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Abstract. The aim of this paper is to define and study cardinal (direct) and ordinal 
operations of addition, multiplication, and exponentiation for n-ary relational systems, n-
ary ordered sets are defined as special n-ary relational systems by means of properties 
that seem to suitably generalize reflexivity, antisymmetry, and transitivity from the case of 
n = 2 or 3. The class of n-ary ordered sets is then closed under the cardinal and ordinal 
operations. 
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In what follows n always denotes an integer not less than 2; (n] denotes the set 
{ 1 , . . . , n} , Pn. 0n, En denotes the set of all, of all odd, of all even permutations 
of the set (n], respectively. By an n-ary relational system we understand a set G 
together with a subset of Gn. More precisely, let G be a nonempty set. Then a 
subset R C G" is called an n-ary relation on G, and the ordered pair G = (G, R) is 
said to be an ?i-ary relational system. The set G is called the carrier of G. 

Birklioff's arithmetic of ordered sets discussed in [1], [2] and [3] has been general­
ized by several authors—see e.g. [4], [5], [6], [7], [8]. Especially, in [5] V. Novak deals 
with direct (cardinal) operations of addition, multiplication, and exponentiation for 
n-ary relational structures. In [8], J. Slapal generalizes Novak's results to relational 
systems of any (possibly infinite) arity. In this paper we return to finite arity, but 
introduce and study ordinal operations and n-ary ordered sets as well. 

This research was supported by Grant Agency of the Czech Republic, grant no. 
201/95/0468. 
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1. Definition. ([5], [7], [8]) Let G = (G.R.), H = (H,S) be two n-ary rela­

tional systems. Let </>: G ->• H be a mapping such that, for any ( a 1 , . . . , a B ) e G'\ 

(ai,...,an) _ R implies (<p(a\).... ,ip(an)) e S. Then ip is called a homomorphism 

of G into H. The set of all homomorphisms of G into H is denoted by Hom(G, H). 

A homomorphism ip of G into H is called strong if, for any ( a i , . . . , a „ ) e Gn, 

(ai,...,an) e R is equivalent to (<p(a{),... ,<p(a„)) e 5 . An injective strong ho­

momorphism of G into H is called an embedding of G into H. A bijective strong 

homomorphism of G onto H is called an isomorphism of G onto H. We write G ~ H 

and say that the n-ary relational systems G and H are isomorphic if there exists an 

isomorphism of G onto H. 

Clearly, the class of all n-ary relational systems together with homomorphisms as 

morphisms forms a category. 

2. Definition. Let G = (G, R) be an n-ary relational system. The n-ary relation 

R (and G itself as well) is called: 

(1) discrete if ( a i , . . . ,a„) G R is equivalent to tti = . . . = a„; 

(2) reflexive if (a, a,..., a) e R for any a £ G; 

(3) semisymmetric if (ai . • •. ,an) £ P , e 6 En imply (a £ ( i ) , . . . ,aE(„)) € P ; 

(4) antisymmetric if ( a i , • • . , a n ) e R, (a_(i) , . . . ,a_(„)) e P . _> 6 0 „ imply ai = 

. .. = a„; 

(5) transitive if ( a i , . . . , a „ ) 6 P , ( a i , . . . , a„_ 2 . a„ , a n + J ) e P imply ( a i , . . . , 

a „ _ i , a „ + 1 ) e R; 

(6) complete if for any pairwise different elements a i , . . . , a „ € G there exists a 

•K _ P„ such that (a*(i), • •. ,a_(„)) e P ; 

(7) universal if P = G"; 

(8) diagonal if (aij,... ,anj) e R for any j 6 (n], (an,... ,ain) 6 P for any i e (n] 

imply (an, • • • ,a„„) _ P . 

3. R e m a r k . Reflexivity is defined as in [7], transitivity, however, is weaker 

than n-transitivity in [7]. 

4. Definition. Let G = (G, R) be an n-ary relational system. The n-ary rela­

tion P is called an n-ary order if it is reflexive, semisymmetric, antisymmetric, and 

transitive; G itself is then called an 7i-ary ordered set. 

5. R e m a r k . A binary order is clearly an order. A ternary order is a cyclic order 

in the sense of [6] enriched by the set of all triads consisting of identical elements. 

6. Definition. ([5], [8]) Let A = (A, R), B = (B, S) be n-ary relational systems 

such that An B = 0. The cardinal (direct) sum A + B of A and B is the n-ary 

relational system C = (C,T) where C = AU B and T = RU S. 
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7. T h e o r e m . The cardinal sum of discrete, reflexive, semisymmetric, antisym­

metric, transitive, or diagonal n-ary relational systems has the same property. 

P r o o f . It follows directly from the definition. Let us show, for example, the 

antisymmetry. Under the notation of 6, assume that ( a i , . . . , o „ ) 6 T, at least two of 

the elements a i , . . . , a„ are different, and _> € On. We have either ( _ i , . . . , a„) e R, 

or ( a i , . . . , a„) 6 S. In the first case ( a ^ i ) , . . . , _,.,(„)) £ T, for R is antisymmetric 

and o i , . . . ,o„ ^ B. Analogously in the second case. D 

8. Corol lary . The cardinal sum of n-ary ordered sets is an n-ary ordered set. 

9. Def ini t ion. ([5], [8]) Let A = (A, R), B = (_?, S) be n-ary relational systems. 

The cardinal (direct) product AB of A and B is the n-ary relational system C = 

(C,T) where C = A x B and T is the n-ary relation defined as follows: For any 

( a i , . . . , a n ) e An, (&!,...,&„) e Bn, ( (a i ,6 i ) , . . . , (a„ ,&„)) e T e ( a ! , . . . , a n ) 6 R, 

(&!,...,&_) € S . 

10. T h e o r e m . The cardinal product of discrete, reflexive, semisymmetric, anti­

symmetric, transitive, universal, or diagonal n-ary relational systems has the same 

property. 

P r o o f . We show the transitivity only, the other cases being similar. Under 

the notation of 9, assume that ( ( o i , 6 i ) , . . . , (an,bn)) G T, ( (o i ,&i) , . . . , (an_2,6„_2) , 

(on,&„), (a„+i,&„+i)) e T. Then ( a i , . . . , a n ) G R, (a\, — a n _ 2 , a n , a n + i ) £ R, 

(&!,...,&„) 6 S, (&i,.. . , 6 n _ 2 , 6 n , 6 n +i ) e S, so that ( a i , . . . , a„_ i , a„+ i ) e R, 

(&l , . . . , &„_i,&n+l) e 5 . This implies that ( (a i ,&i ) , . . . , (a„_i ,&„-i) , (a n +i ,6 n +i)) 

belongs to T. D 

1 1 . Corol lary . The cardinal product of n-ary ordered sets is an n-ary ordered 

set as well. 

12. Defini t ion. ([5], [8]) Let A = (.4, R), B = (B, S) be n-ary relational systems. 

The cardinal (direct) power AB with the base A and exponent B is the n-ary relational 

system C = (C,T) where C = Hom(B,A) and T is the n-ary relation defined as 

follows: For any / i , . . . , / „ € C, 

( / i , . . . , / „ ) 6 T «» ( / i ( _ ) , . . . , /„(_)) S R for each x e B. 

13 . T h e o r e m . The cardinal power whose base is discrete, reflexive, semisymmet­

ric, antisymmetric, transitive, universal, or diagonal has the same property. 

P r o o f . As before, we show one of the assertions only, namely the semisym-

metry, under the notation of 12. Let ( / i , . . . , / „ ) £ T and let e e En. We have 
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( / i M /«'(-)) 6 R for each x 6 B, so that (fe{1)(x),..., / , { n )(x)) 6 i? for each 

x 6 B , and ( / , ( i ) , . . . , / , ( n ) ) 6 T . D 

14 . Corollary. TJje cardinal power whose base is an n-ary ordered set is an n-ary 
ordered set as well. 

15. Definition . Let Aj = (Aj,Rj) be n-ary relational systems for each j G (n] 

such that Aj, nA,-2 = 0 whenever j i , j 2 - (n], ji / j 2 . The ordinal sum Ai © . . .©A n 

of Ai ,A n is the ?i-ary relational system B = (B,S) where B = U Aj a n c l 
_=i 

S= \J RjU U A,(l) x . . . x A, ( n ) . 
j = l - £ £ „ 

16. Theorem. TJie ordinal sum of reflexive, semisymmetric, antisymmetric, or 

transitive n-ary relational systems has the same property. 

P r o o f . We limit ourselves to the case of transitivity under the notation of 15. 

Let ( a i , . . . ,an) G S and (a j , , . . . , a n _2 ,o» , a„ + i ) G S. 

(i) Let there exist a j 0 such that o i , . . . , a » G Aj0. If n = 2, then either a3 G A,0 

and then (o i ,a 3 ) G 7-j„ C S, or a i , a2 6 A\, a3 G A2 , for the identity is the only 

even permutation of (2], and then (a i ,a 3 ) 6 i j x A2 C S. Let n ^ 3. Then 

a„ + i G Aj0, for otherwise (aj , o n _2 ,a» , a„ + i ) ^ S, and ( o i , . . . , _ » ) 6 -?j„, 

( o i , . . . , o n _ 2 , a n , a n + i ) € /?,„, so that ( a i , . . . , a „ _ i , a „ + 1 ) e Rju CS. 

(ii) Let there exist no j 0 such that a i , . . . , a n e Aj„. If n = 2, then ai g Ai, 

a2 _ A2, hence a3 G A2 and (a i ,a 3 ) G Aj x A2 C S. Admit that n ^ 3. We 

have ( a i , . . . , O n ) G U ^e(l) x ••• x A,(»)i therefore Oj G -lE(j) for each j G (n] 

where e G En. There exists no j 0 such that a\,.. . , a n - 2 , a n , a n + i G A_,„, so that 

( o i , . . . , a » _ 2 , - n , a n + i ) G A{(i) x . . . x A{(n) for some £ G £ - . Thus a; G A?(;) for 

each i G (n - 2], a„ G Aj („_i), a n + i G A{(n). This implies that e(i) = f(i) for each 

i G (n - 2], e(n) = £(n - 1), e(n - 1) = f(n), which is a contradiction, for both e and 

£ are even. D 

17. R e m a r k . In contrast to the binary case, the ordinal sum of complete n-ary 

relational systems need not be complete if n ^ 3. Let, for example, Ai = {a,b, c}, 

A2 = {_ ,e , /} , A3 = {g,h,i}, R\ = {(a,b,c)}, R2 = {(d,e.f)}, R3 = {(g,h,i)}, 

Aj = (Aj,Rj) for j = 1,2,3. Then each of the ternary relational systems Ai ,A 2 ,A 3 

is complete, but their ordinal sum Ai ® A2 © A3 is not, because S = i-i U R2 U R3 U 

Ai x A-2 x A3 U A2 x A3 x A] U A3 x Ai x A2 and no permutation of the ordered 

triad (a,b,d) belongs to S. 

18 . Corollary. TJie ordinal sum of n-ary ordered sets is an n-ary ordered set. 
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19. Defini t ion. Let A = (A.R), B = (B,S) be n-ary relational systems. The 

ordinal product A o B of A and B is the n-ary relational system C = (C, T) where 

C = A x B and T is the n-ary relation defined as follows: For any (a\,..., a„) _ An 

and (&i,.. . ,&n) 6 Bn, ((a\,b\),...,(an,bn)) e T •» at least two of the elements 

a\,..., a- are different, ( a i , . . . , an) 6 R, or Oi = . . . = an, (b\,..., 6„) e S. 

20. T h e o r e m . The ordinal product of discrete, reflexive, semisymmetric, anti­

symmetric, transitive and antisymmetric, or universal n-ary relational systems has 

the same property (properties). 

P r o o f . We show the fourth and fifth cases only. Assume the notation of 19. 

(i) Antisymmetry: Let ((01,61),.. . , (o„,6„)) _ T, let at least two of the ele­

ments ( a i ,& i ) , . . . , (a„,6„) be different, and let _> _ 0 „ . If at least two of the 

elements a , i , . . . , a „ are different, then ( a i , . . . , a » ) _ R, consequently ( a _ ( i ) , . . . , 

°_(„)) t R and at least two of the elements a_ ( 1 ) , . . . ,a_ ( n) are different, thus 

((a_(i),6_(i)),. . . ,(a_(n) ,&_(„>)) $ T. Let Oi = . . . = o n . Then (6 1 , . . . , 6„ ) _ S and 

at least two of the elements &i ,6„ are different, hence again ((a_,(i),6_(i)),. . . , 

(a_w> 6_(n)» t T. 
(ii) Transitivity and antisymmetry: Antisymmetry follows from (i). Let ( ( a i , 6 i ) , . . . . 

(a„,6„)) € T, ( ( o i , 6 i ) , . . . , ( a n _ 2 , 6 n - 2 ) , (an,&„), ( a n + 1 , 6 n + 1 ) ) e T. First of 

all, let at least two of the elements a i , . . . , O n be different, and let at least 

two of the elements o i , . . . , a , , _ 2 , a „ , a n + 1 be different. Then ( o i , . . . , o n ) £ R, 

( a i , . . . , o n _ 2 , o n , o n + i ) e R, consequently (a\,... ,an-\,an+l) € R- If at least 

two of the elements a i , . . . , a n _ i , o „ + i are different, then ((a\,b\),...,(an-\,bn~\), 

(On + i ,6 n + i ) ) _ T. Admit that ai = . . . = an-\ = a n + 1 . Then (a\,... ,a\,an) 6 R, 

( o i , . . . ,Oi ,a„ ,« i ) _ R, a\ 5- a„ , which is a contradiction to the antisymmetry of 

R. Let oi = . . . = a„ = a n + 1 . Then ( 6 i , . . . , 6 n ) e S, (b\,... ,6„_ 2 ,6„ ,6„+ 1 ) e S, 

so that (b\ 6„_i ,6„+ 1 ) 6 S and ( (a i ,&i ) , . . . . (o„_i ,6„_i) , (o„ + 1 ,6„ + 1 ) ) _ 

T. Let Oi = . . . = On j=- an+i. Then ( o i , . . . , a i , o n + ] ) 6 R,. a\ ^ a n + 1 , 

so that ( ( a 1 , 6 1 ) , . . . , ( a „ _ 1 , 6 „ _ 1 ) , ( a n + 1 , 6 n + 1 ) ) £ T. Finally, let oi = . . . = 

an_2 = a„ = a n + i ^ a„_ i . Then ( o i , . . . , a i , a n _ i , a i ) e i?., a! / a „_ i , so that 

( ( o , , 6 1 ) , . . . , ( a n _ i , 6 n _ i ) , ( o „ + i , 6 n + i ) ) e r . D 

21. R e m a r k , (i) For reflexivity of T, it is sufficient to assume reflexivity of S. 

(ii) For transitivity of T, it is sufficient to assume transitivity of R and S and anti­

symmetry of R. 

(iii) In contrast to the binary case, the ordinal product of complete n-ary relational 

systems need not be complete if n ^ 3. Let, for example, A = {a, b,c), B = {d, e, / } , 

R = {(o,6,c)}, S = { ( d , e , / ) } , A = (A,R), B = (B.S). Then both A and B are 
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complete, but' their ordinal product A o B is not, because no permutation of the 

ordered triad ((a,d), (a,e), (6 , / ) ) belongs to T. 

22. Corol lary . The ordinal product ofn-ary ordered sets is an n-ary ordered set. 

23 . Def ini t ion. Let A = (A,R) be a binary relational system, B = (B,S) an 

?i-ary relational system. The ordinal power A B with the base B and exponent A is 

the n-ary relational system C = (C, T) where C is the set BA of all mappings of 

A into B and T is the n-ary relation defined as follows: For any / i , . . . , / „ € C, 

( / l , • • • , / n ) 6 T •» for any a _ A, (fi(a),..., /„(«)) $ S there exists a b e A such 

that (b,a) e R. (fi(b),...,fn(b)) e S, at least two of the elements h(b),... ,fn(b) 

are different, and (h(x),..., fn(x)) e S for each x € A, (x, b) G R. 

24. T h e o r e m . Tiie ordinal power whose base is a discrete, reflexive, semisym-

metric, antisymmetric, or universal n-ary relational system has the same property. 

The ordinal power whose base is transitive and antisymmetric and whose exponent 

is transitive is transitive as well. 

P r o o f . Let us show antisymmetry and transitivity only. Assume the notation 

of 23. 

(i) Antisymmetry: Let ( / i , . . . , / „ ) € T, (fu(i),..•,fu(n)) e T for some _> G 0 „ . 

Admit that there exists an a 6 A for which (/i(a) ,/„(/'•)) ^ S. Then there 

exists a b e A such that (b,a) e R, (fi(b),...,fn(b)) e S, at least two of the 

elements h(b), . . . , / „ (b) are different. Consequently (/_(!)(«),•••,/_(„)(&)) i- S. 

There exists again ace A such that (c, b) e R, (L{1)(c),..., /_(„)(c)) G S, at least 

two of the elements /_( i ) (c) , . . . , / w („)(c) are different. But _-_1 G 0 „ as well, so 

that (/i ( c ) , . . . , /„(c)) £ S. For each x e A such that (x, b) e R we have, however, 

(fi(x),. • •, fn(x)) e S, which is a contradiction. Hence there is no a € A such 

that ( / i ( o ) , . . . , / „ ( a ) ) i S. Consequently ( / i ( a ) , . . . , / „ ( a ) ) G S for each a e A. 

Similarly (fu(i)(a), ...,fu(n) (a)) £ S for each a e A. As S is antisymmetric, we 

have / i (o ) = . . . = fn(a) for each a £ .4, thus / i = . . . = / „ and T is antisymmetric, 

(ii) Transitivity: Let (fu ..., /„) G T, (fu... , / n - 2 , / „ , / n + i ) - T, and let a G .4 

be such that (/, ( a ) , . . . , / „ _ , (a), /„+i(a)) f S. Then either (/] (a),..., /„(o)) ^ S 

or ( / i ( « ) , . . . , / „ -2(o) , / ? 1 (a) , / 1 1 + i(o)) ^ S because of transitivity of S. Let the 

first case occur. As ( / i , . . . , / „ ) G T, there exists a b e A such that (6,a) G R, 

(fi(b) , fn(b)) e S, at least two of the elements / , ( / ;) , . . . , fn(b) are different, and 

for each ,T G A. (x,b) e R we have (fi(x),.-.,fn(x)) £ S. Now, four possibilities 

(a), (b), (c), (d) can occur: 

(a) (fi(&),...,/„_2(6),/„(&),/„+!(6)) e S, at least two of the elements h(b),..., 

fn-2(l>), fn(b),fn+i(b) are different, and (h(x) / „ - 2 ( ~ ) , / „ ( T ) , / 1 1 + I ( . -E)) G S for 
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each x G A, (_,6) G R. Considering transitivity of S, we have ( / i (6 ) , . . . , / „_ i (6) , 

fn+i(b)) - 5 , and ( / i ( _ ) , . . . , / „ - i ( x ) , / n + i ( _ ) ) 6 S for each _ £ A, (_,6) £ 

R. If at least two of the elements / i ( 6 ) , . . . , / n _ , ( 6 ) , /„+i(6) are different, we 

have ( / i , . . . , / „ _ i , / n + i ) - T. Admit that / ,(6) = . . . = /„_i(6) = /„+i(6). 

Then / n (6) # fj(b) for each j = 1 , . . . ,n - 1, n + 1. Hence (/,(&), . . . , / „ (6)) = 

( / i ( 6 ) , . . . , / i ( 6 ) , / „ (6 ) ) . S, ( / i (6 ) , . . . , / „_2(6) , / „ (6 ) , / „ + i (6 ) ) = ( / i ( 6 ) , . . . , / i ( 6 ) , 

fn(b),fi(b)) £ S, a contradiction to antisymmetry of S. 

(b) / i (6) = . . . = /„_2(6) = /„(6) = / „ + i (6 ) , (/,(,;) / n - 2 ( : r ) , /„(_•), / „ + i ( _ ) ) £ 

5 for each _ G A, (_,6) € . . . Then (/,(&), . . . , / „ _ , (6), /„+i(6)) = ( / i (6) , . . . , /„ (6)) 

6 S, at least two of the elements / i (&),... , / „_ i (6) , /„+i(6) are different, ( / i ( _ ) , . . . , 

/„_i(:c), / „ + I ( . T ) ) G S for each _ £ A, (.., 6) G /? due to transitivity of S, so that 

(/i,...,/„-i,/„+i)er. 
(c) ( / , (&) , . . . , / „ - 2 (&) , /„(&), /n+i(6)) i S. As ( / i , . . . , / „ - 2 , / „ , / „ + l ) - r , there 

exists a c £ A, (c,6) 6 i? such that ( / i ( c ) , . . . , / n _ 2 ( c ) , /„(c), /„+i(c)) e S, 

at least two of the elements / i ( c ) , . . . , / „_ 2 (c ) , / n (c ) , / n +i(c) are different, and 

( / i ( _ ) , . . . , / „ _ _ ( _ ) , / „ (_) , /„+i(_)) - S for each _ £ A, (_,c) G /?. Considering 

transitivity of R we have (c, a) £ i?. By the preceding, we have ( / i ( c ) , . . . , /„(c)) e S 

(for (c, 6) G -.) and (/i ( _ ) , . . . , /„(_)) G S for each „ G A, (_, c) G i? (by transitivity 

of /? ) , consequently, regarding transitivity of S, ( / i ( c ) , . . . , / „ - i ( c ) , /„+i(c)) G S 

and ( / i ( x ) , . . . , / „ - i ( _ ) , / „+ i ( - ) ) G S for each _ G A, (_,c) G i. . If at least 

two of the elements / i (c) , /„_i(c), /„+i(c) are different, we are done. Admit 

that / , (c) = ... = /„_i(c) = / „+ , (c). Then (/, ( c ) , . . . , /„(c)) = (/ , ( c ) , . . . , / , (c), 

/„(c)) G S, ( / , ( c ) , . . . , / „ _ 2 ( c ) , / - (c ) , /«+.(_)) = ( / i ( c ) , . . . , / i ( c ) , / . ( c ) , / i (c)) G S, 

/ i ( c ) 7̂  /„(c) , which is a contradiction to antisymmetry of S. 

(d) ( / i (&) , . . . , / n _ 2 (6 ) , / n (6) , /n+i(6)) G S, there exists an _ G A, (_,6) G R such 

that ( / i ( _ ) , . . . , / n _ 2 ( x ) , / „ (_ ) , / n +i(_) ) ^ S. As ( / i , . . . , / „ - 2 , / „ , / „ + ! ) € T, 

there exists a c G A, (c,_) G /? such that (/i(c) /„_2(c) , /„(c) , /„+i(c)) G S, 

at least two of the elements / i ( c ) , . . . , / „_ 2 (c ) , /„.(c), / n+i(c) are different, and 

(fi(y).-..,fn-2(y). fn(y), /„+i(y)) G S for each y G A, (y,c) G /?.. Considering 

transitivity of R we have (c, a) G iJ. By the preceding, we have ( / i ( c ) , . . . , /„(c)) G S 

(for (c,6) G /?) and (/i(y) /„(y)) G S for each y G A, (IJ,C) G iJ. Regarding 

transitivity of S, we obtain (/ , ( c ) , . . . , / „_ i (c) , /„+i (c)) G S and (/i ( y ) , . . . , / „ _ , (y), 

fn+i(v)) £ S for each y £ A, (y,c) £ /?. If at least two of the elements 

/ i ( c ) , . . . , / „_ i (c ) , / n + i ( c ) are different, we are done. The case of / i (c) = . . . = 

/ „ _ , (c) = / „ + i (c), however, leads to a contradiction to antisymmetry of S similarly 

as in (c). The case of (fi(a),..., / „_ 2 (a ) , /„ (a) , /„+i(a)) ^ S is analogous. D 

25. Coro l la ry . The ordinal power whose base is an n-arv ordered set and whose 

exponent is a transitive binary relational system is an n-ary ordered set. 
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26. Definition. Let A = (A,R) be an n-ary relational system. The dual n-ary 

relational system A to A is the 71-ary relational system B = (A, S) where S is the 

n-ary relation defined as follows: For any (01,. • • ,an) _ An, 

(o i , . . . ,On) e S o ( a „ , . . . , o i ) e R. 

27. Theorem. The duai n-ary relational system to a discrete, reflexive, semisym-

metric, antisymmetric, semisymmetric and transitive, complete, universal, or diago­

nal n-ary relational system has the same property (properties). 

P r o o f . For brevity, we show the third and the fifth property only. Assume the 

notation of 26. 

(i) Semisymmetry: Let ( a i , . . . , a n ) e S, e 6 Bn. Then ( t t n , . . . , o i ) € R, thus 

( o n + i _ - ( i ) , . . . , o n + i _ e ( n ) ) e R, so that (o e( i ) , . . . ,aE( n)) 6 S. 

(ii) Semisymmetry and transitivity: Semisymmetry follows from (i). Let ( a i , . . . ,a„) 

_ S , ( n i , . . . , o n _ 2 , a n , o n + i ) e S. Then ( a n , . . . ,oi) 6 R, ( a n + i , a n , a n _ 2 , . . . ,Oi) £ 

R. The case of n = 2 is evident. Let n ^ 3. Clearly ( 3 , 4 , . . . ,n, 1,2) G 

En. Considering semisymmetry of R, we have ( a n _ 2 , . . . ,o i , a „ , a„_ i ) £ R, 

( a n _ 2 , . . . , o i , a n + i , o „ ) 6 R. Due to transitivity of R, it follows that ( a n _ 2 , . . . , o i , 

O n + i ,O n_i) 6 R, so that, by semisymmetry of/?, ( o n + i , o n _ i , . -. ,Oi) 6 R. Hence 

( o i , . . . , o n _ 1 , o n + i ) e S. D 

28 . Corollary. The duai to a (compietej n-ary ordered set is a (complete^ ?z-aiy 

ordered set. 

29. Theorem. For any n-ary relational systems A, B with disjoint carriers and 

for any n-ary relational system C we have 

A + B= B + A. 

(A + B)C = AC + BC, 

C(A + B) =CA + CB. 

P r o o f . The first equality is trivial. The second and third are special cases of 

Theorem 4 in [8]. D 

30. Theorem. For any n-ary relational systems A, B,C with pairwise disjoint 

carriers we have 

A + (B + C) = (A+B)+C. 

P r o o f . It follows from [8], Theorem 1. D 
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31 . T h e o r e m . For any n-aiy relational systems A, B,C we have 

P r o o f . In the first case, under the notation of 9, it suffices to take the natural 

bijection ip: A x B ^ B x A defined by ip{{a,b)) = {b,a) for any a e A, b e B; ip is 

clearly an isomorphism of AB onto BA. The second case follows from [8], Theorem 2. 

a 

32 . Theorem . For any n-ary relational systems B,C with disjoint carriers and 

for any n-ary relational system A we Jiave 

P r o o f . It follows from [8], Theorem 8. D 

33 . T h e o r e m . For any n-ary relational systems A. B,C we Jiave 

(AB)C ~ A c B c . 

P r o o f . It follows from [8]. Theorem 7. D 

34 . Theorem. Let A, B,C be n-ary relational systems such that A is universal 

or A is reflexive and both B and C are discrete. Then 

A B C ~ ( A B ) C . 

P r o o f . It follows from [8], Corollary of Theorem 5. D 

35 . Theorem . Let A, B,C be n-ary relational systems such that B and C are 

reflexive. Then there exists an embedding of ABC into (A B ) C . If moreover, A is 

diagonal, then 
ABC _ ( A B ) r_ 

P t o o f. It follows from [8], Theorem 9. D 
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36. Corol la ry . Let A, B, C be n-ary ordered sets such that A is diagonal or both 

and C are discrete. Then 

37 . T h e o r e m . For any n-ary relational systems A, B with disjoint carriers we 

have 

A+ B = A+B. 

P r o o f . It follows directly from the definitions. D 

38. T h e o r e m . For any n-ary relational systems A, B we have 

P r o o f . Let us show the second equality only. Let A = (A,R), B = (B.S). 

It is easy to prove that Hom(B, A) = Hom(B,A). Hence both sides of the equality 

have the same carrier Hom(B,A). Denote A = (A,T), AB = (Hom(B, A),U), AB = 

(Hom(B,A),V), A 5 = (Hom(B.A),VF). Let (fu...,/,,) e V. Then ( / „ , . . . , / i ) £ 

U, thus (fn(x) / i (x)) e R for each x e B, consequently (h (x), ...,fn(x))eT 

for each xeB and ( / i , . . . , / „ ) g W, so that V C W. Similarly W C V. D 

39. T h e o r e m . For any n-ary relational systems A, B,C we have 

A o ( B o C ) ~ ( A o B ) o C . 

P r o o f . Denote A = (A,R), B = (B,S), C = (C.T), A o B = (A x 

B,U), B o C = (B x C,V), A o (B o C) = (A x (B x C),W), (A o B) o C = 

((A x B) x C,X). Let ip be the natural bijection of A x (B x C) onto (A x 

B) x C defined by v((a,(6,c))) = ((a,6),c) for any a e A, b e B, c e C. Let 

((ai , ( 6 i , c i ) ) , . . . , (an, (6n ,c„))) e W. Then at least two of the elements a i , an 

are different, ( o i , . . - , o „ ) e R or aj = . . . = «„, ((6i,ci) , (6„,en)) 6 V, so 

that at least two of the elements a i , . . . , a n are different, ( a i , . . . , o „ ) € R or 

a i = . . . = a„, a t least two of the elements 6i 6„ are different, ( 6 i , . . . , 6„) e S 

or a i = . . . = an, 6i = . . . = 6„. ( c i , . . . ,c„) £ T, consequently at least two of the 

elements ( a i , 6 i ) , . . •, (a„,6„) are different, ( ( a i , 6 i ) , . . . , (a„ ,6„)) e U or (ai,&i) = 

. . . = (a„ ,6 n ) , ( c i , . . . , c n ) 6 T, hence (v((a i , (6i ,c 1 ) ) ) , . . . ,v>((a n , (6„ ,c r l ) ) ) ) = 

( ( ( a i , 6 i ) , c i ) , . . . ( ( a n . 6 n ) , c , , ) ) 6 X and f is a homomorphism of A o (B o C) 

onto (A o B) o C. Similarly (v( (a i , (6 i ,Ci ) ) ) , . . . ,v ' ( (a r . , (6 n , c n ) ) ) ) G X implies 

((oi, ( 6 i , c i ) , . . . , (an, (6„,c„))) 6 W and $ is an isomorphism of A o (B o C) onto 

(A o B) o C. • 
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40 . T h e o r e m . Let A j , . . . , A„ be n-ary reJationaJ systems with pairwise disjoint 

carriers. Tiien, for any n-ary relational system B, we have 

(Aj e . . . © A„) o B = Aj o B © .. . © A„ o B. 

P r o o f . As the n-ary relational systems A j , . . . , A„ have pairwise disjoint car­

riers, the n-ary relational systems Aj o B , . . . , A„ o B have pairwise disjoint carriers 

as well. Let Aj = (Aj.Rj) for j £ (n], B = (B.S). Aj © . . . © A„ = ( Q AhT), 
j=i 

(Aj © . . . © A„) o B = (( U Aj) x B, U), Aj o B © .. . © A„ o B = (( Q .4,) x B. V). 
j = i i = i 

Assume that ((aj , 6 j ) , . . . , (an , 6„)) £ U. Then at least two of the elements a j , . . . , o„ 

are different, ( a j , . . . , a „ ) e T or aj = . . . = a„, (bu...,bn) £ S. Hence at least 

two of the elements o j , . . . ,o„ are different, o j , . . . , a„ € Aj, ( o i , . . . ,a„) £ Rj for 

some j £ (n] or aj = . . . = a„, (&i b„) € S or there exists an e £ En such that 

Oj e i E ( l ) for each i £ (n] and ( ( a j , 6 j ) , . . . , (a„,6„)) e V. Similarly V C (7. • 

41. R e m a r k . The second distributive law, of course, does not hold in general, 

because it is even not valid for binary relational systems. 

42. T h e o r e m . FOJ- ajiy binary relationai systems A, B witjj disjoint carriers and 

for any n-ary relational system C we have 

A + B C ~ ( A C ) ( B C ) . 

P r o o f . Let A = (A, R), B = (B,S), C = (C,T). A C = (CA,U), B C = (CB,V), 
a + B C = (CAUB,W), (AC)(BC) = (CA x CB,X). Let <p be the natural bijection of 

CAUB onto CA x CB defined by *>(/) = (f\A,f\B). Assume that ( / j , . . . , / „ ) e W. 

In order to show that (y>(/j) . . . . , *>(/„)) = ( ( / i f 4 / 1 f B ) . . . . , ( / „ f A / n f B ) ) 6 

A', we must verify that (/j f .4. . . . , / J A ) £ l \ (/j [B / , J B ) £ K. Let 

( ( / j f y l ) ( « ) , . . . , ( / J A ) ( a ) ) £ T for some a £ A. Then ( / i (a) , . . . , / „ ( a ) ) £ T 

and there exists a 6 e i U S such that (6, a) e J f u S , (/i(6), • • • ,/„(&)) 6 T, at 

least two of the elements / i (6) , • • •, /„(6) are different, and (/i (a ; ) , . . . , /„(x)) e T 

for each x e Au B, (x, b) € R U 5 . But (6, a) 6 J J U i ' implies 6 6 .4 and 

(x,b) e Rl) S implies x £ A. Hence there exists a 6 6 A such that (b, a) e R, 

((fi\A)(b),....(fn\A)(b)) £ T. at least two of the elements (fi\A)(b),...,(fn\A)(b) 

are different, and ((/j fA)(a:), . . . , (/„ fA)(x)) £ T for each x £ -4, (.r, 6) £ R, so that 

(/i \A...., /„ r.4) £ C/. Similarly (/i fB, . . . . /„ fB) £ V and (v(/i), • • •, <?(/„)) £ A. 
Analogously (<^(/j) V>(/„)) 6 -Y implies ( / j . • • - , / » ) £ W- • 
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43. Theorem. Foi' any binary relational system* A, IB with disjoint carriers and 

for any reflexive n-ary relational system C we have 

* ® B C ~ ( A C ) o ( B C ) . 

P r o o f . Let 4 = (A,R), B = (B,S). C = (C,T), A e B = (A U B,U), *®B C = 

(CAUB,V), AC = (CA,W), BC = (CB,X), ( a C ) o ( B C ) = (CAxCB,Y). Again, let 

if be the natural bijection of CAI~>B onto CA x CB <lefined by <p(f) = (f\A,f\B). 

Assume that (<P( / I ) , . . . ,¥?(/„)) = ( ( / t \ A , h\B),...,(/„\A,f„\B)) e Y, i.e. either 

at least two of the elements fi\A,..., / „ r̂ 4 are different, (/i [A . . . . , / „ f/1) G IV, or 

/ J y l = . . . = /„rA, (fi\B fn\B) e X. Now. let there exist an a € A U B 

such that ( / i ( a ) , . . . , / „ ( a ) ) i T. I f a g /I, then ((/ i fA ) (a ) , . . . , (fn\A)(a)) i T and, 

because of reflexivity of T, at least two of the elements fx\A fn\A are differ­

ent, thus (fi\A,...,fn\A) e W. Hence there exists ab e A such that (b,a) e R. 

((/ i r^4)(6),.. . , (/„ \A)(b)) e T. at least two of the elements (/, \A)(b), . . . , ( / „ M(&) 

are different, and for each x e A, (x, b) e R we have ( ( / : \A)(x),..., (/„ (A)(x)) 6 T. 

Consequently, there exists a 6 e A U B such that (b, a) e U, (fi(b),...,fn(b)) e T, at 

least two of the elements fi(b),..., fn(b) are different, and for each x e AuB, (x, b) e 

U we have (fi(x),...,fn(x)) g T. If a G B, then ((fx\B)(a),. .. ,(fn\B)(a)) <£ 

T. If, moreover, at least two of the mappings fi\A,. ..,fn\A are different, then 

(/i \A,..., / „ \A) e W. Let there exist a 6 e A such that ((/i \A)(b), . . . , ( / „ \A)(b)) $. 

T. Then there exists a. c € A such that (c,6) e R. ( ( / , r^)(c) (fn\A)(c)) e T, 

at least two of the elements (/if .A)(c), . . . ,(fn\A)(c) are different, and for each 

x e A, (x,c) e R we have ((fi\A)(x) (fn\A)(x)) e T. Hence there exists 

a c G A U B such that (c,o) e U, ( / i ( c ) , . . . , / „ ( c ) ) G T. at least two of the 

elements fi(c),.. ., fn(c) are different, and for each x € A U B, (x,c) G f/ we 

have (fi(x),...,fn(x)) e T. On the contrary, let there exist no b e A such that 

((fi\A)(b),... ,(fn\A)(b)) <£ T. Then for any b e A such that at least two of 

the elements (/i \A)(b),..., (/„ \A)(b) are different, we have b e AuB, (b,a) G U, 

(fi(b) , fn(b)) e T, at least two of the elements / i (b),..., fn(b) are different, and 

for each x e AUB, (x, b) G U we have (/i (x),.... fn(x)) G T. Finally, if a G B, 

((/. rB)(a),.... (/„rB)(a)) <̂  T and /, f.4 = ... = /„f.4. then (A fB,.. . , /„(£) G X. 
thus there exists ab e B such that (b,a) e S, ((fi\B)(b),... ,(fn\B)(b)) G T. 

at least two of the elements (}i\B)(b) ,(}n\B)(b) are different, and for each 

x e B, (x,b) G S we have ((}\\B)(x),... ,(fn\B)(x)) e T. Hence there exists a 

b e AUB such that (b.a) G U, (fi(b),...,fn(b)) G T, at least two of the ele­

ments fi(b),. . . , /„(6) are different, and for each x G A U B. (x,b) G U we have 

(!i (x), •••, /„(*)) € T (for .<• G B this follows from the preceding, for x e A from the 



reflexivity of T). In all cases we have ( / i , • • • , / „ ) € V. Similarly (fx,... , / „ ) eV 

implies (v(/i),...,v(/»))er. D 

44. Theorem. For any n-ary relational systems A 1 , . . . , A„ with pairwise disjoint 

carriers we have 

Al ©T77© A„ = An © . . . © Al. 

P r o o f . LetAj =(Aj,Rj).Aj = (Aj,Sj) for j G (;?], A i©. . .©An = (\J Aj,T), 
3=1 

Ai©77T©An = ( U Aj,U), An © . . . © Ai = ( (J A,-,V). Let ( a i , . . . , a n ) £ J7. 
j = i j=\ 

Then ( a n , . . . , 01) € T, thus either (a„, ai) G Rj for some j G (n] or there exists 

an e G En such that On+i-j £ A£(j) for each j £ (??]. In the first case we have 

( o i , . . . , an) G Sj C V. In the second case we have a,- G A£(n+1_^) for each j £ (??]. 

Hence ( a i , . . . , a „ ) G Ae(n) x . . . x Ae(i) C V. Consequently U C V. Similarly 

V C [/. D 

4 5 . T h e o r e m . For ai?y n-a?;y relational svstems A. B we iiave 

^P__roof. LetA = (A,R), B = (B, S). A = (A,T), B = (B,U), AoB = (AxB, V), 

A o B = (A x B,W), A o B = (A x B,X). Let ( (a i ,&i) , . . . .(«„,&„)) 6 VV. Then 

((an,&n), • • •, (ai,&i)) e V, thus either at least two of the elements a „ , . . . , a i are 

different, ( a „ , . . . , o i ) £ R or a„ = . . . = a\, (&„,... ,&i) 6 S. This implies that either 

at least two of the elements a i , . . . , a„ are different, ( a i , . . . , a„) e T or ai = . . . = a„, 

(&!, . . . ,&„)€ t/, so that ((oi, &i ) . . . . , (an,bn)) e X.imdW CX. Similarly X C W. 

a 

46 . T h e o r e m . For any binary relational system A and any n-ary relational sys­

tem B we have 

P r o o f . Let A = (A,R). B = (B,S), B = (B.T), A B = (BA,U), A B = 

(BA,V), A B = (BA,W). Let ( / i , . . . , / „ ) € V. Then ( / „ , . . . , / i ) e t/. Sup­

pose that ( / i ( o ) , . . . , / n ( o ) ) ^ T for some a £ A. Then ( / „ ( a ) , . . . , / i (a ) ) ^ 5 , 

thus there exists a & e A such that (b,a) e R. ( /„(&),. . . ./i(&)) G S, at least 

two of the elements / „ (&) , . . . . ,/i(&) are different, and for each x G A, (x,b) G R 

we have ( / n ( s ) , . . . , / i ( x ) ) G S. Hence there exists a & G A, (&, a) G E such that 

(/i (&). . . . , /„(&)) G r , at least two of the elements /i(&) /„(&) are different, 

and for each x G A, (x,b) G R we have (/ i(x) ,fn(x)) G T. Consequently 

( / l , • • •, /„) € W and V C W. Similarly PT C V. D 
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