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Summary. The paper contains characterizations of semigroup varieties whose semigroups
with one generator (two generators) are permutable. Here all varieties of regular #-semigroups
are described in which each semigroup with two generators is permutable.
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An algebra A is called permutable if @ . ¥ = & . ¥ for each two congruences @, ¥
on A. A variety ¥" is permutable if every A€ ¥ has this property. I. Chajda [1]
characterized varieties of algebra having permutable algebras with two generators.
In my paper [2] all permutable varieties of semigroups are described. The aim of this
note is to describe semigroup varieties having permutable semigroups with two
generators.

By W (i = j) we denote the variety of all semigroups satisfying the identity i = j.

Theorem 1. The following conditions for a variety ¥ of semigroups are equi-
valent:

1. ¥ is permutable.
2.V € W(x"y = y)n W(yx" = y) for a positive integer n.

Proof. See Theorem 2 of [2].

Theorem 2. The following conditions for a variety ¥ of semigroups are equi-
valent:

1. Each S € ¥ with one generator is permutable.
2.V < W(x =xx")or ¥ < W(x" = xx") for a positive integer n.

Proof. 1=2. Let Se¥ and a e S. By {a) we denote the subsemigroup of S
generated by a. Suppose that {a) is permutable. It follows from Theorem 6 and
Theorem 13 of [3] that a = aa™ or a™ = aa™ for a positive integer m. In both cases S
contains an idempotent and so by Lemma 1 of [2] ¥" = W(x"x" = x") for a positive
integer n. By way of contradiction assume that ¥" ¢ W (x = xx") and ¥ ¢ W
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(x* = xx"). Then n = 2 and there exist Se ¥’ \W(x = xx") and Te ¥V \W

(x" = xx"). Consequently, there are a € S, b € T such that a # aa”, b* + bb". It is

easy to show that according to Theorem 6 and Theorem 13 of [3], the subsemigroup

{(a, b)> of S x T generated by (a, b) is not permutable. Therefore S x T¢ ¥,

which is a contradiction. Consequently ¥ < W(x = xx")or ¥ € W(x" = xx").
2'=> 1. This follows from Theorem 6 and Theorem 13 of [3].

Theorem 3. The following conditions for a variety ¥~ of semigroups are equi-
valent:

1. Each S € ¥ with two generators is permutable.

2. ¥ = W(x = xx") n W((xyx)" = x") for a positive integer n.

Before the proof we formulate the following

Lemma. W(x = xx") n W((xyx)" = x") = W(x = xx") n W((xyz)" = (xz)").

Proof. We have (xyz)' = x"(xyz)" z" = (xzx)" (xyz)" (zx2)" = xzuxz and so
(xyz)" = ((xy2)")* = (xzuxz)" = (xz)"

Proof of Theorem 3. 1 = 2. Suppose that every semigroup from ¥~ with two
generators is permutable. By & or & we denote the variety of all zero-semigroups
or semilattices, respectively,i.e. = W(xy = uv)and & =W(xy = yx) n W(x? = x).
It is well known that & and & are minimal varieties in the lattice of all semigroup
varieties. It follows from Theorem 6 and Theorem 13 of [3] that Z n ¥ =0 =
= W(x = y). According to Example 2 of [1] we have ¥ n ¥" = 0. By Lemma 3
of [2] we get ¥" = W(x = xx") n W((xyx)" = x") for a positive integer n.

2 = 1. Assume that

(1) SeW(x = xx") n W((xyx)" = x")

for a positive integer n and that S has two generators u and v. We can suppose that
n = 2. Evidently S e W(x"x" = x").
Put e = u" and f = v". It is clear that e = €2, f = f2? and

(2) S=eSUfS=SeusSf

Let @ and ¥ be two congruences on S. Suppose that (a, b) €®.¥. Then (a, c) ed
and (c, b) € ¥ for some c€ S.

Case1.4" = b". Then we put d = a"ca”. Using (1) it is easy to show that (a, d) € @,
(d,b)e ¥ and d" = a". Putting h = bd""'b"a = bd""'a we obtain (a, h) =
= (bd"~'db""'a, bd""'bb""'a)e ¥ and (h, b) = (ba""'ad" 'a, ba""'dd""'a) € ®.
Therefore (a, b) € V..

Case 2. a" # b". According to (1) and (2) we have the following eight possibilities.

Subcase 2.1. a = ea and b = eb. Then we put d = ec and so by (1) we have
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(a,d) € @ and (d, b) e ¥ It follows from (1), Lemma and (2)thatd" = a"ord" = b".
Without loss of generality we can suppose that d” = g". It follows from (1) that
a"e = (ea)" ¢ = (eae)" = e and so a"b = a"b = eb = b. Putting h = ad" " 'b =
= ad"" ' ag""'b we have (a, h) = (ad""'d, ad""'b) e ¥ and (h, b) = (ad" 'aa""'b,
ad"~'da""1b) € ®. Therefore (a,b)e ¥ . @.

Subcases 2.i (i = 2,3 and 4). a = fa and b = fb (a = ae and b = be, a = af
and b = bf, respectively). In an analogous manner it can be proved that (a, b) e ¥ . .

Subcase 2.5. a = eae and b = fbf. Then we have two possibilities.

Subcase 2.5.1. ¢ = ece or ¢ = fcf. Without loss of generality we can suppose
that ¢ = ece. It follows from (1) that ¢” = e = a” and so putting h =
= bb"c*~ab™(b"c"b")"~* we obtain (a, h) = (cc"¢" tac’(c"¢"¢")" "', h) e ¥ and
(B, b) = (h, bb"c"~cb"(b"c"b")"~*) € @. Therefore (a, b)e ¥ . &.

Subcase 2.5.2. ¢ = ec¢f or ¢ = fce. Without loss of generality we can suppose
that ¢ = ecf. By Lemma we have ¢” = (ef)” and so c"a = (ef)" ea = (efe)'a =
= ea = a. Analogously we get bc" = b. Putting h = bc""'a we obtain (a, h) =
= (cc*"'a, bc""'a) € ¥ and (h, b) = (bc"™'a, bc""'c) € @. Therefore (a, b)e ¥ . P.

Subcase 2.6. a = faf and b = ebe. Analogously we can show that (a, b)e ¥ . &.

Subcase 2.7. a = eaf and b = fbe. According to Lemma we get a” = (ef)* and
= (fe)". We have two possibilities.

Subcase 2.7.1. ¢ = ece or c € f¢f. Without loss of generality assume ¢ = ece.
By (1) we have ¢" = e. Putting h = bc"~'a we obtain (a, h) = (cc" 'a, bc" 'a)e ¥
and (h, b) = (bc" 'a, be"~'c) € @. Therefore (a, b)e ¥ . .

Subcase 2.7.2. ¢ = ecf or ¢ = fce. Without loss of generality assume that ¢ = ecf.
By Lemma we have ¢" = (¢f)" = a” and (c"b")” = e. Putting h = bc"~*ab"(c"b")" *
we obtain (a, ) = (cc" 'ac"(c"c")" ™, h) € ¥ and (h, b) = (h, bc"~ lcb"(c"b")" Neo.
Therefore (a, b)e ¥ . @.

Subcase 2.8. a = fae and b = ebf. In an analogous manner it can be proved
that (a, b)e ¥ . @.

We have proved that @. ¥ = ¥ . ®. Analogously we can show that ¥ .® <
€ @ .Y and so S is a permutable semigroup.

Note 1. By a regular #-semigroup we shall mean (see [4]) an dlgebra (S, *, *)
where (S, +) is a semigroup and = is a unary operation on S satisfying

(x*)* =x, x=xx*x and (xy)* = y*x*.

By W*(i = j) we denote the variety of all regular *-semigroups satisfying the identity
i = j. It follows from Theorem 1 of [5] and Theorem 1 of [6] that a variety ¥~ of
regular *-semigroups is permutable if and only if ¥* = W*(xx* = yy*).
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Now we shall show

Theorem 4. The following conditions for a variety ¥ of regular *-semigroups
are equivalent:

1. ¥ is permutable.
2. Each S € ¥ with two generators is permutable.
3.7 = WHxx* = yy*).

Proof. 1 = 2. Evident.

2 = 3. Suppose that every regular *-semigroup with two generators from ¥ is
permutable. According to Lemma 4 of [5] it is sufficient to show that S,, S, ¢ ¥,
where S, is a two-element regular *-semigroup with the tables

| 1o * |
1| 1o 1|1
0|00 0| 0

and S, is a four-element regular *-semigroup with the tables

] e f ef fe * |
e e e ef e e f
f | fe f f fe f e
ef e ef ef e ef ef
fe | fe f [ fe fe | fe

By J we denote the variety of all semilattices with * = id. It is easy to show that I
is minimal in the lattice of all regular *-semigroup varieties. According to Example 2
of [1] we have 7 n ¥ = W*(x = y). Evidently S, € 7 and so S, ¢ ¥".

It is well known (see [7] and [8]) that an algebra A has its congruence lattice
Con(A) modular whenever A is permutable. In the proof of Theorem 5 of [5] it is
proved that the lattice Con(S, x S,) is not modular. Therefore the regular *-semi-
group S, x S, is not permutable. It is easy to show that S, x S, is generated by
(e, €) and (e, f). Consequently S, x S, ¢ ¥ and so S, ¢ ¥".

3 = 1. See Note 1.

Note 2. The following problem remains open:

describe all varieties of regular *-semigroups in which each semigroup with one
generator is permutable.
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Souhrn

O PERMUTABILITE VE VARIETACH POLOGRUP

BebpikicH PONDELICEK

V praci jsou charakterizovany variety pologrup, v nichZ jsou permutabilni pologrupy generova-
né jednim resp. dv&ma prvky. Zde se téZ popisuji viechny variety regularnich x-pologrup, jejichz
pologrupy generované dvéma prvKy jsou permutabilni.
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