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Summary. The paper contains characterizations of semigroup varieties whose semigroups 
with one generator (two generators) are permutable. Here all varieties of regular -.--semigroups 
are described in which each semigroup with two generators is permutable. 
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An algebra A is called permutable if <t>. W = # . *F for each two congruences $, !P 
on A. A variety if is permutable if every AeY has this property. I. Chajda [ l ] 
characterized varieties of algebra having permutable algebras with two generators. 
In my paper [2] all permutable varieties of semigroups are described. The aim of this 
note is to describe semigroup varieties having permutable semigroups with two 
generators. 

By W(i = j) we denote the variety of all semigroups satisfying the identity i = ;. 

Theorem 1. The following conditions for a variety Y of semigroups are equi
valent: 

1. Y is permutable. 
2. if £ W(xny = y) n W(yxu = y) for a positive integer n. 

Proof. See Theorem 2 of [2]. 

Theorem 2. The following conditions for a variety if of semigroups are equi
valent: 

1. Each Seif with one generator is permutable. 
2. Y c W(x = xxn) orY^ W(xn = xxn)for a positive integer n. 

Proof. 1 => 2. Let SeY and a e S. By <a> we denote the subsemigroup of S 
generated by a. Suppose that <a> is permutable. It follows from Theorem 6 and 
Theorem 13 of [3] that a = aam or am = aam for a positive integer m. In both cases S 
contains an idempotent and so by Lemma 1 of [2] if £ W(xnxn = xn) for a positive 
integer n. By way of contradiction assume that if % W (x = xxn) and Y % W 
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(xn = xxn). Then n = 2 and there exist Seir\W(x = xxn) and Teir\W 
(xn = xxn). Consequently, there are a e S, b e T such that a 4= aan, bn # bbn. It is 
easy to show that according to Theorem 6 and Theorem 13 of [3], the subsemigroup 
((a, b)y of S x T generated by (a, b) is not permutable. Therefore S x T^'f, 
which is a contradiction. Consequently Y £ W(x = xxn) or 1r ^ W(xn = xxn). 

2'=> 1. This follows from Theorem 6 and Theorem 13 of [3]. 

Theorem 3. The following conditions for a variety TT of semigroups are equi
valent: 

1. Each S e f with two generators is permutable. 
2. *V £ W(x = xxn) n FV((xyx)n = xn)for a positive integer n. 
Before the proof we formulate the following 

Lemma. W(x = xxn) n W((xyxf = xn) = W(x = xxn) n W((xyzf = (xzf). 

Proof. We have (xj>z)n = xn(xyzf zn = (xzxf (xyzf (zxzf = xzuxz and so 
(xyzf = ((xyzff = (xzuxzf = (xzf. 

Proof of Theorem 3. 1 => 2. Suppose that every semigroup from f" with two 
generators is permutable. By 2£ or &> we denote the variety of all zero-semigroups 
or semilattices, respectively, i.e. 2t = W(xy = uv) and 9* = W(xy = yx) n W(x2 = x). 
It is well known that % and Sf are minimal varieties in the lattice of all semigroup 
varieties. It follows from Theorem 6 and Theorem 13 of [3] that 2£ n 1T = 0 = 
= W(x = y). According to Example 2 of [1] we have 9 n 1f = 6. By Lemma 3 
of [2] we get "T £ W(x = xxn) n W((xyxf = xn) for a positive integer n. 

2 => 1. Assume that 

(1) SeW(x = xxn) n W((xyxf = xn) 

for a positive integer n and that S has two generators u and v. We can suppose that 
n = 2. Evidently S e W(xnxn = xn). 

Put e = un andf = vn. It is clear that e = e2,f = f2 and 

(2) S = eSufS = SeuSf 

Let 4> and W be two congruences on S. Suppose that (a, b) e <P . W. Then (a, c) e $ 
and (c, b)e W for some c e S. 

Case 1. an = bn. Then we put d = r.ncan. Using (l) it is easy to show that (a, d) e #, 
(d, fc)e V and cf = an. Putting ft = bdn'1bna = bdn~la we obtain (a, A) = 
= (bdn-xdbn-xa9 bdn-lbbn~la) e V and (ft, 6) = (ba^'ad"'^, ban~1ddn-1a) e $. 
Therefore (a, fr) 6 !F.4>. 

Case 2. an 4= bn. According to (1) and (2) we have the following eight possibilities. 

Subcase 2.L a = ea and b = eb. Then we put d = ec and so by (l) we have 
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(a, d) e <P and (d, b)e¥ It follows from (l), Lemma and (2) that dn = an or dn = b \ 
Without loss of generality we can suppose that dn = an. It follows from (1) that 
ane = (ea)n e = (eaef = e and so anb = aneb = eb = b. Putting h = adn~'1b = 
= ad""1 aan~xb we have (a, ft) = (ad^^, adT'H) e Y and (ft, b) = (adn-1aan~1by 

adT^da^b) e #. Therefore (a, fc]) e V . *. 

Subcases 2.i (i = 2, 3 and 4). a = fa and b = fb (a = ae and b = be, a = af 
and b = bf, respectively). In an analogous manner it can be proved that (a, b) e !F . 4>» 

Subcase 2.5. a = eae and b = fbf. Then we have two possibilities. 

Subcase 2.5.1. c = ece or c =fcf Without loss of generality we can suppose 
that c = ece. It follows from (1) that cn = e = an and so putting h = 
= bb^-'abXbWf-1 we obtain (a, ft) = (ccV" W ^ c V ) " - 1 , ft) e !F and 
(ft, b) = (ft, b b V - ^ b ^ b V b T 1 - 1 ) e #. Therefore (a, b)eT .<P. 

Subcase 2.5.2. c = ecf or c =fcc. Without loss of generality we can suppose 
that c = ecf. By Lemma we have cn = (cf)n and so cna = (eff ea = (cfc)n a = 
= ea = a. Analogously we get bcn = b. Putting ft = bcn~1a we obtain (a, ft) = 
= (cc""^, bcn-xa) e V and (ft, b) = (bc^'a, bc^'c) e <!>. Therefore (a, b)eW .<P. 

Subcase 2.6. a = faf and b = ebe. Analogously we can show that (a, b) e *P . <P. 

Subcase 2.7. a = eaf and b = fbe. According to Lemma we get an = (cf)n and 
bn = (fe)n. We have two possibilities. 

Subcase 2.7.L c = ece or cefcf. Without loss of generality assume c = ece. 
By (1) we have cn = e. Putting ft = bcn - 1a we obtain (a, ft) = (ccn~xa, bd1'1^ e V 
and (ft, b) = (bcn-xa, b<?'~1c) e <P. Therefore (a, b) e !F . 0. 

Subcase 2.7.2. c = ccfor c = fee. Without loss of generality assume that c = ecf. 
By Lemma we have cn = (cf)n = an and (cnbn)n = e. Putting ft = bcn-1abn(cnbnf-1 

we obtain (a, ft) = (cc^^c^c^f-1, h)eW and (ft, b) = (ft, bcn_1cbn(cnbn)n"1) e <*>. 
Therefore (a, b) e V . # . 

Subcase 2.8. a = fae and b = ebf. In an analogous manner it can be proved 
that (a, b)eV .$. 

We have proved that 0. W ^ W. $. Analogously we can show that !P. $ <= 
c # . *P and so S is a per mutable semigroup. 

N o t e 1. By a regular *-semigroup we shall mean (see [4]) an algebra (S, •, *) 
where (S, •) is a semigroup and * is a unary operation on S satisfying 

(x*)* = x , x = xx*x and (xy)* = y*x* . 

By W*(i = jf) we denote the variety of all regular *-semigroups satisfying the identity 
i = j . It follows from Theorem 1 of [5] and Theorem 1 of [6] that a variety "V* of 
regular *-semigroups is permutable if and only if 'V f= W*(xx* = yy*). 

398 



Now we shall show 

Theorem 4. The following conditions for a variety if of regular ^-semigroups 
are equivalent: 

1. V is permutable. 
2. Each S e if with two generators is permutable. 
3. f c W*(xx* = yy*). 

Proof. 1 =>2. Evident. 

2 => 3. Suppose that every regular *-semigroup with two generators from if is 
permutable. According to Lemma 4 of [5] it is sufficient to show that S2, S4 £ Y, 
where S2 is a two-element regular *-semigroup with the tables 

• 1 0 

1 
0 

1 0 
0 0 

* 

1 ] 

0 0 

and S4 is a four-element regular *-semigroup with the tables 

• e f ef fe 
e e ef ef e 

S fe f f fe 
ef e ef ef e 
fe fe f f fe 

* 

e f 
f e 

ef ef 
fe fe 

By y we denote the variety of all semilattices with * = id. It is easy to show that 2T 
is minimal in the lattice of all regular *-semigroup varieties. According to Example 2 
of [1] we have & c\if = W*(x = y). Evidently S2 e & and so S2 $ if. 

It is well known (see [7] and [8]) that an algebra A has its congruence lattice 
Con(A) modular whenever A is permutable. In the proof of Theorem 5 of [5] it is 
proved that the lattice Con(54 x 54) is not modular. Therefore the regular •-semi
group 5 4 x 5 4 is not permutable. It is easy to show that 5 4 x S4 is generated by 
(e, e) and (e,f). Consequently 5 4 x S4 £ if and so S4 £ if. 

3 => 1. See Note 1. 

N o t e 2. The following problem remains open: 

describe all varieties of regular *-semigroups in which each semigroup with one 
generator is permutable. 
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Souhrn 

O PERMUTABILITĚ VE VARIETÁCH POLOGRUP 

BEDŘICH PONDĚLÍČEK 

V práci jsou charakterizovány variety pologrup, v nichž jsou permutabilní pologrupy generova
né jedním resp. dvěma prvky. Zde se též popisují všechny variety regulárních *-pologrup, jejichž 
pologrupy generované dvěma prvky jsou permutabilní. 
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