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EXISTENCE OF SOLUTION TO NON-LINEAR BOUNDARY VALUE 

PROBLEM FOR ORDINARY DIFFERENTIAL EQUATION 

OF THE SECOND ORDER IN HILBERT SPACE 

EVA ROVDEROVA, Bratislava 

(Received January 31, 1991) 

Summary. In this paper we deal with the boundary value problem in the Hilbert space. 
Existence of a solution is proved by using the method of lower and upper solutions. It is 
not necessary to suppose that the homogeneous problem has only the trivial solution. We 
use some results from functional analysis, especially the fixed-point theorem in the Banach 
space with a cone (Theorem 4.1, [5]). 
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in Hilbert space 

AMS classification: 34B15, 47E05, 34B25 

In this paper we consider 
— an infinite-dimensional Hilbert space H with a countable orthonormal base 

(ct}Si» (•»•) *s a scalar product, || • || is a norm; 
— the space X = L2{{a,b),//) of abstract functions y: (a,6) —• H such that 

IMI- = (J.*IW)Ha dl)*<oo; 
— the cone K in X defined by K = {y € X: yt(t) = (y(t), e.) ^ 0, t = 1,2,... t € 

M>). 
It is proved in [6] that K is a normal, regular, strongly minihedral cone in X. 
We deal with the boundary value problem 

(i) - * - = ( P ( . ) V ) ' + I(-) y = f(t,y) 

Uy.Uiy = a0y{a) + ai'V'(a) = 0 

U2y = /30y(b) + fhV'(b) = 0 
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where 
1. y: ( a , 6 ) - i / , 
2. the functions p, q: (a, 6) -> /J are continuous and p(*) > 0 on (a, 6), 
3. D C J/, / € Ia( (a, 6) x D, //) and there exists M £ R such that the function 

/(*> y).+ My -s nonincreasing in y for every fixed t G (a, 6), 
4. an, <*i, A>, /?i are real numbers such that |ao| + |c*i| > 0, |/?n| + |/?i| > 0. 

R e m a r k 1. If there exists M € R such that the function f(t%y) + M • y is 
nonincreasing in y € D, then for every M\ _ (-oo, M) the function /(t, y) + M\ • y 
is nonincreasing in y € -D. In the case H = ij we obtain the scalar problem (1), (2). 
Let us suppose that the scalar homogeneous problem has only the trivial solution. 
Then there exists the Green function G\(t,s) and the scalar problem is equivalent 
to the integral equation 

(3) УÍ0 = / Gi(t,s).f(s,y(s))ds. 
Ja 

We will use the following spaces: 
C( (a, 6), H) with the norm ||y||o = sup ||y(0ll 

Cl{ (a, 6), H) with the norm \\y\\\ = ||y||o + sup ||^(t)||. 

We are looking for a solution y of BVP (1), (2) in the space C1 ((a, 6), H). 

Lemma 1. (Lemma 1, [2]). If the scalar problem (1), (2) is equivalent to the 
equation (3), then aiso the problem (1), (2) in the Hilbert space H is equivalent to 
the equation (3) and the Green function G\(t, s): (a, 6) x (a, 6) —• R is given by the 
homogeneous scalar problem (1), (2). 

Lemma 2. Let feK. Then also J* f(t) dt£K. 

oo 

P r o o f . Since / € K we have f(t) = £ / , (* ) • ct- t € (a,6) where /,(*) = 

(/(0i ct) ^ 0 for f = 1, 2, . . . Further we have 

ť=i 

£ / . ( * ) • « . - / ( - ) f o г n - o o , 
» = 1 

III E / . ( 0 e i | | - | | / ( 0 l l U I E / . ( 0 e . - / ( 0 | - 0 . Then || E / . ( 0 * 1 < e +11/(011-
1 1*1 • i = l J--1 

Since [ / |[/(0ll2 dtj < oo the integral /1|/(*)|| dt also exists. Using the Lebesgue 
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dominated convergence theorem we get 

fa
mdt=Si (£/<(<) •«)dt=£{f f i { t )d t)•«=f> •*• 

where real functions Ft- satisfy F, = fa fi(t)dt = const ^ 0. Hence the proof is 
complete. • 

Lemma 3. Let Ao be first characteristic number of the scalar BVP 

(4) (p(t)y')' + (q(t) + \)y = 0 

(5) Uy = 0. 

Then for every M E (—oo, Ao) the scaiar BVP 

(6) ( p ( 0 y / ) ' + ( 9 ( 0 ' f M ) . y = 0 

(5) Uy = 0 

has oniy the trivial solution and the Green function G(t,s) satisfies G(tys) ^ 0 on 

(a, 6) x (a, 6). 

P r o o f . Let us denote the characteristic numbers of the scalar BVP (4), (5) by 

Ao, Ai, . . . supposing 
Ao < Ai < . . . < An < . . . 

Then the characteristic numbers of the scalar BVP 

(7) (p(t)y') + (q(t) + M + \)-y = 0 

(5) Uy = 0 

are A0 — M, , Ai — M , , . . . , , Art — M , , . . . . If we take M < Ao then all characteristic 
numbers of (7), (5) are positive and such that the Green function G(t,s) satisfies 
G(t, s) < 0 on (a, 6) x (a, 6), Hence BVP (6), (5) has only the trivial solution. D 

Corollary 1. Let the Green function G\(t,s) of the scalar BVP Ly = 0, Uy = 0 

exist and satisfy G\(t}s) ^ 0 on (a,6) x (a,6). Then for every M ^ 0 the Green 

function G(t} s) of the scalar BVP (6), (5) exists and G(t, s) ^ 0 on (a, 6) x (a, 6). 

Definition 1. An abstract function a or /? from the space Cl ((a, 6), H) is called 

a lower or an upper function of equation (1), respectively, iff La ^ f(t,a) and 

La £ X or L/? -$ /(*, /?) and Lj3 6 Xy respectively, for t € (a, 6). 
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Theorem 1. Let the following assumptions hold: 
(i) Let there exist M G R such that the function f(t}y) + M • y is nonicreasing in 

y G D for every fixed t G (a, 6) and let the Green function G(t> s) ofBVP (6), (5) be 
such that G(t, s) < 0 on (a, 6) x (a, 6) 

(ii) Let a and /? be respectively a lower and an upper function of equation (1) and 
leta^/3 and (a,/?) C D hold, 

(iii) Let BVP 

(p(0-2/ / ) '+(^) + M ) y = 0 

Uy = l/a 

have a solution v ^ 0. Similarly, let BVP 

(p(t)y')'+(q(t) + M)-y = 0 

Uy = U0 

have a solution w ^ 0. 
Then there exists a solution yo of BVP (1), (2) and it satisfies 

a ^ yo < /? 

Proof. The equation (1) is equivalent to the equation 

(p(0 • i/O7 + («r(0 + M) • 2/ = /(*, y) + My. 

Hence the existence of a solution of BVP (1)» (2) is equivalent to the existence of a 
solution of the integral equation 

y(t) = / G(t, s) • [/(«, V(s)) + M • y(s)] ds 

Since C((a,6),i /) C L2((a,6),#) we can define a set Dx = {y G C((a,6),D): 
y G (<*,.#)}. Then f(s>y(s)) G -X for y($) ^ A , « e (a, 6) so that the operator T: 
Dx-+X, 

Ty(t) = J G{t, s) • [/(*, y(s)) + M . y(sj\ ds t G (a, 6) 

is defined correctly. 
We will show that 
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1. a ^ Ta, p > T/9; 
2. T is a monotone operator. 

Thus it will be proved that T: D\ - • D\. Let us denote h = La - f(t,a). Then 
ft ^ 0, La = /(t, a) + ft. The function a can be written as a = v + vi, where v is 
the function from the assumption (iii) and the function v\ is a solution of BVP 

(8) (p(t)y')' + (q(t) + M)y = f(t,a) + Ma + h 

(5) Cly = 0, 

The solution t>i of BVP (8), (5) exists, because (i) implies that the Green function 
G(t,s) of BVP (8), (5) exists. Hence we get 

a(t) = v(t) + I G(t, s) • \f(s, a(s)) + M • a(s) + h(sj\ ds 
J a 

= v(t) + J G(t, s) • h(s) ds + j G(t% s) • [/(«, a(s)) + M • a(s) 

= v(t) + f G(t, s) • h(s) ds + Ta(t). 

b 

Then Ta(t) - a(*) = -v(t) + f-G(t,s) • h(s)ds. From Lemma 2 we obtain that 
a 

Ta — a ^ 0 and so a ^ Ta. The inequality /? ^ T/? can be verified similarly. Now 
we prove the monotonicity of the operator T. Let y\ ^ y2. Then 

Ty2 -Ty\= f G(t,s) • [/(«,!&(*)) + Af •»(*) - /(«,yi(«)) - M • yi(«)]d«. 
J<i 

Again from Lemma 2 we get that Tyi .$ Ty2- K is a strongly mnihedral cone in X, 
T is a monotone operator in D\ so that there exists yo G -Oi such that yo = Tyo-
Since y0 G £>i we have Ty0 G C((a,6), tf). Let Diag = {(t,s) G (a, 6) x (a, 6) : 
t = *s}. The function ^ is continuous on (a, 6) x (a, 6) except the set Diag. Then 
the theorem about parametric integrals yields that yo G C1((a,6) >H). Hence yo is 
a solution of BVP (1), (2) and it satisfies a -̂  yo -$ /?. • 

R e m a r k 2. The verification of the assumptions of Theorem 1 is quite difficult. 
To simplify the assumption (i) we introduce a lemma: 

Lemma 4. ([3], page 178). Let BVP (1), (2) be given. Let q(t) ^ 0 on (a, 6) and 
let a0 - a i < 0, 0D • £1 > 0. Then the Green function G\(t} s) of BVP Ly = 0, U y = 0 
is such that G\(t, s)<0 on (a, 6) x (a, 6). 
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Example. Let us prove the existence of a solution of BVP 

j / ' - j ^ . - e v ^ 1 

<*oy(a)+a\ j / (a ) = 0 

ft • !<*)+A ••(*) = <> 

wheie a i < 0 < ao and ft > 0, (t\ > 0. 

Solut ion. It is sufficient to verify the assumptions of Theorem 1. Let D = {y € 

C({a,b) ,R): y > 0}. Since the function f(t,y) = — e^""1 is decreasing in y, it is 

sufficient to put M = 0. The property (i) follows from Lemma 4. Let us verify (ii). 

a = 0 is an element of .0, La = 0 ^ — e"1 and so a is a lower function of the given 

equation. 

/? = 1 is an element of £>, L/? = — 1 .$ —e1""1 = — 1 and so /? is an upper function 

of the given equation. At the same time the inequality a ^ /? holds. Now we verify 

(iii). 
Let us consider BVP 

v" - v = 0 

Uv = Ua i.e. ao • v(a) + a\ • v'(a) = 0 

A-«(i) + A-t/(6) = 0. 

It follows from Lemma 4 that this BVP has only the trivial solution, i.e. v = 0. It 

remains to show that BVP 

w"-w = 0 

Uw = U0 i.e. ao • w(a) + a\ • w'(a) = ao 

ft ^&) + / ? lu / (6 ) = ft 

has a solution it; ^ 0. Solving this equation we get 

u/(J) = ci -e* + C2 e - t , 

w'(t) = ci e* — C2 e~* 

Substituting into the boundary conditions we get 

ao - c\ * ea + ao • C2 • e~a + a\ c\ ea — a\ - c2 - e~a = ao, 

ft c\ e* + ft -C2-c-* + A -ci e* - /? ! c 2 e - * = ft. 
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The déterminant of the system is 

det = 
(a0 + ai) • ea (a0 - «i) • e - a 

( A + A ) e * ( A - A ) - e " » 
= e -» (лo + <*i) • (ßo - A) - e*"" • (ao - «i) • (A + A ) 

Since 0 < e*~b < e6~a, wehave-e a -*(a 0 -ai ) (&+ft) > - e * - t f ( a 0 - a i ) ( A + A ) , 
hence 

det < ea~b • [(a0 + ax) - (A> - A) - (<*0 - ai) • (A + A)] 

= e - » • [2 • ai ßц - 2 • a 0 • A]<o. 

Similаrly we get 

deti = 
ao (ao — a.) • e" в 

A (A-A)e-* 
= < î - * - a 0 - ( / ? o - A ) - < б - " / З o ( a o - a г ) < 0 

and also 

det2 = 
(a 0 + ai) • e" a 0 

(/Зo+A)e* ßo 
= e" • Ä, • (a0 + a г ) - e* • a 0 • (ßo + A) < 0. 

Then w(t) = ^ • e* + ^ • e~* > 0, t G (a, 6), i.e. u; > 0. Now assumptions of 
Theorem 1 hold so that there exists a solution j/0 of the given BVP and 

0 ^ y0 ^ 1. 

Lemma 5. Let a\ < 0 < a0, /?0 > 0, ft > 0 and let M € A be such that 
q(t) + M ^ 0 on (a, 6). Then each of the scalar BVP's 

(6) 

(9) 

aлd 

(6) 
(Ю) 

0K*)V)'+ («(«) + M ) y = 0 

tly: t!iy = a 0 • y(o) + ai • t/(a) = 1 

tl2y = A>-y(&) + A i/(&) = 0 

(řKO V ) ' + («(*) + -*) y = o 
tly: tliy = a 0 • y(a) + aj • tf(a) = 0 

tl2y = A y ( 6 ) + A y ' ( 6 ) = i 
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has one and only one solution. These solutions are linearly independent and positive 
on (a9b). 

P r o o f . It follows from Lemma 4 that the solutions of BVP (6), (9) and (6), 
(10) exist and are uniquely determined. Let y\ be the solution of (6), (9) and y2 of 
(6), (10). Evidently yi, 1/2 are linearly independent. We shall show that yx(t) > 0, 
y_t(<) > 0 on (a, 6). We present the proof for the solution y2, the proof for y\ is 
similar. 

First we prove by contradiction that 2/2 ?-- 0. 
Suppose that t0 is the first number in (a, 6) such that y_,(*o) = 0. Since y2 is the 
solution of the equation (6) we have 

(ii) • rf«) = - ^ i p l - -1- jf [,(,) + M) • -,(_) d, 

where t G (a, 6). Evidently y_.(*o) ^ 0 because jft is a non-vanishing solution of the 
equation (6) with the condition t/jjjfc = 1. The condition f/iy2 = 0 implies that 
t0 =£ a. Hence t0 > a. Now (11) yields: 

if _/2(<o) < 0 then y2(a) > 0, y*2(a) < 0, 
if y_.(<o) > 0 then y2(a) < 0, y*2(a) > 0, 

which contradicts the condition U\y2(a) = 0. So we have proved that y2(t) •£ 0 on 
(a, 6), i.e. y2(t) > 0 or y2(t) < 0 on (a, 6). 

Let us suppose that y2 < 0. Form the condition [Iijfc = 0 we get 

»i(fl) = ~ - » ( a ) < 0 . 

From (11) for t0 = a it follows that y^*) < 0 on (a,6). Then y2(6) < 0, ^(6) < 0, 
which contradicts the boundary condition U2y2- 1. Hence that y2(t) > 0 on (a, 6), 
which completes the proof. • 

Definition 2. Abstract functions yi, y2» • • •, Vn are called linearly independent 
iff every identity 

d\ • yi + d2 • y2 + . . . + dn . yn = 0, d, € ii for t = 1,2,..., n, 

i.e. <fi-ft(t) + <b-lfe(t) + . . + d n yn(0 = 0 <€(a,6), 

* € ' « • for t = l ,2, . . . ,n , 

implies that d,- = 0 for t = 1, 2, ..., n. 
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Theorem 2 . Let ax < 0 < ao, flo > 0, fa > 0 and let M € R be such that 
q(t) + M ^ 0 on (a, 6). Then each of BVP's 

(6) (p(0!l)'+(?W + M ) y - . 0 
(12) Cly :C!iy = a0-y(a) + A 1/(0) = e,-

tl-y = A)y(6) + /?xy'W = 0 

and 

(6) WOV)'+(«W + tf)'» = o 
(13) Uy: £/iy = <*0 • y(a) + ft • j/(a) = 0 

C2y = /?oy(6) + ftj/(6) = et 

where 1 = 1 , 2 , . . . has one and only one solution. These solutions are linearly 
independent and positive (by the cone K). 

Proof . Lemma 5 implies that the scalar BVP (6), (9) has one and only one 
positive solution yi. Let us define an abstract function yu (a, b) -+ H by 

yu(t) = yi(t) a t€(a ,6) . 

It is evident that yu is a solution of BVP (6), (12) in the Hilbert space H. Similarly, 
if y2 is the solution of BVP (6), (10) then the abstract function jfci: (a, b) —> H 
defined by 

IfetM = !&(')• c* *€ (a»fr) 
is a solution of BVP (6), (13). The uniqueness of yi,-, y2« follows from the uniqueness 
of yi, y2« Now we prove that they are linearly independent. Let 

d\ • yii + d2 • y2i = 0, 

i.e. dx • yi • et- + d2 • y2 • et- = 0, 

i.e. di • yi + d2 • y2 = 0. 

Since t/i, t/2 are linearly independent we have di = d2 = 0 and so yii, y2i are linearly 
independent. The continuity of yii, y2i and y{0 ŷ t follows from the continuity of yi, 
y2 and yj, yf2, respectively. • 

Theorem 3. Let ot\ < 0 < a0, Po > 0, ft > 0 and let M e R be such that 
q(t) + M ^ 0 on (a, 6). Then there exists a soiution of BVP 

(6) (p(t)'l/)'+(q(t) + M)-y = 0 

(14) Uy:Uiy = ax>0 (^ 0) 

U2y = a2>0 (^0) 
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where a\, a? are given elements from H, and this solution is non-negative (non-

positive). 

P r o o f . Let yi, y2 be the solutions of (6), (9);'(6), (10). Then y = yx -ai+jft-c^ 

is a solution of (6), (14). Since yi, y2 are positive real functions, y is also a non-

negative abstract function. D 

Definition 3. The abstract function a or /? from the space Cl((a,b) ,H) is 
called respectively a lower or an upper solution of BVP (1), (2) iff 

La^f(t,a), UiQ^O, U7a^0 

LP ^ f(t, /?), Ui/3 ^ 0, l/2 ^ 0, respectively. 

Theorem 4. Let the following assumptions hold: 

(i) <*! < 0 < ao, A) > 0, A > 0, let M e R be such that q(t) + M ^ 0 on (a, 6) 

and let the function f(t, y) + M • y be nonincreasing in y € D; 

(ii) let functions a and (3 be a lower and an upper solution, respectively, of BVP 

(6), (2) such that a ^ p and (a, p) C D . Then BVP (1), (2) has at least one solution 

yo and 

ot^yo^P 

P r o o f . The proof follows from Theorem 1 and 3. • 
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