Mathematic Bohemia

František Knoflíček

A combinatorial approach to the known projective planes of order nine

Mathematica Bohemica, Vol. 120 (1995), No. 4, 347-366
Persistent URL: http://dml.cz/dmlcz/126096

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A COMBINATORIAL APPROACH TO THE KNOWN PROJECTIVE PLANES OF ORDER NINE
 František Knoflíček, Brno
 (Received November 12, 1992)

Summary. A combinatorial characterization of finite projective planes using strongly canonical forms of incidence matrices is presented. The corresponding constructions are applied to known projective planes of order 9. As a result a new description of the Hughes plane of order nine is obtained

Keywords: finite projective plane, ternary ring, incidence matrix, system of orthogonal Latin squares, Hall plane of order 9 , Hughes plane of order 9

AMS classification: 51E15
§1. Strongly canonical forms of incidence matrices and of systems of mutually orthogonal Latin squares corresponding to a finite

$$
\text { PROJECTIVE PLANE OF ORDER } n=p^{r}
$$

Let \mathbf{A} be a finite affine plane of order n. Using the symbols $0,1, \ldots, n-1$ as coordinates let us represent points of \mathbf{A} as couples (i, j) with

$$
i, j \in \mathbf{n}=\{0,1, \ldots, n-1\}
$$

in such a way that

$$
\{\{(i, j) \mid j \in \mathbf{n}\} \mid i \in \mathbf{n}\} ; \quad\{\{(i, j) \mid i \in \mathbf{n}\} \mid j \in \mathbf{n}\}
$$

are the starting pencils of horizontal or vertical lines, respectively (see Fig. 1). The remaining $n-1$ pencils of parallel lines called cross lines determine $n-1$ mutually
orthogonal Latin squares of order n with entries from \mathbf{n}.

Fig. 1
Let $n=p^{r}$ be a power of a prime, and let $0,1, \ldots, p-1$ be elements of the Galois field $\operatorname{GF}(p)$. The vectors

$$
\begin{array}{lll}
\underline{0}=(0,0, \ldots, 0) & \underline{p}=(0,1,0, \ldots, 0) & \cdots \\
\underline{1}=(1,0, \ldots, 0) & \underline{p+1}=(1,1,0, \ldots, 0) & \cdots \frac{p^{2}=(0,0,1,0, \ldots, 0)}{p^{2}+1}=(1,0,1,0, \ldots, 0) \\
\underline{2}=(2,0, \ldots, 0) & \vdots & \vdots \\
& \underline{(i+1) \text {-th place }} \downarrow \\
\vdots \vdots \vdots \\
\underline{p-1}=(p-1,0, \ldots, 0) \underline{p^{2}-1}=(p-1, p-1,0, \ldots, 0) \ldots \underline{p^{r}-1}=(p-1, p-1, \ldots, p-1)
\end{array}
$$

will be used as new " p-adic" symbols for coordinates instead of the initial symbols $0,1, \ldots, n-1$. The Latin squares can be assumed to be in column standard form having the same first column $(0,1, \ldots, n-1)^{T}$. Further, suppose that our Latin squares are ordered using the members standing in the first row r_{1} and in the second column c_{2}. More precisely, the j-th square L_{j} has the entry j in the $(1,0)$-cell for $j \in\{1,2, \ldots, n-1\}$:

$$
L_{j}=\begin{array}{cccc}
0 & \boxed{j} & \ldots & a_{0, n-1}^{j} \\
1 & a_{11}^{j} & \ldots & a_{1, n-1}^{j} \\
2 & a_{21}^{j} & \ldots & a_{2, n-1}^{j} \\
\vdots & \vdots & & \vdots \\
& n-1 & a_{n-1,1}^{j} & \ldots \\
a_{n-1, n-1}^{j}
\end{array}
$$

where we already write j instead of \underline{j}. Here j can be regarded as the slope of lines of the j-th pencil. Now, the usual coordinatization of \mathbf{A} with help of the associated
ternary ring (\mathbf{n}, T) is as follows: $T(u, x, y)=v$ if and only if the entry in the (x, y)-cell of L_{u} is v.

Let (n, T) be a ternary ring, and let,$+ \cdot$ be the corresponding T-induced binary operations defined on the set \mathbf{n} by

$$
\begin{gathered}
x+y=T(1, x, y) \quad \text { for all } x, y \in \mathbf{n} \\
u \cdot x=T(u, x, 0) \quad \text { for all } u, x \in \mathbf{n} .
\end{gathered}
$$

Then a ternary ring (\mathbf{n}, T) is called linear if and only if $T(u, x, y)=u \cdot x+y$ for all $x, y, u \in \mathbf{n}$.

Moreover, if (\mathbf{n}, T) is linear and ($\mathbf{n},+$) is a not necessarily commutative group, then (\mathbf{n}, T) is called a Cartesian group. We shall restrict ourselves to Cartesian groups of a power-prime order p^{r} with commutative addition. Let us remark that Cartesian groups of finite order with non-commutative addition are unknown up to now. Furthermore, if the left or the right distributive law (for multiplication from left, respectively from right over addition) is satisfied, then the Cartesian group becomes a left or right quasifield, respectively. A quasifield with associative multiplication is called a nearfield. A left and right (simultaneously) quasifield is called a semifield. An associative semifield is of course a field.

We return to a general affine plane \mathbf{A} of power-prime order $n=p^{r}$, and let L_{1}, \ldots, L_{n-1} be its Latin squares in column standard ordering, i.e. with the same first column $(0,1,2, \ldots, n-1)^{T}$, with the slope j in the $(1,0)$-cell of L_{j} and with the first row ($0,1, \ldots, n-1$) in L_{1}. It is well-known (cf. Theorem 8.4.3, pp. 283-284 of [7], or Theorem 5.9, pp. 123-124 of [1]) that the ternary ring (\mathbf{n}, T) is linear if and only if the set of columns of L_{j} is the same as the set of columns of L_{1}, i.e. if the n-tuple of columns of L_{j} differs only in another ordering from the n-tuple of columns of L_{1} for all $j \in\{2,3, \ldots, n-1\}$. Notice that L_{1} is the Cayley table of the induced addition + .

In what follows we introduce the incidence matrix of order $N=n^{2}+n+1$ of the projective plane $\mathbf{P}=\overline{\mathbf{A}}$ extending the given affine plane \mathbf{A}. The ordering of points and lines of \mathbf{P} will be the same as in Fig. 2 and 3. Moreover, let $1,2, \ldots, n^{2}$ be the notation of all of the proper points of \mathbf{P}, i.e. all of the points of \mathbf{A}; let $(0),(1), \ldots,(n-1),(\infty)$ be the notation of improper points where $0,1, \ldots, n-1, \infty$ are the corresponding slopes. Similarly let $\langle\infty\rangle$ be the notation of the improper line, let $c_{1}, c_{2}, \ldots, c_{n}$ be the notation of vertical lines with the slope ∞, let $r_{1}, r_{2}, \ldots, r_{n}$ be the notation of horizontal lines with the slope 0 and let $l_{0}^{(j)}, l_{1}^{(j)}, \ldots, l_{n-1}^{(j)}$ be the
notation of lines with the slope j, for all $j \in 1,2, \ldots, n-1$.

Fig. 2
The incidence matrix in Fig. 3 corresponds to the canonical form of Paige and Wexler (cf. [4] or [7], §8.5). The submatrices $P_{j, k}, j, k \in 2, \ldots, n$, are permutation matrices of order n, which means that every row and every column of the matrix contains exactly one unit. Moreover, the incidence matrix cannot contain submatrices of the form $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and all main diagonal elements of $P_{j, k}$ are necessarily zeros because two distinct points lie simultaneusly on just one line, and two distinct lines intersect at just one point. The submatrix which arises by neglecting the first $n+1$ rows and the first $n+1$ columns will be called the kernel of the incidence matrix which is evidently of order $n^{2}=p^{2 r}$. We will say that the incidence matrix is of strongly canonical form, if every matrix $P_{j, k}$ can be composed by permutation matrices $p_{j_{1}, k_{1}}$ of order p^{s}, where $s<r$. The corresponding $(n-1)$-tuple of Latin squares of order n will be said to be strongly canonical, too.

The submatrix of order $n^{2}-n$ on the last $n^{2}-n$ rows and last $n^{2}-n$ columns of the matrix from Fig. 3 will be denoted in the sequel as its reduced kernel.

If $\mathbf{P}_{1}=(P, L, I), \mathbf{P}_{2}=\left(P^{\prime}, L^{\prime}, I^{\prime}\right)$ are projective planes as triples consisting of point sets, line sets, and incidence relations, then a duality of \mathbf{P}_{1} onto \mathbf{P}_{2} is a couple of bijective mappings $\varphi: P \rightarrow L^{\prime}, \psi: L \rightarrow P^{\prime}$, such that $x I y$ whenever $\psi(y) I^{\prime} \varphi(x)$ for all $x \in P$ and all $y \in L$. Duality of the projective plane \mathbf{P} onto itself is called an autoduality of \mathbf{P}. If $\mathbf{P}=(P, L, I)$ is a projective plane, then $\mathbf{P}^{*}=\left(L, P, I^{*}\right)$ such that $x I y \Leftrightarrow y I^{*} x$ for all $x \in P$ and all $y \in L$ is the dual plane of \mathbf{P}. If M is an incidence matrix of \mathbf{P} with regard to arbitrary orderings of points and lines, then M^{T} is an incidence matrix of \mathbf{P}^{*}, where lines operate as new points and points as new lines by preserved orderings. If M is an incidence matrix of \mathbf{P}, then there exists an isotopy of M onto an incidence matrix M^{T} if and only if \mathbf{P} is autodual. Here,

Fig. 3
the isotopy is meant in the sense of Footnote (1) on p. 168 of [7]. The preceding assertion holds especially for a strongly canonical incidence matrix M of \mathbf{P}.
§2. A survey of the known projective planes of order nine

In the sequel, projective planes mentioned above will be described using strongly canonical systems of mutually orthogonal Latin squares and strongly canonical incidence matrices.

Let $n=3^{2}=9$. The labelling set will be $S=\{0,1, \ldots, 8\}$. Further, we put $S_{0}=\{0,1,2\}$ and use the same addition and multiplication in S_{0} as in $G F(3)$.

Let

$$
i=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right) \quad j=\left(\begin{array}{lll}
& & 1 \\
1 & & \\
& 1 &
\end{array}\right) \quad k=\left(\begin{array}{lll}
& 1 & \\
& & 1 \\
1 & &
\end{array}\right)
$$

be the permutation matrices of order 3 which form a cyclic group under matrix multiplication. Obviously, $i^{T}=i, j^{T}=k, k^{T}=j$. Considering the permutation
matrices of order 9 defined by

$$
\begin{aligned}
& I_{0}=\left(\begin{array}{lll}
i & & \\
& i & \\
& & i
\end{array}\right) \quad J_{0}=\left(\begin{array}{lll}
j & & \\
& j & \\
& & j
\end{array}\right) \quad K_{0}=\left(\begin{array}{lll}
k & & \\
& k & \\
& & k
\end{array}\right) \\
& I_{1}=\left(\begin{array}{lll}
& & i \\
i & & \\
& i
\end{array}\right) \quad J_{1}=\left(\begin{array}{lll}
& & j \\
j & & \\
& j
\end{array}\right) \quad K_{1}=\left(\begin{array}{ll}
k & \\
k & \\
& k
\end{array}\right) \\
& I_{2}=\left(\begin{array}{lll}
& i & \\
& & i \\
i & &
\end{array}\right) \quad J_{2}=\left(\begin{array}{lll}
& j & \\
& & j \\
j & &
\end{array}\right) \quad K_{2}=\left(\begin{array}{ll}
& k \\
& \\
k & \\
&
\end{array}\right)
\end{aligned}
$$

we easily obtain the following equalities:

$$
J_{0}^{T}=K_{0}, \quad I_{1}^{T}=I_{2}, \quad J_{1}^{T}=K_{2}, \quad K_{1}^{T}=J_{2}
$$

Now, let us investigate the Latin squares L_{1} and L_{2} defined by

$L_{1}=$| 012345678 | |
| ---: | ---: |
| 120453786 | 021687354 |
| 201534867 | 102768435 |
| 345678012 | |
| 453786120 | |
| 534867201 | 210876543 |
| 678012345 | $L_{2}=$354021687
 786120453
 867201534 |
| 543210876 | |
| 687354021 | |
| | 768435102 |
| 876543210 | |

Fig. 4
and use them as starting members of strongly canonical systems of Latin squares for all known projective planes of order 9. As L_{2} has zero diagonal, the diagonals of all remaining squares of strongly canonical systems of these projective planes are permutations of S with just one fixed label, namely 0 , above on the left. Herein L_{1} is the addition table of the elementary 3-group of order 9 .

1. The Desarguesian plane of order 9 is built up over the field $G F(9)$. There are three possibilities of strongly canonical systems of Latin squares for this plane. One
of them is the system ${ }^{1} \mathbf{L}^{a}=\left\{L_{1}, L_{2},{ }^{1} L_{3}^{a}, \ldots,{ }^{1} L_{8}^{a}\right\}$, where

${ }^{1} L_{3}^{a}=$	$0 \sqrt{6} 258147$		048561723		0 5 7 813462
	147036258		156372804		138624570
	258147036		237480615		246705381
	360582471		372804156		381246705
	471360582	${ }^{1} L_{4}^{a}=$	480615237	${ }^{1} L_{5}^{a}=$	462057813
	582471360		561723048		570138624
	603825714		615237480		624570138
	714603825		723048561		705381246
	825714603		804156372		813462057
${ }^{1} L_{6}^{a}$	$0[63174285$	${ }^{1} L_{7}^{a} \ldots$	$0 \longdiv { 7 4 2 6 8 3 1 }$	${ }^{1} L_{8}^{\alpha} \ldots$	$0 \sqrt{4} 732516$

Fig. 5

The first row of $L_{j}^{a}, j \in\{3,4, \ldots, 8\}$ coincides with the j-th row of the multiplication table a of $G F(9)$:

a	b	c
12345678	12345678	12345678
21687354	21687354	21687354
36258147	36714582	36471825
48561723	48156237	48723561
57813462	57462813	57138246
63174285	63528741	63852417
75426831	75831426	75264183
84732516	84273165	84516732

Fig. 6

The columns of all Latin squares under consideration coincide with columns of L_{1} even though they appear in a different order. So it is sufficient to register only the first rows of the squares. Notice that the diagonals of the squares ${ }^{1} L_{3}^{a},{ }^{1} L_{4}^{a}$, or ${ }^{1} L_{5}^{a}$ coincide with the first row of the squares ${ }^{1} L_{4}^{a},{ }^{1} L_{5}^{a}$, or ${ }^{1} L_{3}^{a}$, respectively. Similarly, the diagonals of the squares ${ }^{1} L_{6}^{a},{ }^{1} L_{7}^{a}$, or ${ }^{1} L_{8}^{a}$ coincide with the first rows of the squares ${ }^{1} L_{7}^{a},{ }^{1} L_{8}^{a}$, or ${ }^{1} L_{6}^{a}$, respectively.

The reduced kernel of the corresponding incidence matrix written in block form is ${ }^{1} \widehat{M^{a}}$ (Fig. 7).

$$
\begin{array}{llllllllll}
J_{0} & K_{0} & I_{1} & J_{1} & K_{1} & I_{2} & J_{2} & K_{2} \\
K_{0} & J_{0} & I_{2} & K_{2} & J_{2} & I_{1} & K_{1} & J_{1} \\
I_{1} & I_{2} & K_{0} & K_{1} & K_{2} & J_{0} & J_{1} & J_{2} \\
{ }^{1} & \widehat{M^{a}}=\begin{array}{llllllll}
& J_{1} & K_{2} & K_{1} & I_{2} & J_{0} & J_{2} & K_{0} \\
I_{1} \\
K_{1} & J_{2} & K_{2} & J_{0} & I_{1} & J_{1} & I_{2} & K_{0} \\
& I_{2} & I_{1} & J_{0} & J_{2} & J_{1} & K_{0} & K_{2}
\end{array} K_{1} \\
& J_{2} & K_{1} & J_{1} & K_{0} & I_{2} & K_{2} & I_{1} & J_{0} \\
& K_{2} & J_{1} & J_{2} & I_{1} & K_{0} & K_{1} & J_{0} & I_{2}
\end{array}
$$

Fig. 7
As the incidence matrix of the Desarguesian plane is symmetric, the plane is necessarily autodual. Strongly canonical systems of Latin squares

$$
{ }^{1} \mathbf{L}^{b}=\left\{L_{1}, L_{2}, L_{3}^{b}, \ldots, L_{8}^{b}\right\} \quad \text { and } \quad{ }^{1} \mathbf{L}^{c}=\left\{L_{1}, L_{2}, L_{3}^{c}, \ldots, L_{8}^{c}\right\}
$$

with similar properties, can be obtained from Tables b and c of Fig. 6 (see [9], pp. 687-8).
2. The Hall plane of order 9 is closely related to quasifields R, S, T of [5], Appendix II, pp. 273-274; and [9], pp. 689-90.

We will present here the multiplication tables of these right quasifields (the first one is a nearfield)

12345678	12345678	12345678
21687354	21687354	21687354
36274185	36418527	36751842
48526731	48751263	48163527
57832416	57163842	57418263
63158247	63824715	63572481
75461823	75236481	75824136
84713562	84572136	84236715
System R	System S	System T

Fig. 8

As is well-known, the projective planes over these quasifields are isomorphic. This plane is the Hall plane of order 9 . The multiplication table of R expresses quaternion group (where $a^{4}=1, a^{2}=2, a b=-b a$ for all a, b different from 1, 2). All three quasifields lead to strongly canonical systems of Latin squares. We restrict ourselves to the first quasifield. The corresponding strongly canonical system of Latin squares is ${ }^{2} L^{a}=\left\{L_{1}, L_{2},{ }^{2} L_{3}^{a},{ }^{2} L_{4}^{a}, \ldots,{ }^{2} L_{8}^{a}\right\}$, where

	056258147		048723561		$0[57462813$
	147036258		156804372		138570624
	258147036		237615480		246381705
	360582471		372156804		381705246
${ }^{2} L_{3}^{a}=$	471360582	${ }^{2} L_{4}^{a}=$	480237615	${ }^{2} L_{5}^{a}=$	462813057
	582471360		561048723		570624138
	603825714		615480237		624138570
	714603825		723561048		705246381
	825714603		804372156		813057462
${ }^{2} L_{6}^{a} \ldots$	$0 \boxed{63174285}$	${ }^{2} L_{7}^{a} \ldots$	$0 \lcm{75831426}$	${ }^{2} L_{8}^{a} \ldots$	$0 \longdiv { 8 4 5 1 6 7 3 2 }$

Fig. 9

The first row of ${ }^{2} L_{j}^{a}, j \in\{3,4, \ldots, 8\}$, coincides with the j-th column of the multiplication table of R, i.e. with the j-th row of the system R^{T}. Notice that the diagonals of ${ }^{2} L_{3}^{a},{ }^{2} L_{4}^{a}$ and ${ }^{2} L_{5}^{a}$ coincide with the fourth column of the system T, the fifth column of T, and the third column of T, respectively. The triple $\left({ }^{2} L_{6}^{a},{ }^{2} L_{7}^{a}\right.$, $\left.{ }^{2} L_{8}^{a}\right)$ has the same property.

As in the preceding considerations, the squares ${ }^{2} L_{3}^{a}, \ldots,{ }^{2} L_{8}^{a}$ have columns which form the same column set as L_{1}, only the orders in which the columns of L_{1} occur in the subsequent squares are different. This follows again from the linearity of the ternary ring which is the left nearfield R^{T} in the sense of Hughes. Starting with the left quasifield T^{T}, or S^{T}, we would analogously get a strongly canonical system of Latin squares ${ }^{2} \mathbf{L}^{b}$, or ${ }^{2} \mathbf{L}^{c}$, respectively. From the diagonals of Latin squares of the system one deduces the rows of the multiplication table of the quasifield S^{T}, or R^{T}, respectively.

The reduced kernel of the corresponding strongly canonical incidence matrix of the Hall plane of order 9 in block notation is ${ }^{2} \widehat{M}^{a}$, where

$$
\begin{aligned}
& J_{0} K_{0} I_{1} J_{1} K_{1} I_{2} J_{2} K_{2} \quad K_{0} J_{0} I_{2} K_{2} J_{2} I_{1} K_{1} J_{1}
\end{aligned}
$$

$$
\begin{aligned}
& I_{1} I_{2} K_{0} K_{1} K_{2} J_{0} J_{1} J_{2} \\
& { }^{2} \widehat{M}^{a} \quad \begin{array}{l}
I_{2} I_{1} J_{0} K_{1} K_{2} K_{0} J_{1} J_{2}
\end{array} \\
& { }^{2} \widehat{M}^{a}=J_{1} K_{2} J_{2} K_{0} I_{1} K_{1} I_{2} J_{0}{ }^{2} \widehat{M^{a} T}=K_{2} J_{1} J_{2} J_{0} I_{1} K_{1} I_{2} K_{0} \\
& K_{1} J_{2} J_{1} I_{2} K_{0} K_{2} J_{0} I_{1} \quad J_{2} K_{1} J_{1} I_{2} J_{0} K_{2} K_{0} I_{1} \\
& I_{2} I_{1} J_{0} J_{2} J_{1} K_{0} K_{2} K_{1} \quad I_{1} I_{2} K_{0} J_{2} J_{1} J_{0} K_{2} K_{1} \\
& J_{2} K_{1} K_{2} I_{1} J_{0} J_{1} K_{0} I_{2} \quad K_{1} J_{2} K_{2} I_{1} K_{0} J_{1} J_{0} I_{2} \\
& K_{2} J_{1} K_{1} J_{0} I_{2} J_{2} I_{1} K_{0} \quad J_{1} K_{2} K_{1} K_{0} I_{2} J_{2} I_{1} J_{0}
\end{aligned}
$$

Fig. 10

In ${ }^{2} \widehat{M}^{a T}$ the successive changing of elements of rows occurs in accordance with the quaternion group R. The matrix ${ }^{2} \widehat{M}^{a T}$ is not isotopic to ${ }^{2} \widehat{M}^{a}$.
3. By reordering of rows and by subsequent reordering of columns of the block matrix ${ }^{2} \widehat{M}^{a T}$ we obtain a new block matrix ${ }^{3} \widehat{M}^{a}$, which we will call the reduced kernel of the dual Hall plane of order 9. The block matrix ${ }^{3} \widehat{M^{a}}$ is

${ }^{3} \widehat{M^{a}}=$| J_{0} | K_{0} | I_{1} | J_{1} | K_{1} | I_{2} | J_{2} | K_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K_{0} | J_{0} | I_{2} | K_{2} | J_{2} | I_{1} | K_{1} | J_{1} |
| I_{1} | I_{2} | K_{0} | J_{2} | J_{1} | J_{0} | K_{2} | K_{1} |
| J_{1} | K_{2} | K_{1} | K_{0} | I_{2} | J_{2} | I_{1} | J_{0} |
| K_{1} | J_{2} | K_{2} | I_{1} | K_{0} | J_{1} | J_{0} | I_{2} |
| I_{2} | I_{1} | J_{0} | K_{1} | K_{2} | K_{0} | J_{1} | J_{2} |
| J_{2} | K_{1} | J_{1} | I_{2} | J_{0} | K_{2} | K_{0} | I_{1} |
| K_{2} | J_{1} | J_{2} | J_{0} | I_{1} | K_{1} | I_{2} | K_{0} |

Fig. 11

The corresponding strongly canonical system of Latin squares of the dual Hall plane is

$$
{ }^{3} \mathbf{L}^{a}=\left\{L_{1}, L_{2},{ }^{3} L_{3}^{a},{ }^{3} L_{4}^{a}, \ldots,{ }^{3} L_{8}^{a}\right\}
$$

where

	$0 \longdiv { 3 6 2 7 4 1 8 5 }$		$00^{4} 8526731$		0578832416
	147085263		156307842		138640527
${ }^{3} L_{3}^{a}=$	258163074	${ }^{3} L_{4}^{a}=$	237418650	${ }^{3} L_{5}^{a}=$	246751308
	360517428		372850164		381265740
	471328506		480631275		462073851
	582406317		561742083		570184632
	603841752		615283407		624508173
	714652830		723064518		705316284
	025730641		804175326		813427065
${ }^{3} L_{6}^{a}$.	063158247	${ }^{3} L_{7}^{a}$	$0 \sqrt{7} 5462823$	L_{8}^{a}	$0 \longdiv { 8 4 7 1 3 5 6 }$

Fig. 12
The columns of the squares ${ }^{3} L_{j}^{a}, j \in\{3,4, \ldots 8\}$ must be taken from L_{1} and their labelling is given by their "leading" elements in the first row. The first row of ${ }^{3} L_{j}^{a}$ coincides with the j-th row of the system R. The triples $\left({ }^{3} L_{3}^{a},{ }^{3} L_{4}^{a},{ }^{3} L_{5}^{a}\right)$ and $\left({ }^{3} L_{6}^{a},{ }^{3} L_{7}^{a},{ }^{3} L_{8}^{a}\right)$ have the same property as the triples in the Desarguesian case.
4. We come to the Hughes plane of order 9 . We shall start from the Desarguesian plane of order 3 understood as the plane over $G F(3)=\left(S_{0},+, \cdot\right)$ with $S_{0}=\{0,1,2$,$\} .$ This plane can be described also as a perfect difference set, for example $\{0,1,3,9\}$ $(\bmod 13)(c f .[3], p p .52-54)$. We denote it by π_{0} and its points by $A_{0}, A_{1}, \ldots, A_{12}$.

Further, we take the right nearfield R of order 9 with elements $0,1, \ldots, 8$ and use homogeneous coordinates (x, y, z) over R (with factor of homogeneity from the right) for points of the projective plane π containing π_{0}.

We shall proclaim the set $\left\{A_{0}, A_{1}, A_{3}, A_{9}, B_{0}, C_{0}, D_{0}, E_{0}, F_{0}, G_{0}\right\}$ with coordinates according to Fig. 13 to be the improper line of the plane π.

Fig. 13
We shall use the Singer matrix (cf. [3], pp. 293-295)

$$
M=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

over $G F(3)$ as the matrix of a collineation (denoted in the following also by M) of π_{0}. The period of this collineation is 13 and the orbit of A_{0} under the collineation subgroup $\langle M\rangle$ generated by M is formed by the points $A_{1}=M A_{o}=M(0,1,0)^{T}$, $A_{2}=M^{2}(0,1,0)^{T}, \ldots, A_{12}=M^{12}(0,1,0)^{T}$ with respect to π_{0}. However we can extend the action of $\langle M\rangle$ to the remaining points $B_{0}, C_{0}, \ldots, G_{0}$ of the ideal line so that we get $6 \cdot 13=78$ points $B_{j}=M^{j} B_{0}, \ldots, G_{j}=M^{j} G_{0}, j \in\{0,1,2, \ldots, 12\}$. We obtain the following remarkable dislocation of 81 proper points

		$3 \quad 4 \quad 5$	$\begin{array}{lll}6 & 7\end{array}$	$\rightarrow x$
0	$\begin{array}{lll}A_{2} & A_{4} & A_{10}\end{array}$	$E_{1} \quad G_{1} \quad F_{1}$	$\begin{array}{lll}B_{1} & D_{1} & C_{1}\end{array}$	
1	$\begin{array}{llll}A_{8} & A_{5} & A_{6}\end{array}$	$\begin{array}{lll}B_{5} & C_{5} & D_{5}\end{array}$	$\begin{array}{lll}E_{5} & F_{5} & G_{5}\end{array}$	
2	$\begin{array}{lll}A_{12} & A_{7} & A_{11}\end{array}$	$F_{11} \quad E_{11} \quad G_{11}$	$C_{11} B_{11} D_{11}$	
3	$C_{12} C_{4} \quad D_{10}$	$\begin{array}{llll}B_{2} & E_{3} & E_{7}\end{array}$	$E_{6} \quad D_{8} \quad B_{9}$	\cdots
4	$\begin{array}{llll}D_{12} & D_{4} & B_{10}\end{array}$	$\begin{array}{llll}G_{7} & C_{2} & G_{3}\end{array}$	$\begin{array}{llll}B_{8} & C_{9} & G_{6}\end{array}$	$\ldots{ }_{4}$
5	$\begin{array}{lll}B_{12} & B_{4} & C_{10}\end{array}$	$\begin{array}{lll}F_{3} & F_{7} & D_{2}\end{array}$	$\begin{array}{ccc}D_{9} & F_{6} & C_{8}\end{array}$	$\ldots r_{5}$
6	$\begin{array}{lll}F_{12} & F_{4} & G_{10}\end{array}$	$\begin{array}{llll}B_{6} & G_{8} & E_{9}\end{array}$	$\begin{array}{lll}E_{2} & B_{3} & B_{7}\end{array}$	$\ldots r_{6}$
7	$\begin{array}{llll}G_{12} & G_{4} & E_{10}\end{array}$	$E_{88} F^{F_{9}} \quad D_{6}$	$\begin{array}{llll}D_{7} & F_{2} & D_{3}\end{array}$	r_{7}
8	$\begin{array}{llll}E_{12} & E_{4} & F_{10}\end{array}$	$\begin{array}{llll}G_{9} & C_{6} & F_{8}\end{array}$	$\begin{array}{llll}C_{3} & C_{7} & G_{2}\end{array}$. r_{8}
\downarrow		$\vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots$	
y		$\begin{array}{ccc}c_{3} & c_{4} & c_{5}\end{array}$	$\begin{array}{ccc}c_{6} & c_{7} & c_{8}\end{array}$	

Fig. 14
The left above array of this scheme expresses the affine subplane of order 3 . The ideal points of this subplane are $A_{0}, A_{1}, A_{3}, A_{9}$. We will speak about primary points $A_{0}, A_{1}, \ldots, A_{12}$, whereas the points $B_{j}, C_{j}, \ldots, G_{j}, j \in\{0,1,2, \ldots, 12\}$ of the rest will be called secondary points. Any two distinct primary points are joined by a unique line also called primary. Primary lines can be understood either as lines of π_{0} or as extended lines with points $A_{i}, A_{i+1}, A_{i+3}, A_{i+9}, B_{i}, C_{i}, D_{i}, E_{i}, F_{i}, G_{i}$ for $i \in\{0,1,2, \ldots, 12\}$ taken modulo 13. Further, we form point sets called secondary lines: firstly the vertical ones:

$$
\begin{array}{ll}
c_{3}=A_{0} B_{2} B_{5} B_{6} E_{1} E_{8} F_{3} F_{11} G_{7} G_{9} & c_{6}=A_{0} E_{2} E_{5} E_{6} B_{1} B_{8} C_{3} C_{11} D_{7} D_{9} \\
c_{4}=A_{0} C_{2} C_{5} C_{6} G_{1} G_{8} E_{3} E_{11} F_{7} F_{9} & c_{7}=A_{0} F_{2} F_{5} F_{6} D_{1} D_{8} B_{3} B_{11} C_{7} C_{9} \tag{4.1}\\
c_{5}=A_{0} D_{2} D_{5} D_{6} F_{1} F_{8} G_{3} G_{11} E_{7} E_{9} & c_{8}=A_{0} G_{2} G_{5} G_{6} C_{1} C_{8} D_{3} D_{11} B_{7} B_{9}
\end{array}
$$

secondly the horizontal ones: $r_{3}, r_{4}, \ldots, r_{8}$ with the ideal point A_{1}, where one obtains r_{3} from c_{6} and r_{6} from c_{3} by adding 1 to the indices of all points and similarly for the couples $r_{4}, c_{8} ; r_{8}, c_{4}$ and $r_{5}, c_{7} ; r_{7}, c_{5}$, and thirdly the cross ones: from (4.2) for $i \in\{2,3, \ldots, 12\}$.
(4.2)

$$
\begin{array}{lllllllll}
A_{i} & B_{2+i} & B_{5+i} & B_{6+i} & E_{1+i} & E_{8+i} & F_{3+i} & F_{11+i} & G_{7+i}
\end{array} G_{9+i}
$$

There exist just $13 \cdot 6=78$ secondary lines and together with 13 primary lines they form a complete line set of a projective plane π called the Hughes plane (and known already in 1907 to Veblen and Wedderburn, cf. [8], pp. 383-4). We shall present here a strongly canonical system of Latin squares of π. The first two are L_{1} and L_{2} again (Fig. 4) whereas the remaining ones must be written in detail:

	$0 \square 36258147$		$0 \boxed{48723561}$		$0 \longdiv { 5 } 7 4 6 2 8 1 3$
	147036258		156804372		138570624
	258147036		237615480		246381705
${ }^{4} L_{3}^{a}=$	360714825		372480156		381246570
	471825603	${ }^{4} L_{4}^{a}=$	480561237	${ }^{4} L_{5}^{a}=$	462057381
	582603714		561372048		570138462
	603471582		615237804		624705138
	714582360		723048615		705813246
	825360471		804156723		813624057
	0 [63174285		077581426		$0 \lcm{84516732}$
	174285063		183642507		165327840
	285063174		264750318		273408651
${ }^{4} L_{6}^{a}=$	306852741		318507264		327165408
	417630852	${ }^{4} L_{7}^{a}=$	426318075	${ }^{4} L_{8}^{a}=$	408273516
	528741630		507426183		516084327
	630528417		642183750		651840273
	741306528		750264831		732651084
	852417306		831075642		840732165

Fig. 15

The columns of the multiplication table of R enter as the first rows of Latin squares ${ }^{4} L_{3}^{a},{ }^{4} L_{4}^{a}, \ldots,{ }^{4} L_{8}^{a}$. In the additive group ($S,+, 0$), where $S=\{0,1,2,3, \ldots, 8\}$ and the addition + is defined by L_{1}, there are subgroups ($\{0,1,2\},+$), $(\{0,3,6\},+)$, $(\{0,4,8\},+),(\{0,5,7\},+)$. It is obvious that the Latin squares with nonzero slopes of the same subgroup have up to the order the same columns. The cosets of $(S,+)$ modulo $\left(S_{0},+\right)$ are $S_{0}=\{0,1,2\}, S_{1}=\{3,4,5\}, S_{2}=\{6,7,8\}$ and the Latin squares belonging to the slopes of S_{1} and/or of S_{2} have the following properties:
a) The diagonal of the first square coincides with the first row of the second square, the diagonal of the second square coincides with the first row of the third square and finally, the diagonal of the third square coincides with the first row of the first square again.
b) Every column of an arbitrary square of the system
${ }^{4} \mathbf{L}^{a}=\left\{L_{1}, L_{2},{ }^{4} L_{3}^{a}, \ldots,{ }^{4} L_{8}^{a}\right\}$ can be divided into three parts such that in each of them there are even permutations of the same coset. Thus it is possible to investigate only Latin 3×9-rectangles formed by the first, fourth and seventh row of each of the squares. This means that the corresponding ternary ring of π is "piecewise linear" (it is well-known that the ternary ring of the Hughes plane π cannot be linear, cf. [1], pp. 199-200). So,the eight Latin squares of the system ${ }^{4} \mathbf{L}^{a}$ can be divided into four couples such that every couple differs only in the ordering of columns (the set of columns is the same for both squares of the couple) and this ordering is prescribed by the first row of any square.

A modification of a strongly canonical system of Latin squares of the Hughes plane π is presented in [2], p. 293. The squares are normalized with respect to rows, but they are not ordered with respect to their slopes.

The reduced kernel of the corresponding strongly canonical incidence matrix of π is

${ }^{4} \widehat{M}^{a}=$| J_{0} | K_{0} | I_{1} | J_{1} | K_{1} | I_{2} | J_{2} | K_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K_{0} | J_{0} | I_{2} | K_{2} | J_{2} | I_{1} | K_{1} | J_{1} |
| I_{1} | I_{2} | a_{1} | b_{1} | c_{1} | d_{1} | e_{1} | f_{1} |
| J_{1} | K_{2} | a_{2} | b_{2} | c_{2} | d_{2} | e_{2} | f_{2} |
| K_{1} | J_{2} | a_{3} | b_{3} | c_{3} | d_{3} | e_{3} | f_{3} |
| I_{2} | I_{1} | d_{1} | f_{1} | e_{1} | a_{1} | c_{1} | b_{1} |
| J_{2} | K_{1} | d_{3} | f_{3} | e_{3} | a_{3} | c_{3} | b_{3} |
| K_{2} | J_{1} | d_{2} | f_{2} | e_{2} | a_{2} | c_{2} | b_{2} |

Fig. 16
where $J_{0}, K_{0}, I_{1}, \ldots, K_{2}$ are matrices introduced in Section 1, whereas further 18 permutation matrices of order 9 are as follows

As $j^{T}=k$ and $k^{T}=j$, it is easily seen that

$$
\begin{array}{rll}
d_{1}=a_{1}^{T} & e_{1}=a_{3}^{T} & f_{1}=a_{2}^{T} \\
d_{2}=b_{1}^{T} & e_{2}=b_{3}^{T} & f_{2}=b_{2}^{T} \\
d_{3}=c_{1}^{T} & e_{3}=c_{3}^{T} & f_{3}=c_{2}^{T}
\end{array}
$$

From these relations we reconstruct the matrix ${ }^{4} \widehat{M}^{a T}$:

$$
{ }^{4} \widehat{M}^{a T}=\begin{array}{cccccccc}
K_{0} & J_{0} & I_{2} & K_{2} & J_{2} & I_{1} & K_{1} & J_{1} \\
J_{0} & K_{0} & I_{1} & J_{1} & K_{1} & I_{2} & J_{2} & K_{2} \\
I_{2} & I_{1} & d_{1} & f_{1} & e_{1} & a_{1} & c_{1} & b_{1} \\
K_{2} & J_{1} & d_{2} & f_{2} & e_{2} & a_{2} & c_{2} & b_{2} \\
J_{2} & K_{1} & d_{3} & f_{3} & e_{3} & a_{3} & c_{3} & b_{3} \\
I_{1} & I_{2} & a_{1} & b_{1} & c_{1} & d_{1} & e_{1} & f_{1} \\
K_{1} & J_{2} & a_{3} & b_{3} & c_{3} & d_{3} & e_{3} & f_{3} \\
J_{1} & K_{2} & a_{2} & b_{2} & c_{2} & d_{2} & e_{2} & f_{2}
\end{array}
$$

Fig. 17
which is isotopic to ${ }^{4} \widehat{M}^{a}$ (as is seen by interchanging the rows $1 \leftrightarrow 2,3 \leftrightarrow 6,4 \leftrightarrow 8$, $5 \leftrightarrow 7$). So, we have an easy verification of the well-known fact that the Hughes plane π is autodual (cf. [3], pp. 80-81).

§3. Further construction of the Hughes plane

Let us investigate the strong canonical form of the incidence matrix with the reduced kernel of a similar structure as in the matrix ${ }^{4} \widehat{M}^{a}$, i.e. having the first two rows and columns with the same elements as in the matrix ${ }^{4} \widehat{M^{a}}$ whereas the inner kernels are different. Combinatorially it is possible to deduce two possibilities for new matrices

Fig. 18
where $J_{0}, K_{0}, I_{1}, \ldots, K_{2}$ are the permutation matrices known from the preceding $\$ 2$. The inner kernel of each of the new incidence matrices contains 36 permutation matrices such that only 18 of them are distinct. These matrices are as follows:

$$
\left\{\begin{array}{l}
(4.4) \\
u_{1}=\left(\begin{array}{c}
j \\
j \\
k
\end{array}\right), v_{1}=\left(\begin{array}{c}
k \\
j \\
j
\end{array}\right), w_{1}=\left(\begin{array}{c}
j \\
k \\
j
\end{array}\right), x_{1}=\left(\begin{array}{c}
k \\
k \\
j
\end{array}\right), y_{1}=\left(\begin{array}{c}
j \\
k \\
k
\end{array}\right), z_{1}=\left(\begin{array}{l}
k \\
j \\
k
\end{array}\right), \\
u_{2}=\left(\begin{array}{c}
j \\
j \\
k
\end{array}\right), v_{2}=\left(\begin{array}{c}
i \\
k \\
k
\end{array}\right), w_{2}=\left(\begin{array}{c}
i \\
j \\
i
\end{array}\right), x_{2}=\left(\begin{array}{c}
k \\
k \\
j
\end{array}\right), y_{2}=\left(\begin{array}{c}
k \\
i \\
i
\end{array}\right), z_{2}=\left(\begin{array}{c}
j \\
i \\
i
\end{array}\right), \\
u_{3}=\left(\begin{array}{c}
j \\
j \\
k
\end{array}\right), v_{3}=\left(\begin{array}{c}
j \\
i \\
i
\end{array}\right), w_{3}=\left(\begin{array}{c}
k \\
i \\
k
\end{array}\right), x_{3}=\left(\begin{array}{c}
k \\
k \\
j
\end{array}\right), y_{3}=\left(\begin{array}{c}
i \\
j \\
j
\end{array}\right), z_{3}=\left(\begin{array}{c}
i \\
k \\
i
\end{array}\right),
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
i_{1}=\left(\begin{array}{c}
j \\
k \\
j
\end{array}\right), j_{1}=\left(\begin{array}{c}
j \\
j \\
k
\end{array}\right), k_{1}=\left(\begin{array}{c}
k \\
j \\
j
\end{array}\right), l_{1}=\left(\begin{array}{c}
k \\
j \\
k
\end{array}\right), m_{1}=\left(\begin{array}{c}
k \\
k \\
j
\end{array}\right), n_{1}=\left(\begin{array}{c}
j \\
k \\
k
\end{array}\right), \\
i_{2}=\left(\begin{array}{c}
j \\
k \\
j
\end{array}\right), j_{2}=\left(\begin{array}{c}
k \\
k \\
i
\end{array}\right), k_{2}=\left(\begin{array}{c}
j \\
i \\
i
\end{array}\right), l_{2}=\left(\begin{array}{c}
k \\
j \\
k
\end{array}\right), m_{2}=\left(\begin{array}{c}
i \\
i \\
k
\end{array}\right), n_{2}=\left(\begin{array}{c}
i \\
j \\
j
\end{array}\right), \\
i_{3}=\left(\begin{array}{c}
j \\
k \\
j
\end{array}\right), j_{3}=\left(\begin{array}{c}
i \\
i \\
j
\end{array}\right), k_{3}=\left(\begin{array}{c}
i \\
k \\
k
\end{array}\right), l_{3}=\left(\begin{array}{c}
k \\
j \\
k
\end{array}\right), m_{3}=\left(\begin{array}{c}
j \\
j \\
i
\end{array}\right), n_{3}=\left(\begin{array}{c}
k \\
i \\
i
\end{array}\right) .
\end{array}\right.
$$

For the matrices of type (4.4) or (4.5) we deduce

$$
\begin{array}{llllll}
x_{1}=u_{1}^{T} & y_{1}=u_{3}^{T} & z_{1}=u_{2}^{T} & l_{1}=i_{1}^{T} & m_{1}=i_{3}^{T} & n_{1}=i_{2}^{T} \\
x_{2}=v_{1}^{T} & y_{2}=v_{3}^{T} & z_{2}=v_{2}^{T} & l_{2}=j_{1}^{T} & m_{2}=j_{3}^{T} & n_{2}=j_{2}^{T} \\
x_{3}=w_{1}^{T} & y_{3}=w_{3}^{T} & z_{3}=w_{2}^{T} & l_{3}=k_{1}^{T} & m_{3}=k_{3}^{T} & n_{3}=k_{2}^{T}
\end{array}
$$

Using the last relations we obtain transposed matrices

Fig. 19
Comparing the columns of both matrices with the original ones we see that ${ }^{4} \widehat{M}^{b T},{ }^{4} \widehat{M}^{b}$ and ${ }^{4} \widehat{M}^{c T},{ }^{4} \widehat{M}^{c}$ are isotopic pairs so that we obtain a similar result as for the Hughes plane: each of the above incidence matrices belongs to a projective
plane which is autodual. We shall show that this is only another form of the Hughes plane. From the incidence matrices under investigation we reconstruct the strongly canonical complete systems of mutually orthogonal Latin squares of order 9. The couple of the first and the second row of the reduced kernel ${ }^{4} \widehat{M}^{b}$ or ${ }^{4} \widehat{M^{c}}$ lead to the known Latin squares L_{1} and L_{2} (see Fig. 4). Further, we have:

	$0 \longdiv { 3 6 } 4 7 1 5 8 2$		048156723		$0 \longdiv { 5 } 7 8 1 3 2 4 6$
	147582360		156237804		138624057
	258360471		237048615		246705138
	360147258		372804561		381462705
${ }^{4} L_{3}^{b}=$	471258036	${ }^{4} L_{4}^{b}=$	480615372	${ }^{4} L_{5}^{b}=$	462570813
	582036147		561723480		570381624
	603825714		615480237		624138570
	714603825		723561048		705246381
	825714603 ,		804372 156,		813057462 ,

$0 \boxed{63} 328417$	0	
174306528	183075642	$0 \sqrt{8} 4732165$
285417306	264183750	165840273
306285174	318750426	273651084
417063285	${ }^{4} L_{7}^{b}=$	426831507
528174063	507642318	327516840
${ }^{4} L_{8}^{b}=$	408327651	
630741852	642507183	516408732
741852630	750318264	651273408
852630741,	831426075,	732084516
		840165327,

	$0[36714825$		$0[48561237$		$0[5] 138462$
	147825603		156372048		138246570
	258603714		237480156		246057381
	360582471		372156804		381705246
${ }^{4} L_{3}^{c}=$	471360582	${ }^{4} L_{4}^{c}=$	480237615	${ }^{4} L_{5}^{c}=$	462813057
	582471360		561048723		570624138
	603147258		615723480		624570813
	714258036		723804561		705381624
	825036147 ,		804615372 ,		813462705 ,

	$0 \longdiv { 6 3 8 5 2 7 4 1 }$		$0 \square 5426183$		$0[84273516$
	174630852		183507264		165084327
	285741630		264318075		273165408
	306417528		318264750		327840165
${ }^{4} L_{6}^{c}=$	417528306	${ }^{4} L_{7}^{c}=$	426075831	${ }^{4} L_{8}^{\text {c }}=$	408651273
	528306417		507183642		516732084
	630285174		642831507		651408732
	741063285		750642318		732516840
	852174063 ,		831750426 ,		840327651

Fig. 20
We see that these systems of Latin squares have the following properties of the Hughes plane: the associated ternary ring is not linear but couples of Latin squares with opposite slope have up to order the same columns. The columns of every Latin square are always formed by three triples of even permutations of cosets of the elementary 3 -group of order nine with respect to the cyclic subgroup $\left(S_{0},+, 0\right)$. The ternary ring is "piecewise linear". From the first rows of Latin squares of strongly canonical systems it is possible to rewrite multiplication tables of induced operations:

Δ_{2}			
	12	345	678
	21	687	354
	36	471	582
	48	156	723
	57	813	246
	63	528	417
	75	264	831
	84	732	165

System $(S / T)^{T}$

System $(T / S)^{T}$

Fig. 21
Both operations Δ_{2} and Δ_{3} are loop operations and it is easily seen that the first loop passes to the second under the isomorphism $\varrho=(12)(36)(48)(57)$ so that the corresponding projective planes must be isomorphic. Further, it can be shown that the isomorphism $\delta=(036)(147)\left(25 z^{\prime}\right.$, maps the complete system of mutually orthogonal Latin squares ${ }^{4} \mathbf{L}^{a}=\left\{L_{1}, L_{2},{ }^{4} L_{3}^{a}, \ldots,{ }^{4} L_{8}^{a}\right\}$ onto the strongly canonical system ${ }^{4} \mathbf{L}^{c}=\left\{L_{1}, L_{2},{ }^{4} L_{3}^{c}, \ldots,{ }^{4} L_{8}^{c}\right\}$ and $\delta\left({ }^{4} \mathbf{L}^{c}\right)={ }^{4} \mathbf{L}^{b}$, so that these three Latin square representations correspond to the same plane. Remember that the starting addition + is
always the same and is determined by L_{1} of Fig. 4. If we denote the multiplication of the quaternion group (System R^{T}) by Δ_{1}, then we get three equivalent descriptions of the Hughes plane. Then the ternary operations ${ }^{a} T,{ }^{b} T,{ }^{c} T$ on S defined by

$$
\begin{align*}
v={ }^{a} T(u, x, y)=\begin{array}{lll}
u \Delta_{1} x+y & \text { for } y \in\{0,1,2\}=S_{0} \\
u \Delta_{2} x+y & \text { for } y \in\{3,4,5\}=S_{1} \\
& u \Delta_{3} x+y & \text { for } y \in\{6,7,8\}=S_{2} \\
& & \\
& u \Delta_{2} x+y & \text { for } y \in S_{0} \\
{ }^{b} T(u, x, y)= & u \Delta_{3} x+y & \text { for } y \in S_{1} \\
& u \Delta_{1} x+y & \text { for } y \in S_{2} \\
& & \\
& u \Delta_{3} x+y & \text { for } y \in S_{0} \\
v={ }^{c} T(u, x, y)= & u \Delta_{1} x+y & \text { for } y \in S_{1} \\
& u \Delta_{2} x+y & \text { for } y \in S_{2}
\end{array}
\end{align*}
$$

determine planar ternary rings of the same plane, namely of the Hughes plane. Due to three expressions in the formulae for ternary operations ${ }^{a} T,{ }^{6} T,{ }^{c} T$ they are said to be piecewise linear.

References

[1] Hughes, D.R., Piper, F.C.: Projective Planes. New York-Heidelberg-Berlin, 1973
2] Pickert, G.: Projektive Eben. Berlin-Göttingen-Heidelberg, 1955.
3] Stevenson, F.W.: Projective Planes. San Francisco, 1972.
4] Paige, L.J., Wexler, Ch.: A canonical form for incidence matrices of finite projective planes and their associated Latin squares. Portugaliae Mathematica 12 (1953), 105-112
[5] Hall, M.: Projective Planes. Trans. Amer. Math. Soc. 54 (1943), 229-277.
6] Room, T.G., Kirkpatrick, P.B.: Miniquaternion Geometry. Cambridge, 1971
7] Dénes, J., Keedwell, A.D.: Latin squares and their applications. Budapest, 1974
[8] Veblen, O., Wedderburn, J. H. M.: Non-Desargusian and non-Pascalian geometries. Trans. AMS 8 (1907), 379-388.
9] Knofliček, F.: On one construction of all quasifields of order 9. Comm. Math. Univ. Carolinae 27 (1986), 683-694.

Author's address: František Knofliček, Department of Mathematics of the Faculty of Mechanical Engineering, Technical University, Technická 2, 61669 Brno, Czech Republic.

