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E-HAMILTONIAN AND E-REGULAR ALGEBRAIC STRUCTURES 
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(Received March 23, 1995) 

Summary. The concept of a S-closed subset was introduced in [1] for an algebraic 
structure sJ = (A, F, R) of type T and a set E of open formulas of the first order language 
L(T). The set Cj;(.e/) of all S-closed subsets of .c/ forms a complete lattice whose properties 
were investigated in [1] and [2]. An algebraic structure c/ is called S-hamiltonian, if every 
non-empty S-closed subset of sJ is a class (block) of some congruence on ss/; sJ is called 
^-regular, if 0 = $ for every two 9, 4> 6 Con.c/ whenever they have a congruence class 
B £ Cx(.e/) in common. This paper contains some results connected with S-regularity and 
S-hamiltonian property of algebraic structures. 
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The concept of an algebraic structure was introduced in [6] and [9]. A type of a 

structure is a pair r = ({nt; i G / } , {rrij; j G J}), where Ui and rrij are non-negative 

integers. A structure si of type r is a triplet (A,F, R), where A ^ 0 is a set and 

F = {/,, i G / } , R = {QJ ; j G J } are such that for each i e I, j e J, ft is an n;-ary 

operation on A and Qj is an m^-ary relation on A. Denote by L(T) a first order 

language containing operational and relational symbols of type r, see [6] for some 

details. If i i = 0, the structure (A,F,%) is denoted by (A,F) and called an algebra. 

If F = 0, the structure (A,$,R) is denoted by (A,R) and called a relational system. 

A relational system (A, R) is called binary if each Q, G R is binary; moreover (A, R) 

is said to be antisymmetrical if each Qj G R is an antisymmetries! relation. 

Let us introduce the following concepts: for each 7 G T, where T is an index set, let 

Gj (x\,..., xky, yi , • • •, ySy, z, p) be an open formula containing individual variables 

xi, • • •, Xkn, 2/i, • • •, j / s , , 2 and a symbol p of an n ;-ary term of type T; for each A G A, 

where A is an index set such that T n A = 0, let G\(xi,..., Xkk, y i , •••,!/«» I^ I Qj) 

be an open formula containing individual variables x\,...,xky, yi,---,ySx, z and a 



symbol Qj of an m^-ary relation. Put S = {G 7 ; 7 e T} U {G\; A 6 A}. The set 

E = { G 7 , 7 e T} U {Gx, A 6 A} of formulas of a language L(T) is called limited if 

there exists a non-negative integer n, such that n = max({fc7,7 6 T} U {k\,\ 6 

A}U{s 7 ,7€r}U{sA ,AeA}). 
Let s/ = (A, F, R) be a structure of type r and let B C A. 

Definition 1 . A subset B of A is said to be S-closed if for each 7 e T, 

A 6 A and every 6i , . . . ,6 /» 7 , b[,...,b'kx € B, O i , . . . , o , T , o i . - . - . o ^ , c,c' 6 A, if 

G 7 ( 6 i , . . . , 6 f e r , o i , . . . , o » T , c , p ) is satisfied in s/ then c e B and if G !A(6i,-. ,6J. i , 

o i , . . . ,a'Sx,d, Qj) is satisfied in s/ then c' G B . 

Denote by Cs(s/) the set of all E-closed subsets of s/. 

Since the concept of S-closed subsets is defined by the set of universal formulas, 

B = n{Bs; <5 6 A} is also a S-closed subset of s/, provided Bs has this property for 

each 8 e A. Thus we have 

L e m m a 1. Let s/ = (A, F, R) be a structure of type r and let E be a set of open 

formulas of the language L(T). Then the set C?,(s/) of all S-closed subsets of s/ 

forms a complete lattice with respect to set inclusion with the greatest element A. 

Corollary 1 . For any s/, E and MCA there exists the least S-closed subset 

Cs,/(M) containing M. 

If M = {ax,... ,o„} then we will write briefly CS/(M) = C^(a\,... ,an). 

If the set S is implicitly known, we will use only the lattice Cs(sf) to specify the 

closure system; we will use the more familiar notation of Cs(s/) provided it was 

introduced before, see the following examples. 

E x a m p l e s . 

(1) Let s/ = (A, 5$) be an ordered set. Put T = 0, A = {1}, fej = 2, s i = 0 and 

E = {Gi} , where G\(x\,x2,z, ^ ) is the formula (x\ < z and z ^ x2). Then the 

E-closed subsets of s/ are just the convex subsets of (A, ^ ) . 

(2) Let s/ = (A,F) be an algebra, F = {f{;i 6 I}. Let A = 0, T = / , h = m, 

Si = 0 for i € / . Put S = {G;; i 6 / } , where G{(xi,... ,xni,z,fi) is the for

mula (fi(x\,... ,xni) = z). Then the E-closed subsets of s/ are subalgebras of 

s/ = (A,F), and CB(sJ) = Subs/. 

(3) Let 8?, = ( i ? , + , . , 0 ) b e a r i n g , A = 0, T= {1,2,3}, fci = 2, k2 = k3 = 1, «i = 0 , 

s2 = S3 = 1 and E = { G i , G 2 , G 3 } , where Gi is a formula (xx - x2 = z), G2 is the 

formula (xi -yi = z) and G3 is the formula (j/i • x\ = 2 ) . Then the S-closed subsets 

of Sf, are ideals of ^ and G s ( ^ ) = l&@, the lattice of all ideals of ^ . Analogously 

we can introduce the left or right ideals of $• 



(4) Similarly, if jgf = (L,V,A) is a lattice, A = 0, F = {1,2}, fci = 2, k2 = 1, 

si = 0 , s2 = 1 ,S = { G i , G 2 } , where Gi is the formula (xt Vx2 = z) and G2 is the for

mula (xi A ?/2 = z), then the S-closed subsets are lattice ideals, i.e. Cs(3f) = Id-Sf. 

(5) Let 3? = (L,V,A) be a lattice, T = {1,2}, A = {1'}, kx = k2 = kv = 2, 

si = s2 = si< = 0, S = { G i , G 2 , G r } , where Gi is the formula (xi V i 2 = z), G2 the 

formula (xi t\x2 = z) and G\< is the formula ( i i A z = x\ and i 2 V z = x 2 ) . Then 

the S-closed subsets form the convex sublattices of .£?. 

(6) Let <S = (G, . , _ 1 ,e) be a group, let p(x,y) be the term p(x,y) = yxy'1 and 

S = { G i , G 2 , G 3 , G 4 } , where G(xi,x2,z,.) is the formula (xi • x2 = z), G2(xi,z,~1) 

is the formula (x~l = z), G$(z,e) is the formula (e = z) and G4(x i ,y \ , z ,p ) is the 

formula (p(xi ,yi ) = z). Then GE(S?) is the lattice of normal subgroups of 'S. This 

lattice will be denoted by N(&). 

(7) Example (1) can be generalized as follows: For a binary relational system 

si = (A,R) with R = {/>;; j 6 J } we call G E ( . S / ) the lattice of convex subsets if 

S = {Gj ; j e J} and every Gj(xi,x2,z) is the formula (x\QjZ and ZQJX2); we denote 

Cz(si) by Conv^ / . 

(8) Example (5) can be generalized as follows: An algebraic structure si = 

(A, F, R) is called a binary algebraic structure if a relational system (A, R) is binary. 

Let s/ he & binary algebraic structure, SJ?I = (A,F), s/2 = (A,R), S = S i U S 2 , 

where S x = {G 7 ; 7 G F} and S 2 = {G*; A € A}. The lattice Gs(ja') is called the 

lattice of convex subalgebras of s/ if Cs1(s^i) = S u b M and Cz2(s/2) = C o n v ^ ; 

Cs(s/) is denoted by C Sub si. 

The concept of the Hamiltonian group is well-known in the group theory. A group 

is Hamiltonian if each of its subgroups is normal. This concept was generalized for 

algebras in [8]: an algebra si is Hamiltonian if each of its subalgebras is a class of 

some congruence on si. Hamiltonian algebras were characterized in [7], 

An important concept of universal algebra is that of a regular algebra, i.e. an 

algebra si such that any two congruences on si coincide whenever they have a 

congruence class in common. 

In this paper we generalize the concept of the Hamiltonian algebra by the concept 

of the S-hamiltonian algebraic structure and the concept of the regular algebra by the 

concept of the S-regular algebraic structure. Furthermore, we will formulate some 

conditions for S-regularity and S-hamiltonian property of the algebraic structures 

and we also show the relation between these concepts. 

Definit ion 2. Let si = (A, F, R) be an algebraic structure of type T and let S be 

a set of open formulas of the language L(T). The structure si is called S-hamiltonian 

if each non-empty S-closed subset of si is a class of some congruence on si. 
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E x a m p l e s . 

( 9 ) If Sf = ( G , . , - 1 ,e) is an Abelian group and C E ( ^ ) = S u b ^ , then ^ is a 

S-hamiltonian algebraic structure. 

(10) If <S = (G, . , _ 1 , e) is a group and Cr.(s4) = N(&), then & is a S-hamiltonian 

structure. 

(11) Let St. = (R, +, .,0) be a ring and Cs(St) = US?.. Then St. is S-hamiltonian. 

(12) Let 9 = (D,V,A,0) be a distributive lattice and Cs(9) = U9. Then 9 is 

S-hamiltonian. 

Theorem 1 . Let si = (A, F, R) be an algebraic structure and Cs(si) a set of its 

^-closed subsets. Then the following conditions are equivalent: 

(1) si is Y,-hamiltonian; 

(2) for each (n + l)-ary term g and for every a, b, o i , . . . , a „ G A we have 

q(b,ai,... ,an) G C^(a, b,q(a,ai,... ,an)). 

P r o o f . (1) => (2): Let si be a S-hamiltonian structure, B G Cs(si) and let B 

be generated by elements a, b, q(a,ai,... ,an) € A, i.e. B = C ^ ( a , 6 , q(a, o i , . . . , a n ) ) . 

Then B is a congruence class of some 0 £ Con s/, i.e. it is a class of congruence 0(B) 

which is generated by the relation B x B. However, a,b G B, then (a, b) e 0, hence 

( g ( a , a i , . . . , a n ) ,g (6 ,Oi , . . . ,a„)) e 0, i.e. g ( 6 , a i , . . . ,an) and q(a,a%,... ,an) belong 

to the same class, thus q(b, a\,..., an) G B. 

(2) =$> (1): Let B € Cs(s/) and suppose that (2) holds and B is not a class of 

any congruence 0 G Con s/. Then there exist a,b G B such that q(a, a i , . . . , an) G B 

but g(6, o i , . . . , o„) £ B for some (n + l)-ary term q and a i , . . . , o n G A. Thus a, 

6, g ( a , a i , . . . , a n ) G B implies C ^ (a, 6, g(a, a i , . . . ,o„)) C B, and g (6 ,a i , . . .,an) G 

Cs/(a, b,q(a, o i , . . . ,o n ) ) C i? according to (2), a contradiction. Hence (2) implies 

(1). • 

T h e o r e m 2. Let s/ = (A , F, R) be an algebraic structure and 0 G A. Let Cs(s/) 

be a system ofT.-closed subsets of s/ such that 0 G B for every B G Cs(sf) and, 

furthermore, for every a,b G B there exists de B such that 0(0, a) V 0(0,6) = 0(0, d). 

Then the condition 

(*) Csj(a) is a class of the congruence 0(0, o) for each a G A 

implies that s/ is S-hamiltonian. 

P r o o f . Let B G CB(s/). Then B = V{C^(x) ; x G B} in the lattice 

(Cs(s/),C ) . Put 0 = V{0(O,x); x G £ } in the lattice ( C o n ^ . C ) . Then: 
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(a) (a, 0) e 0(0, a) and (0,6) e 0(0,6) for every a, 6 e B, hence (a, 6) e 0(0, a) • 

0(0,6) C 0(0, a) V 0(0,6) C 0. Thus B x B C 0, i.e. there exists a class C of the 

congruence 0 such that B C.C. 

(b) Suppose that S is not a class of the congruence 0. Then there exist d 6 B, 

c £ B such that (c, d) e 0. Since the lattice Con si is algebraic, there exist elements 

6 i , . . . , 6 n € B such that (c,0) e 0(0, &i) V0(O,62) V . . . V0(O,6n). By the assumption 

there exists h e B such that (c,0) € 0(0, h). Hence c 6 C^(h) C B by (*), a 

contradiction. Thus B is a class of 0. • 

E x a m p l e . Let 9 = (D,V,A,0) be a distributive lattice with zero 0 and 

Cs(2) = C S u b ® (0 means a miliary operation). Then the assumption and condi

tion (*) of Theorem 2 are fulfilled, see e.g. Theorem 1 in [5], thus $> is a S-hamiltonian 

structure. 

Definit ion 3 . Let si = (A,F,R) be an algebraic structure of type r , let S be 

a set of open formulas of the language L(T) and let Cs(si) be the closure system. 

The structure si is called H-regular if 0 = $ for 0, $ e Con si whenever they have 

a congruence class B 6 C^(si) in common; si is called strongly H-regular if every 

B 6 Cz(si) is a class of exactly one congruence on si. 

The following proposition is evident: 

L e m m a 2. If an algebraic structure is strongly S-regular, then it is also S-reguJar. 

Definition 4. We say that an algebraic structure si/ = (A,F,R) has E-trans-

ferable congruences, if for every o,6, c e A and [c]9(0it) £ Cz(si) there exist elements 

d i , . . . , d n £ [c]9(0,6) such that 0(o,6) = 9(c,dlt.. . , d n ) . 

T h e o r e m 3. Let si = (A,F,R) be an algebraic structure of type T and let S 

be a set of open formulas of the language L(T). Then the following conditions are 

equivalent: 

(i) srf is ^-regular; 

(ii) s/ has ^.-transferable congruences. 

P r o o f , (i) => (ii): Let si be S-regular, a,6 G A and [c]#(„)4) € Cs(si). Then, 

by the S-regularity we have 0(a,6) = 8([c]e(a,b)) = ^({c} x [c]9(0]())). Since the lattice 

Con si is algebraic, i.e. compactly generated, there exists a finite subset F C [c]e(0]„) 

such that 0(o,6) = 0({c} x F). If F = { d i , . . . , d n } then0(o ,6) = 0 (c ,d i , . . . , d n ) , 

i.e. the structure si has S-transferable congruences. 

(ii) => (i): Let 0 i ,0 2 6 Con si and let B e Cs(si) be their common congruence 

class. Then B is also a class of the congruence 0i n 0 2 . Thus we can suppose without 

loss of generality that 0i C 02. Further suppose (a, 6) e 02 and c e B. By the 
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S-transferability we obtain the existence of elements di , . . . ,dn e [c]s(0,6) C B with 

9(a,b) = 6(c,du...,dn), i.e. (c,di) € B x B. Hence (c,d{) € 9X for i = 1,... ,n, 

thus 6(a,b) =6(c,di)V ...V8(c,dn) C du Then (a,b) e«i,i .e. 92 Q0U So we have 

Oi = 02 and .e/ is S-regular. D 

It is evident that every strongly S-regular algebraic structure is also S-hamilto-

nian. Hence every strongly S-regular structure is S-regular and S-hamiltonian by 

Lemma 2. Conversely, if a structure si is S-hamiltonian and S-regular, then by the 

first property, every B e Cz(stf) is a class of at least one congruence on si and, by 

S-regularity, B is a class of at most one congruence on si. Thus we have 

Theorem 4. An algebraic structure is strongly S-regu/ar if and only if it is Ir

regular and S-hamiltonian. 
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