS

Radomír Halaš, Olomouc
(Received May 10, 1995)

Summary. In [1] ideals and congruences on semiloops were investigated. The aim of this paper is to generalize results obtained for semiloops to the case of left divisible involutory groupoids.

Keywords: ideal, congruence, left divisible involutory groupoid
AMS classification: 08A30, 08B99

The concept of a semiloop was introduced in [1]: An algebra $\mathcal{A}=(A, \backslash, \cdot, e)$ of type $(2,2,0)$ is called a semiloop if it satisfies the identitites

$$
\begin{aligned}
x \backslash x & =e, \\
x \cdot(x \backslash y) & =y, \\
x \backslash(x \cdot y) & =y .
\end{aligned}
$$

In other words, semiloops are just right uniquely divisible groupoids with a right unit e. Of course, there exist semiloops which are not loops, see [1]. It was also shown that the variety \mathcal{S} of all semiloops is congruence-permutable and congruence regular.

The concept of an ideal in an algebra with a nullary operation e was introduced in [4] and intensively studied by A. Ursini and H. P. Gumm in [3]. Recall that an $(n+m)$-ary term $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ of an algebra \mathcal{A} with a nullary operation e is called an ideal term in y_{1}, \ldots, y_{m} if $p\left(x_{1}, \ldots, x_{n}, e, \ldots, e\right)=e$ is an identity in \mathcal{A}. A subset I of A is called an ideal of \mathcal{A} if for any ideal term $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ in y_{1}, \ldots, y_{m} and for every $a_{1}, \ldots, a_{n} \in A, b_{1}, \ldots, b_{m} \in I$ we have $p\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \in I$. An algebra \mathcal{A} is said to be ideal determined if
every ideal I of \mathcal{A} is a kernel of a unique conguence $\Theta_{I} \in \operatorname{Con} \mathcal{A}$, i.e. $I=[e]_{\Theta_{I}}$. A variety \mathcal{V} is called ideal determined if each $\mathcal{A} \in \mathcal{V}$ has this property.

Let us remark that for any $\Theta \in \operatorname{Con} \mathcal{A},[e]_{\Theta}$ is an ideal of \mathcal{A}. Moreover, the set of all ideal terms of \mathcal{A} forms a clone $\operatorname{IT}(\mathcal{A})$. We have either $\operatorname{IT}(\mathcal{A})=\{e\}$, the trivial case, or $\operatorname{IT}(\mathcal{A})$ is infinite. If the clone $\operatorname{IT}(\mathcal{A})$ has a finite base, \mathcal{A} is said to have a good theory of ideals, see [4].

It was also shown in [1] that every semiloop is ideal determined and has a good theory of ideals. Moreover, [1] contains the explicit description of the 4 -element base of $\operatorname{IT}(\mathcal{A})$ for $\mathcal{A} \in \mathcal{S}$.

However, some considerations on groupoids have suggested that some properties of semiloops are superfluous for such a good congruence and ideal properties. So we try to weaken the properties of semiloops to obtain a simpler case of groupoids which still satisfy these conditions. Our work can be regarded as a way to obtain the essence of congruence and ideal properties.

Definition. Let $\mathcal{A}=(A, \backslash, \cdot, e)$ be an algebra of type $(2,2,0) . \mathcal{A}$ is called a left divisible involutory groupoid if the following identities hold in \mathcal{A} :

$$
\begin{array}{r}
x \cdot(x \backslash y)=y \\
x \backslash x=e
\end{array}
$$

Evidently, every loop or semiloop is a left divisible involutory groupoid but not vice versa. Denote by LDIG the variety of all left divisible involutory groupoids.

Now we can list some important congruence properties of varieties of LDIG. Recall that an algebra \mathcal{A} with a nullary operation e is called e-regular if $\Theta=\Phi$ for each $\Theta, \Phi \in \operatorname{Con} \mathcal{A}$ whenever $[e]_{\Theta}=[e]_{\Phi} . \mathcal{A}$ is called e-permutable if $[e]_{\Theta \circ \Phi}=[e]_{\Phi \circ \Theta}$ for each $\Theta, \Phi \in \operatorname{Con} \mathcal{A}$.

In [3] it has been proved that a variety \mathcal{V} with a nullary operation e is ideal determined if and only if it is e-regular and e-permutable.

Proposition 1. The variety of all LDIG is e-permutable and e-regular, so it is ideal determined.

Proof. It is a straightforward consequence of ideal determination of the variety of all semiloops.

In what follows we will give an explicit construction of the congruence Θ_{H} corresponding to an ideal H and list the basis of the clone IT(LDIG). For $\mathcal{A} \in$ LDIG and $\emptyset \neq B, C \subseteq A$ denote
$B \cdot C=\{b \cdot c ; b \in B, c \in C\}$ and $B \backslash C=\{b \backslash c ; b \in B, c \in C\}$.

If e.g. $B=\{b\}$ is a one-element set, then we will write briefly $b \cdot C$ instead of $\{b\} \cdot C$, etc.

Lemma 1. Let Θ be na equivalence on an algebra $\mathcal{A} \in L D I G$. Then Θ is a congruence iff $[a]_{\Theta} \cdot[b]_{\Theta} \subseteq[a \cdot b]_{\Theta}$ and $[a]_{\Theta} \backslash[b]_{\Theta} \subseteq[a \backslash b]_{\Theta}$ for every $a, b \in A$.

Proof. The conditions are nothing else than the substitution property of the relation Θ.

Theorem 1. Let $\emptyset \neq H \subseteq A$ for $\mathcal{A} \in$ LDIG. Then the following conditions are equivalent:
(1) the relation Θ_{H} defined by $\langle x, y\rangle \in \Theta_{H}$ iff $x \cdot H=y \cdot H$ is a congruence with the kernel H;
(2) H is a subalgebra of \mathcal{A} satisfying the conditions

$$
(x \cdot y) \backslash[(x \cdot H) \cdot(y \cdot H)] \subseteq H \quad \text { and } \quad(x \backslash y) \backslash[(x \cdot H) \backslash(y \cdot H)] \subseteq H
$$

Proof. (1) \Rightarrow (2): Evidently, Θ_{H} is a congruence with classes $x \cdot H$ for $x \in A$. Then by Lemma 1 we obtain

$$
(x \cdot H) \cdot(y \cdot H) \subseteq(x \cdot y) \cdot H \quad \text { and } \quad(x \cdot H) \backslash(y \cdot H) \subseteq(x \backslash y) \cdot H
$$

The former inclusion gives

$$
(x \cdot y) \backslash[(x \cdot H) \cdot(y \cdot H)] \subseteq(x \cdot y) \backslash[(x \cdot y) \cdot H]
$$

If $z \in(x \cdot y) \cdot H$, then $(z, x \cdot y) \in \Theta_{H}$ and so

$$
((x \cdot y) \backslash z,(x \cdot y) \backslash(x \cdot y))=((x \cdot y) \backslash z, e) \in \Theta_{H}
$$

i.e. $(x \cdot y) \backslash z \in[e]_{\Theta_{H}}=e \cdot H=H$ (since H is the kernel of Θ_{H}).

We have proved $(x \cdot y) \backslash\{(x \cdot H) \cdot(y \cdot H)] \subseteq H$. Analogously, the inclusion $(x \cdot H) \backslash(y \cdot H) \subseteq(x \backslash y) \cdot H$ implies $(x \backslash y) \backslash[(x \cdot H) \backslash(y \cdot H)] \subseteq(x \backslash y) \backslash[(x \backslash y) \cdot H]$. If $z \in(x \backslash y) \cdot H$, then $(z, x \backslash y) \in \Theta_{H}$, so
$((x \backslash y) \backslash z,(x \backslash y) \backslash(x \backslash y))=((x \backslash y) \backslash z, e) \in \Theta_{H}, \quad$ i.e. $\quad(x \backslash y) \backslash z \in[e]_{\Theta_{H}}=H$, which proves $(x \backslash y) \backslash[(x \cdot H) \backslash(y \cdot H)] \subseteq H$.
(2) \Rightarrow (1): Suppose $z \in(x \cdot H) \cdot(y \cdot H)$. Then by the conditions (2) we have $(x \cdot y) \backslash z=h \in H$. From this we conclude
$(x \cdot y) \cdot((x \cdot y) \backslash z)=z=(x \cdot y) \cdot h \in(x \cdot y) \cdot H$,
i.e. $(x \cdot H) \cdot(y \cdot H) \subseteq(x \cdot y) \cdot H$. Analogously, if $z \in(x \cdot H) \backslash(y \cdot H)$, then $(x \backslash y) \backslash z=h \in H$, which yields

$$
z=(x \backslash y) \cdot h \in(x \backslash y) \cdot H
$$

We have proved $(x \cdot H) \backslash(y \cdot H) \subseteq(x \backslash y) \cdot H$, so by Lemma 1 the relation Θ_{H} is a congruence.

It suffices to show $e \cdot H=[e]_{\Theta_{H}}=H$. Since H is a subalgebra of $\mathcal{A}, e \cdot H \subseteq H$. Conversely, let $h \in H$. Then there exists an element $a \in S$ with $e \cdot a=h$ (e.g. $a=$ $e \backslash h)$. But then $e, h \in H$ implies $a=e \backslash h \in H$, which proves $h \in e \cdot H$ and $e \cdot H \subseteq H$.

Theorem 2. Let $\mathcal{A} \in L D I G$ and $\emptyset \neq I \subseteq A$. Then the following conditions are equivalent:
(1) I is an ideal of \mathcal{A};
(2) I is closed under the following ideal terms:

$$
\begin{aligned}
& p_{1}\left(y_{1}, y_{2}\right)=y_{1} \cdot y_{2} \\
& p_{2}\left(y_{1}, y_{2}\right)=y_{1} \backslash y_{2} \\
& p_{3}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(x_{1} \cdot x_{2}\right) \backslash\left[\left(x_{1} \cdot y_{1}\right) \cdot\left(x_{2} \cdot y_{2}\right)\right] \\
& p_{4}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(x_{1} \backslash x_{2}\right) \backslash\left[\left(x_{1} \cdot y_{1}\right) \backslash\left(x_{2} \cdot y_{2}\right)\right] .
\end{aligned}
$$

Proof. (1) $\Rightarrow(2)$ is evident.
(2) $\Rightarrow(1)$: By Theorem 1 it suffices to show that if I is closed under the terms $p_{1}, p_{2}, p_{3}, p_{4}$ then I is a subalgebra of \mathcal{A} with $(x \cdot y) \backslash[(x \cdot H) \cdot(y \cdot H)] \subseteq H$ and $(x \backslash y) \backslash[(x \cdot H) \backslash(y \cdot H)] \subseteq H$. The terms p_{1}, p_{2} ensure that I is a subalgebra of \mathcal{A}, the term p_{3} gives $(x \cdot y) \backslash[(x \cdot I) \cdot(y \cdot I)] \subseteq I$ and the term p_{4} gives $(x \backslash y) \backslash[(x \cdot I) \backslash(y \cdot I)] \subseteq I$.

References

[1] R. Bělohlávek, I. Chajda: Congruences and ideals in semiloops. Acta Sci. Math. (Szeged) 59 (1994), 43-47.
[2] I. Chajda, R. Halaš: Ideals in bi-ternary rings. Discuss. Math. (Zielona Góra, Poland). To appear.
[3] H.-P. Gumm, A. Ursini: Ideals in universal algebras. Algebra Universalis 19 (1984), 45-54.
[4] A. Ursini: Sulla Varietà di algebre con una buona teoria degli ideali. Boll. U. M. I. (4) 6 (1972), 90-95.

Author's address: Radomir Halač, katedra algebry a geometrie, Přírodovědecká fakulta Univerzity Palackého, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: halas Orisc.upol.cz.

