
Mathematica Bohemica

Shigenori Yanagi
Asymptotic behavior of the solutions to a one-dimensional motion of compressible
viscous fluids

Mathematica Bohemica, Vol. 120 (1995), No. 4, 431–443

Persistent URL: http://dml.cz/dmlcz/126088

Terms of use:
© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126088
http://dml.cz


120(1995) MATHEMATICA BOHEMICA No. 4, 431-443 

ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS 

TO A ONE-DIMENSIONAL M O T I O N 
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Summary. We study the one-dimensional motion of the viscous gas represented by the 
system vt — ux = 0, ut+p(v)x = u(ux/v)x + f (J^ vdx,t), with the initial and the boundary 
conditions (v(x,0),u(x,0)) = (v0(x), UQ(X)), u(0,t) = u(X,t) = 0. We are concerned with 
the external forces, namely the function / , which do not become small for large time t. The 
main purpose is to show how the solution to this problem behaves around the stationary 
one, and the proof is based on an elementary L2-energy method. 
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1. INTRODUCTION 

In this paper we study the asymptotic behavior of solutions to the one-dimensional 
motion of the viscous gas on a finite interval. In Lagrangian mass coordinate, such 
a motion is described by the system of equations 

(1.1) vt-ux = 0, 

(1.2) ut+p(v)x=ß(^)^+fЏ\dx,?J, 

where v, u, p, n, and / are the specific volume, the velocity, the pressure, the 
viscosity coefficient, and the external force of the fluid, respectively. We consider 
these equations in a fixed domain Q^ defined by 

(1-3) Q00 = {(x,t) \0<x<X, t>0}, 
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together with the initial and the boundary conditions 

(1.4) v(x,0) =v0(x), u(x,0) =u0(x) o n O < s ; < X , 

(1.5) u(0,t) = u(X,t) = 0 ont>0. 

This and related problems have been investigated by a number of authors including 

Kanel' [5], Itaya [3, 4], Kazhikhov [6], Kazhikhov & Shelukhin [9], Kazhikhov & 

Nikolaev [7, 8], and so on. For their results and the historical progress, we could 

refer to the paper of Solonnikov & Kazhikhov [12]. 

Now we proceed to review this problem in the presence of external forces. Mat-

sumura & Nishida [11] proved the global existence of a solution for any external 

forces with its derivatives and itself being bounded, assuming that the gas is ideal 

and isothermal, and obtained the estimate 

(1.6) C0
l <. v(x,t) <. C0 for (x,t) e Qx, 

where Co is a positive constant. Recently, Matsumura [10] improved their results, 

showing that the solution is exponentially stable if the external force depends only 

on £ = fx v dx and its derivative with respect to £ is sufficiently small. For a general 

barotropic gas, Tani obtained in his lecture note [13] the exponential stability of the 

solution if / ( £ , t) belongs to L^O, co; L°°(I))nL2(Ix (0, oo)), where / = [0, f* v0 dx]. 

We shall also mention the papers of Beirao da Veiga. In [2], he proved the global 

existence of a solution if some norm of the initial date is bounded by constant which 

is determined by the L°°-norm of / . We notice that his conclusion is not a result for 

small data, because the constant mentioned above tends to infinity as the L°°-norm 

of / tends to 0. In [1], he also obtained, in his words, the complete characterization 

of time independent external forces for which the corresponding stationary solutions 

are known to exist (see also [2]). Finally, we shall show Zlotnik's interesting results. 

In [15], he proved that if the stationary state of the external force is a decreasing 

function of 0 then the solution is exponentially stable. 

Our interest in the present paper is to investigate the asymptotic behavior of the 

solution with external forces depending on time t and not becoming small for large 

time. We will consider two cases, namely we will investigate an ideal gas in Section 

2, and a general barotropic gas in Section 3. In what follows, we assume that the 

viscosity coefficient is a positive constant, and that the external force / = / (£ , t), 

£ = fx v dx has a limit function f(0 hi L°°(I) satisfying 

(1.7) f0(S, t) = f(01) - f(0 e L2 (0, co; L°°(I)) , 
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where / = [0 , / 0 f0d:r]. To obtain the strong solution (see [2], for example), we 

impose the following assumptions on the initial data and the external force: 

(1.8) (vo,uo)eH1(0,X)xH0-(0,X), inf v0(x) > 0, 

(1.9) / , / 4 , and / t e L ° ° ( / x ( 0 , o o ) ) , 

where Hk and ff0 (k >. 0) are the usual Sobolev's spaces with the norm || • ||jt, and 

we use the notation || • || instead of || • l|0. 

2. T H E CASE OF p = -
v 

2 . 1 . S t a t i o n a r y P r o b l e m a n d T h e o r e m . In this section, we assume that the 

gas is ideal, i.e. 

(2.1) p(v) = - (a being positive constant). 
v 

Then the equation (1.2) is reduced to 

(2.2) ut+Qx=,(^)x + f[[vdx,t). 

For the global existence of a solution to our system, we have already known the 

following theorem [11]: 

T h e o r e m 2 . 1 . (Matsumura & Nishida) Assume (1.8) and (1.9). Then the initial 

and boundary value problem (1.1), (1.4), (1.5), (2.2) Jias a unique global solution in 

C n O . o o ^ f f 1 x ffo1) satisfying (1.6) and tJie estimate 

(2.3) suplKw.uJWHi^CdKwo.uo)!!!, inf«d,|/ |oo). 
t>o 

In order to investigate the asymptotic behavior of the solution, it is necessary to 

consider the stationary problem. Let (??(:r),0) be the stationary solution to (1.1), 

(1.4), (1.5) and (2.2), then the function n(x) must satisfy the system of equations 

< - » ( ; ) . - ' ( / » • 

(2.5) f r,(x)dx = J v0(x)dx (=Y). 
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We can easily see that this stationary problem has a unique solution in the following 

way. Let w(x) be defined by w(x) = / r/dx. Then (2.4) and (2.5) are reduced to 
Jo 

(2.6) I — ] = / ( « , ) , 

(2.7) w(0) = 0, w(X) = Y. 

We rewrite (2.6) as 

(2.8) - o — = F(w)x, 

where F(w) is defined by F(w) = / / (£) d£. Integration of (2.8) with respect to x 
Jo 

yields 

(2.9) wx = Ae-iF{w), 

where A is a constant. Since F(w) is a Lipschitz continuous function, the initial 

value problem (2.9) with u>(0) = 0 in (2.7) has a unique solution for an arbitrary 

fixed constant A. We now proceed to show that there is a unique constant A for 

which the above solution satisfies the relation w(X) = Y in (2.7). As the proof of the 

existence is trivial, we shall only prove the uniqueness. We note that A > 0 because 

of Y > 0. Let A and B satisfy A > B(> 0), and let WA,WB be the corresponding 

unique solutions to (2.9) with w(0) = 0. It is enough to show that WA(X) > WB(X) for 

0 < x ^ X. We shall prove it by reductio ad absurdum. We assume that there exists 

a point x0 e (0,X] such that WA(X0) = WB(X0) and WA(X) > WB(X) for 0 < x < x0. 

Then we must have WAX(X0) ^ WBX(X0). On the other hand, from (2.9), we have 

WAX(X0) > WBX(X0). This is a contradiction. 

Then our first main theorem is 

T h e o r e m 2.2. Assume (1.7)-(1.9). Let (v,u) be the unique global solution to 

(1.1), (1-4), (1-5), (2.2), and Jet n be the stationary solution mentioned above. Then 

there exist constants e0 > 0, S > 0 and C > 0 which depend only on the given data 

such that if |/eloo ^ £o then the following estimate is satisfied for all t ^ 0: 

(2.10) ||(« - r,)(t)\\l + W O l l i *S Oe~st (l + J e^| /0(s) |2o ds 
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The proof of this theorem is done in Section 2.3. In Section 2.2, we will show some 

energy estimates used in Section 2.3. 

2.2. E n e r g y E s t i m a t e s . In what follows, we shall denote by the letter C a 

universal constant which depends only on the given data. We first prove the following 

lemma. 

L e m m a 2.3. Let (v,u) be the unique solution of (1.1), (1.4), (1.5), (2.2), and Jet 

n be the unique solution of (2.4), (2.5). Then the following estimate is valid for all 

t^Q: 

(2.H) x 

£J* fa+PM}d* + llX^d^c(\M„Jo
X vQUX + \f0(t)\l), 

where P and Q are defined by P(v,n) = a(^ + log J - 1) ^ 0 and Q = {} - | , 

respectively, and where |/{|oo denotes the L°°(7 x (0, co)) -norm of / e , whiJe |/o(t)loo 

denotes the L°°(I)-norm of f0-

P r o o f . We rewrite the equation (2.2) in the form 

(2.12) ut + Qx=^)x+f(joVdX,t)-f(fondx) 

MT)MLv*>*)-f(£ *****) 

= »(^)x + fd;t) Jo(v-n)dx + f0(J* VdX,?j, 

where we have used the relation (2.4). We multiply (1.1) by -Q, (2.12) by u and 

add the results. Integration of this equation over [0, X] yields 

(2.13) 
d rx ( I 1 fx u2 rx r rx 

TtJ0 {2"2 + P(v,V)\d*+»Jo f
d* = i, hudXJo(v-n)dX' + Jo f0udx. 

Using (1.6) and the relation ||u|| ^ CHuxH, each term of the right hand side of (2.13) 

is estimated as 

(2.14) / frudx [ (v~v)dx'\^\fi\00 [' \u\dx [X\v-n\dx' 
\ Jo Jo I Jo Jo 

^£U^ + C\huj\Q2dx, 
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I rx i u rx u2 

(2.15) / /o»di ^ 7 —dz + CI/oMii,. 
I Jo \ * Jo v 

As discussed in [14], there exists Xi(t) 6 [0,X] such that v(X1(t),t) = r](Xi(t)), 

so that Q can be represented by Q = / Qxdx, which gives the relation ||Q|| < 
Jxx(t) 

C\\QX\\. From (2.13)-(2.15) and the above relation, we obtain (2.11). • 

In the next lemma, we shall estimate Qx. 

Lemma 2.4. In the same situation as in Lemma 2.3, the foJJowing estimate is 
satisfied for all t ^ 0: 

(2-16) ij* {£<*--)•+-•<--} d*+ ( | - c ^ ~ ) j f * « * 

<c(jf*-£d«-H/o(t)ll,)-

Proof. Owing to the relation u( = ux, it is easy to see that 

,,i7, t w ^ - t - a ) . . 

Thus we can rewrite (2.12) in the form 

(2-18) 

«i + Qx + J » W , + ^f(JXr,dx\ux = f((-,t) JX(v -r,)dx + f0(J 17 ds , . ) . 

Multiplying (2.18) by vQx and integrating it over [0,X] gives 

(2.19)£-4: f (vQx)
2dx+ ( vQ2

xdx+ ( utvQxdx + ^( }uxvQxdx 
2a dt J0 J0 J0 a J0 

= / fivQx dx (v- n) dx' + / f0vQx dx. 
Jo Jo Jo 

The third term on the left hand side of (2.19) is calculated as follows: 

(2.20) / utvQxdx=— uvQxdx- u(vQx)tdx 

-ijf-**+Jf .{*.•(*)> 
d (x rX au2 fx 

= T / uvQxdx- / — -dx+ / uuxfdx, 
dt J0 J0 v Ja 
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where we have used (2.17). By using (1.6) and Schwarz's inequality, we conclude 

from (2.19) and (2.20) that 

(221) ljf{£w^+«9-}d*+jfB<«d-
fx aul a fx - fx 

= / da: / fuxvQxdx — / uuxfdx 
Jo v a- Jo Jo 
+ / UvQx dx (v- n) dx' + / f0vQx dx 

Jo Jo Jo 
rx u2 i rx rx «2 

^a U^Ax+- vQ2
xdx + C ^=dx 

Jo v 4 J0
 x J0 v 

+ C\U\oof vQ2
xdx + l [ vQ2

xdx + C\f0 
Jo 4 Jo 

•í\ + c\U )j\Qldx + c[[Uldx+\f0(t)\l 
v2 

This completes the proof of Lemma 2.4. D 

We finally estimate ux. 

L e m m a 2 .5 . In the same situation as in Lemma 2.3, we have the following esti­

mate for all t ^ 0: 

P r o o f . Multiplying (2.12) by -uxx and integrating it over [0,X] yields 

(2.23) \l[u2
xdx + ,[^dx 

fX „ „ fX vxuxuxx , 
= / QxUxx dx + n / 5 da; 

Jo Jo v2 

- / Uuxx dx j (v - n) dx' — I f0uXx dx. 
Jo J0 Jo 

Each term on the right hand side of (2.23) is estimated as follows. First by using 

Schwarz's inequality, 

X „,2 I rx I // rx v2 rx 

(2.24) / Qxuxx d a U £: / — dx + C / vQ2
xdx. 

[Jo | U J o « Jo 
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Next, 

rX ,,2 
(2.25) J f S - * * £ d « | < £ / ^ d x + C / vluldx. 

I Jo « I 10 Jo *> Jo 

Because of u(0, t) = u(X, J) = 0, there exists X2(t) 6 [0, X] such that u,(X2(t),t) = 
0, so that 

(2.26) u2
x= [ J ^ d x ^ / |u..u«..| da; *£ e / u2

xxdx + c[ u2dx 
'Xj(t) "x Jo Jo Jo 

for any small e > 0. Therefore, the last term on the right hand side of (2.25) is 
estimated as follows: 

(2.27) c[ v2
xu

2
xdx^^-[ ^dx + C [ ^-dx. 

Jo 10 Jo v J0 v 

Here we have used (2.3). Next, 

| [X fx I fX 2 fX 
(2.28) / /{«XIdx / (t> - TJ) dx' < £r / -2^dx + C / uQ2 dx. 

I Jo Jo I 10 Jo v Jo 
Finally, 

(2.29) | jf * f0uxx dxj ^ ^ /Q
X V dX + C ^ l -

Inserting the above inequalities (2.24)-(2.29) into (2.23), we immediately obtain 
(2.22). a 

2.3. Proof of Theorem 2.2. We are now in position to prove the Theorem 2.2. 
Multiplying (2.16) by 0i, (2.22) by 62 and adding the results together with (2.11) 
implies 

(2.30) ±E2(t) + {^-cel-ce2) J^ ^dx 

+ ( | - C( l + 0i) l/tloo - Ce2^ J* vQl dx + ^ J* ^ dx 

< C ( l + 0i + 02)|/o(t)|L 

where E2(t) is defined by 

(2.31) E2(t)= J U « a + P(«,»7) + ^ (vQ_) 2 +0iu«Q I + ^ i4Jd~ . . 
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Using Schwarz's inequality, we can estimate the term 8\uvQx as 

(2.32) fourtW < ^(vQx? + ^ V . 
4a /i 

Thus if 1/5 |oo is sufficiently small, we can choose the positive constants 8\ and #2 to 

satisfy 

(2.33) I - C0i - C92 > 0, j - C ( l + « i ) | / ? | o o - C e 2 > 0 , i - — > 0 , 

so that E2(*) ^ 0, and the coefficient on the second and the third term of the left hand 

side of (2.30) is positive. We note that because of (1.6), P and Q2 are equivalent. 

Furthermore, as stated in Section 2.2, we have the relation ||Q|| ^ C||Qx||. Thus it 

follows from these remarks and (2.30) that there exists a positive constant 5 such 

that 

(2.34) •^£2(t)+SE2(t)^C\f0(t)\lo 

holds for all t >. 0, from which we obtain 

(2.35) E2(ť) ^ Ě\0)e-H + Ce~ 1 /WoWlLds. 
Jo 

It is easy to see that (2.35) implies (2.10), and the proof of Theorem 2.2 is complete. 

• 

3. T H E CASE O F p = av'1', 7 > 1 

3.1. Stationary Prob lem and Theorem. In this section we consider the 
general barotropic gas represented by 

(3.1) p(v) = av~y ( a > 0 , 7 > l constants). 

Then the equation (1.2) is reduced to 

(3.2) - + ( ^ ) . J - " ( T ) . + / ( r * d * ' ' ) -

As mentioned in Section 1, we have already known the following global existence 
theorem [2]: 
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T h e o r e m 3 . 1 . (H. Beirao da Veiga) Assume (1.8) and (1.9). Then there exists 

a decreasing function R() satisfying R(0) = oo such that if ||(i>o,«o)l|i ^ R(\f\oo) 

then the initial and boundary value problem (1.1), (1.4), (1.5), (2.2) has a unique 

global solution in C°([0,oo);/f1 x Hi) satisfying (1.6) and (2.3). 

The stationary problem considered in this section is 

(3.3) ^ (±)rf(J\dx), 

(3.4) / n(x)dx= J v0(x)dx (=Y). 
Jo J0 

Performing the same calculation as in Section 2.1, (3.3) and (3.4) are rewritten as 

(3.5) $(wx)x =F(w)x, 

(3.6) w(0) = 0, w(X) = Y, 

where w(x), $(w), and F(w) are defined by w(x) = f* ndx, $(io) = -^(w1"7 — 1), 

mdF{w) = f~f(t)dt-

Prom (3.5) we have 

(3.7) $(wx)=F(w)+c, 

where c is a constant. Let M and m be defined by M = max F(w) and 
o<tu<y 

m = min F(w). Then we must have 
0<™<y v ' 

(3.8) m + c> 2 ! _ (= inf *(««))> 
v 7 - 1 o<»<y 

because we are looking for a solution that satisfies inf n(x) > 0. Now let us fix a 

constant c that satisfies (3.8). Since $(w) is a decreasing function of w, we can solve 

(3.7) obtaining 

(3.9) wx = $ _ 1 (F(w) + c). 

It is easy to see that the initial value problem (3.9) with w(0) = 0 in (3.6) has a 

unique solution for an arbitrary fixed constant c satisfying (3.8), and we denote this 

solution by wc(x). The unique existence of a constant c satisfying wc(X) = Y is our 

problem. As the proof of the uniqueness is easily verified by using the comparison 

theorem, we shall only consider the existence. Integration of (3.9) over [0, X] yields 

, x 
(3.10) Y = / i~1(F(w)+c)dx. 

Jo 
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Thus the necessary and sufficient condition for the existence is given by 

,x 

(3.11) lim / * _ 1 (F(w) + c) dx > Y, 

from which we obtain one of the sufficient condition as follows: 

(3.12) * ( ^ ) > M ~ m ~ ^ T 

Then our final main theorem is 

Theorem 3.2. Assume the hypotheses as in Theorem 3.1 and the existence of 
the stationary solution. Then there exist constants e0 > 0, 5 > 0 and C > 0 which 
depend only on the given data such that if |/{|oo ^ £o then the following estimate is 
satisfied for all t ^ 0: 

(3.13) ||(« - -.)(t)||» + ||tt(t)||2 ^ Ce-St ( l + J es'\Ms)\l ds 

The proof of this theorem is similar to that of Theorem 2.2, so we will only show 
the sketch of proof in the next subsection. 

3.2. Sketch of Proof of Theorem 3.2. As in Section 2.2, we derive the 
following three energy estimates. 

Lemma 3.3. Let (v,u) be the unique solution of (1.1), (1.4), (1.5), (3.2), and let 
n be the unique solution of (3.3), (3.4). Then the following estimate is valid for all 
t Js 0: 
(3.14)^ 

ft I [\v? + P M ) } dx + | j ^ d . - < c ( | / t | 0 0 j f viQldx + \f0(t)\l 

where P and Q are defined by P(v, n) = a ' a - i 
and Q = , respectiveJy. 

v~ rp 
Lemma 3.4. In the same situation as in Lemma 3.3, tJie following estimate is 

satisfied for all t>-0: 

(3i5) i£{i-^+-7°4dx+G-c^~)£**dx 

*c(£uf<*+m)\i 
441 



L e m m a 3.5 . In the same situation as in Lemma 3.3, we have the following esti­

mate for all t > 0: 

^ \l[<^[ ^d^c(f.fd,+/;^d,+i/0 mi 

The proof of these lemmas is done by the same procedure as in Lemma 2.3-Lemma 

2.5, and we ommit it only noting that we use the following relation in Lemma 3.4 

instead of (2.17): 

(3.17) ^Qx)t+(±^j yv^u^-ya^)^ 

Now the proof of Theorem 3.2 is easy; with these three inequalities, the same con­

sideration as in Section 2.3 leads to Theorem 3.2. 

A c k n o w l e d g m e n t . The author is grateful to Professors Shoji Irie, Atusi 

Tani and Takashi Suzuki for their helpful advice. 

iJe/erences 

[1] H. Beirao da Veiga: An Lp-theory for the n-dimensional, stationary, compressible, 
Navier-Stokes equations, and the incompressible limit for compressible fluids. The equi­
librium solutions. Comm. Math. Physics 109 (1987), 229-248. 

[2] H. Beirao da Veiga: Long time behavior for one-dimensional motion of a general 
barotropic viscous fluid. Arch. Rat. Mech. Anal 108 (1989), 141-160. 

[3] N. Itaya: The existence and uniqueness of the solution of the equations describing 
compressible viscous fluid flow. Proc. Jpn. Acad. 46 (1970), 379-382. 

[4] N. Itaya: A survey on the generalized Burger's equation with pressure model term. J. 
Math. Kyoto Univ. 16 (1976), 223-240. 

[5] Ya. KaneV: On a model system of equations of one-dimensional gas motion. Diff. Eqns. 
4 (1968), 374-380. 

[6] A. V. Kazhikhov: Correctness "in the large" of initial-boundary-value problem for model 
system of equations of a viscous gas. Din. Sploshnoi Sredy 21 (1975), 18-47. (In Russian.) 

[7] A. V. Kazhikhov and V. B. Nikolaev: On the correctness of boundary value problems 
for the equations of a viscous gas with a non-monotonic function of state. Chislennye 
Metody Mekh. Sploshnoi Sredy 10 (1979), 77-84. (In Russian.) 

[8] A. V. Kazhikhov and V. B. Nikolaev: On the theory of the Navier-Stokes equations of 
a viscous gas with nonmonotone state function. Soviet Math. Dokl. 20 (1979), 583-585. 

[9] A. V. Kazhikhov and V. V. Shelukhin: Unique global solution with respect to time of 
initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. 
Math. Mech. 41 (1977)), 273-282. 

[10] A. Matsumura: Large time behavior of the solutions of a one-dimensional barotropic 
model of compressible viscous gas (preprint). 

[11] A. Matsumura and T. Nishida: Periodic solutions of a viscous gas equation. Lee. Notes 
in Num. Appl. Anal. 10 (1989), 49-82. 

442 



[12] V. A. Solonnikov and A. V. Kazhikhov: Existence theorems for the equations of motion 
of a compressible viscous fluid. Ann. Rev. Fluid Mech. 13 (1981), 79-95. 

[13] A. Tani: A survey on the one-dimensional compressible isentropic Navier-Stokes equa­
tions in a field of external forces (unpublished). 

[14] S. Yanagi: Global existence for one-dimensional motion of non-isentropic viscous fluids. 
Math. Methods in Appl. Sci. 16 (1993), 609-624. 

[15] A. A. Zlotnik: On equations for one-dimensional motion of a viscous barotropic gas in 
the presence of a body force. Sibir. Mat. Zh. 33 (1993), 62-79. 

Author's address: Shigenori Yanagi, Department of Mathematics, Faculty of Science, 
Ehime University, Matsuyama 790, Japan, e-mail: syanagiadpcsipc.dpc.ehime-u.ac.jp. 

443 


		webmaster@dml.cz
	2020-07-01T12:31:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




