Mathematic Bohemia

Imrich Fabrici

One-sided principal ideals in the direct product of two semigroups

Mathematica Bohemica, Vol. 118 (1993), No. 4, 337-342

Persistent URL: http://dml.cz/dmlcz/126156

Terms of use:

(C) Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

ONE-SIDED PRINCIPAL IDEALS IN THE DIRECT PRODUCT OF TWO SEMIGROUPS

Imrich Fabrici, Bratislava

(Received December 2, 1991)

Summary. A necessary and sufficient condition is given for
a) a principal left ideal $L(s, t)$ in $S \times T$ to be equal to the direct product of the corresponding principal left ideals $L(s) \times L(t)$,
b) an \mathscr{L}-class $L_{(s, t)}$ to be equal to the direct product of the corresponding \mathscr{L}-classes $L_{s} \times L_{t}$.

Keywords: direct product of two semigroups, principal left ideal, \mathscr{L}-class, maximal \mathscr{L} class

AMS classification: $20 \mathrm{M} 10,20 \mathrm{M} 12$

It is well known that if L_{1} is a left ideal of a semigroups S, L_{2} is a left ideal of a semigroup T, then the direct product $L_{1} \times L_{2}$ is a left ideal of the direct product of two semigroups $S \times T$. If $s \in S, t \in T$, then by $L(s), L(t)$ we denote the principal left ideal of S and of T, respectively, and by $L(s, t)$ the principal left ideal of $S \times T$. $L(s) \times L(t)$ is a left ideal of $S \times T$, but it need not be the principal left ideal of $S \times T$.

Let L_{s} be an \mathscr{L}-class of S containing $s \in S$, let L_{t} be an \mathscr{L}-class of T containing $t \in T$, and let $L_{(s, t)}$ be an \mathscr{L}-class of $S \times T$ containing $(s, t) \in(S \times T)$.

The aim of the note is
a) to investigate the mutual relation between $L(s, t)$ and $L(s) \times L(t)$ and to find conditions under which $L(s, t)=L(s) \times L(t)$,
b) to investigate the mutual relation between $L_{(s, t)}$ and $L_{s} \times L_{t}$ and to find conditions under which $L_{(s, t)}=L_{s} \times L_{t}$.

All results are given for principal left ideals and \mathscr{L}-classes, because for principal right ideals and \mathscr{X}-classes they are similar. For all notions and notation, which we use and do not define, we refer to [2].

Lemma 1. Let $(s, t) \in S \times T$. Then $L(s, t) \subset L(s) \times L(t)$.

Proof. $L(s, t)=(s, t) \cup(S s \times T t) \subset(s, t) \cup(s \times T t) \cup(S s \times t) \cup(S s \times T t)=$ $(s \cup S s) \times(t \cup T t)=L(s) \times L(t)$.

Theorem 1. $L(s, t)=L(s) \times L(t)$ iff at least one of the following conditions is satisfied:

1) $S s=\{s\}$,
2) $T t=\{t\}$,
3) $s \in S s$ and $t \in T t$.

Proof. a) If 1) holds, then $L(s)=\{s\}$ and $L(s) \times L(t)=\{s\} \times(t \cup T t)=$ $(s, t) \cup(s \times T t)=(s, t) \cup(S s \times T t)=L(s, t)$.

If 2) holds, we proceed analogously.
If 3) holds, then $L(s)=S s, L(t)=T t$. Hence $L(s) \times L(t)=(S s \times T t)=$ $(s, t) \cup(S s \times T t)=L(s, t)$.
b) Let none of the conditions hold. This is possible only in two cases:
$\alpha) s \notin S s$ and $T t \neq\{t\}$;
$\beta)\{s\} \neq S s$ and $t \notin T t$.
If α) holds then there exists $t_{1} \neq t$ such that $t_{1} \in T t$. Then $\left(s, t_{1}\right) \in L(s) \times L(t)$, but $\left(s, t_{1}\right) \neq(s, t)$, so $\left(s, t_{1}\right) \notin(S s \times T t)$, since $s \notin S s$. Then $\left(s, t_{1}\right) \notin(s, t) \cup(S s \times T t)=$ $L(s, t)$. Therefore, $L(s, t) \neq L(s) \times L(t)$.

The notion of a projection is used in the usual way ([5]): The function $\Pi_{S}: S \times T \rightarrow$ S defined by $(s, t) \Pi_{S}=s$ for all $(s, t) \in(S \times T)$ is the projection of $S \times T$ onto S, similarly Π is onto T.

Remark 1 . It is easy to see that $L(s, t) \Pi_{S}=L(s)$ in $S, L(s, t) \Pi_{T}=L(t)$ in T.
Theorem 2. Let $(s, t) \in S \times T$ be any element. Then

1) $L_{(e, t)} \subseteq L_{s} \times L_{t}$.
2) If $L_{(s, t)} \subset L_{s} \times L_{t}$, then $L_{s} \times L_{t}$ is the union of at least two \mathscr{L}-classes in $S \times T$.

Proof. 1) Let $(u, v) \in L_{(s, t)}$. Then $L(u, v)=L(s, t)$ and $L(u)=L(s)$ in $S, L(v)=L(t)$ in T, hence $u \in L_{s}, v \in L_{t}$ and therefore $(u, v) \in L_{s} \times L_{t}$, so $L_{(0, t)} \subseteq L_{s} \times L_{t}$.
2) Let $(u, v) \in L_{s} \times L_{t}-L_{(s, t)}$. Then $u \in L_{s}, v \in L_{t}, L_{u}=L_{s}, L_{v}=L_{t}$. Then $L_{(u, v)} \subseteq L_{u} \times L_{v}=L_{s} \times L_{t}$.

Corollary. If $L_{s}=\{s\}, L_{t}=\{t\}$, then $L_{(s, t)}=L_{s} \times L_{t}$.
Lemma 2. If $(s, t) \notin(S s \times T t)$, then $L_{(s, t)}-\{(s, t)\}$.
Proof. $L(s, t)=(s, t) \cup(S s \times T t)$ and for any $(u, v) \in L(s, t),(u, v) \neq(s, t)$, $(u, v) \in(S s \times T t) \subset L(s, t)$. Then $L(u, v) \subseteq(S s \times T t) \subset L(s, t)$, hence $L(u, v) \neq$ $L(s, t)$, therefore $L_{(s, t)}=\{(s, t)\}$.

Theorem 3. $L_{(s, t)}=L_{s} \times L_{t}$ in $S \times T$ iff at least one of the following conditions holds:

1) $L_{s}=\{s\}$ in S, and $L_{t}=\{t\}$ in T.
2) $s \in S s$ and $t \in T t$.

Proof. a) Let $L_{(s, t)}=L_{s} \times L_{t}$. We shall consider two possibilities:
(i) $L_{(s, t)}=\{(s, t)\}$,
(ii) $\left|L_{(s, t)}\right|>1$.

If (i) holds, then $L_{(s, t)}=\{(s, t)\}$ implies $L_{s}=\{s\}, L_{t}=\{t\}$, therefore 1$)$ holds.
If (ii) holds, then there is $(u, v) \neq(s, t)$ such that $(u, v) \in L_{(s, t)}$. Then $(u, v) \cup$ $(S u \times T v)=(s, t) \cup(S s \times T t)$, thence $(u, v) \in(S s \times T t)$ and $(s, t) \in(S u \times T v)$. Hence we have $(S s \times T t)=(S u \times T v)$ and $(s, t) \in(S s \times T t)$; therefore, $s \in S s$ and $t \in T t$, so 2) holds.
b) Now, if 1) holds, the $L_{(s, t)}=L_{s} \times L_{t}$ by Corollary of Theorem 2.

If 2) holds, then $s \in S s$ and $t \in T t$, then $(s, t) \in(S s \times T t)$. Let $(u, v) \in L_{s} \times L_{t}$ so $u \in L_{s}, v \in L_{t}$. It is easy to show that $S u=S s$, and $T v=T t$ and then $S u \times T v=S s \times T t$. Then $L(s, t)=S s \times T t=S u \times T v=L(u, v)$, therefore $(u, v) \in L_{(s, t)}$. It implies that $L_{s} \times L_{t} \subseteq L_{(s, t)}$. Since by Theorem $2 L_{(s, t)} \subseteq L_{s} \times L_{t}$, we conclude $L_{(s, t)}=L_{s} \times L_{t}$.

Theorem 4. If $\left|L_{s}\right|>1$ in S and $\left|L_{t}\right|>1$ in T, then

1) $s \in S s$ and $t \in T t$,
2) $L_{(s, t)}=L_{s} \times L_{t}$ in $S \times T$.

Proof. 1) Since $\left|L_{s}\right|>1$ and $\left|L_{t}\right|>1$, there is $u \in L_{s}, u \neq s$ and $v \in L_{t}$, $v \neq t$, such that $L(u)=L(s)$ in S and $L(v)=L(t)$ in T. Then $u \cup S u=s \cup S s$ and $v \cup T v=t \cup T t$. It implies $u \in S s$ and $s \in S u$ and similarly $v \in T t$ and $t \in T v$. Thus we have $S u \subseteq S s$ and $S s \subseteq S u$, which gives $S u=S s$ and $T v=T t$ and it implies $s \in S s, t \in T t$.
2) It implies from Theorem 3.

Corollary. If $L_{s} \times L_{t}$ in $S \times T$ is a union of at least two \mathscr{L}-classes, then necessarily either $\left|L_{s}\right|>1$ and $L_{t}=\{t\}$, or $L_{s}=\{s\}$ and $\left|L_{t}\right|>1$.

Theorem 5. $L_{s} \times L_{t}$ is the union of at least two \mathscr{L}-classes in $S \times T$ iff either $\left|L_{s}\right|>1$ and $L_{t}=\{t\}, t \notin T t$, or $L_{s}=\{s\}, s \notin S s$ and $\left|L_{t}\right|>1$.

Proof. a) If $L_{s} \times L_{t}$ is the union of at least two \mathscr{L}-classes, then by Corollary of Theorem 4 either $\left|L_{s}\right|>1$ and $L_{t}=\{t\}$ or $L_{s}=\{s\}$ and $\left|L_{t}\right|>1$. If $\left|L_{s}\right|>1$, then by Theorem $4 s \in S s, L_{t}=\{t\}$ and $t \notin T t$, because otherwise $s \in S s$ and $t \in T t$ implies $L_{(s, t)}=L_{s} \times L_{t}$ by Theorem 3, which contradicts the hypothesis, so $t \neq T t$.

In the case $L_{s}=\{s\}$ and $\left|L_{t}\right|>1$ we proceed analogously.
b) Conversely, let $\left|L_{s}\right|>1$ and $L_{t}=\{t\}, t \notin T t$. Let $u \in L_{s}, u \neq s$, then $(s, t) \in L_{s} \times L_{t}$ as well as $(u, t) \in L_{s} \times L_{t}$. Moreover, $(s, t) \notin(S s \times T t)$ and $(u, t) \notin(S u \times T t)$ as $t \notin T t$, therefore by Lemma $2 L_{(s, t)}=\{(s, t)\}, L_{(u, t)}=\{(u, t)\}$ and both $L_{(s, t)} \subseteq L_{s} \times L_{t}$ and $L_{(u, t)} \subseteq L_{s} \times L_{t}$.
In the case $L_{s}=\{s\}, s \notin S s$ and $\left|L_{t}\right|>1$ we proceed analogously.
In the next part we want to characterize maximal \mathscr{L}-classes in $S \times T$ and their mutual relation to maximal \mathscr{L}-classes in S and in T, respectively.

An \mathscr{L}-class $L_{s}\left(L_{(s, t)}\right)$ in $S(S \times T)$ is maximal, if there is no element $u \in S$ $((u, v) \in S \times T)$ such that $L(s) \subset L(u)(L(s, t) \subset L(u, v))$.

An element $s \in S$ is indecomposable if $s \in S-S^{2}$.
Remark 2. It is evident that

1) If $s \in S$ is indecomposable, then $s \notin S s$ and $L_{s}=\{s\}$.
2) An element $(s, t) \in S \times T$ is indecomposable iff either $s \in S$ or $t \in T$ is indecomposable.

Lemma 3. 1) If $(S \times T)^{2} \subset S \times T$, then for any $(s, t) \in S \times T-(S \times T)^{2}$, $L_{(s, t)}=\{(s, t)\}$ is maximal \mathscr{L}-class in S.
2) If $L_{(s, t)}=\{(s, t)\}$ is a maximal \mathscr{L}-class of $S \times T$ and $(s, t) \notin(S s \times T t)$, then (s, t) is indecomposable.

Proof. 1) Let $(s, t) \in(S \times T)-(S \times T)^{2}$. If $L(s, t) \subset L(u, v)$ for some $(u, v) \in S \times T$, then $(s, t) \in(S u \times T v) \subseteq\left(S^{2} \times T^{2}\right)$, which contradicts the hypothesis.
2) Let $L_{(s, t)}=\{(s, t)\}$ be a maximal \mathscr{L}-class of $S \times T$ and $(s, t) \notin(S s \times T t)$. If $(s, t) \in(S u \times T v)$ for $(u, v) \in S \times T,(u, v) \#(s, t)$, then $L(s, t) \subseteq L(u, v)$ in $S \times T$. $L(s, t)=L(u, v)$ cannot be satisfied, since $L_{(s, t)}=\{(s, t)\}$, hence $L(s, t) \subset L(u, v)$ and this contradicts the fact that $L_{(\rho, t)}$ is a maximal \mathscr{L}-class in $S \times T$. Consequently for any $(u, v) \in(S \times T)$ we have $(s, t) \notin(S u \times T v)$, therefore either $s \notin S^{2}$ or $t \notin T^{2}$, or both $s \notin S^{2}$ and $t \notin T^{2}$. Hence $(s, t) \in(S \times T)-(S \times t)^{2}$.

Theorem 6. Let $(s, t) \in(S s \times T t)$. Then $L_{(s, t)}=L_{s} \times L_{t}$ is a maximal \mathscr{L}-class iff L_{s} is a maximal \mathscr{L}-class in S and at the same time L_{t} is a maximal \mathscr{L}-class in T.

Proof. a) The equality $L_{(s, t)}=L_{s} \times L_{t}$ follows from Theorem 3. Let e.g. L_{s} be no maximal \mathscr{L}-class. Then there is $u \in S$ such that $L(s) \subset L(u)$. If $u \in S u$, then from the relation $L(s) \subset L(u)$ we have $L(s) \subset S u$ and $u \notin L(s)$. Moreover, $(u, t) \notin L(s) \times L(t)=L(s, t)$. However, $u \in S u, t \in T t$ implies $L(u, t)=L(u) \times L(t)=$ $S u \times T t \supset L(s) \times L(t)=L(s, t)$, since $(u, t) \notin L(s) \times L(t)$. It means that $L_{(s, t)}$ is not a maximal \mathscr{S}-clase in $S \times T$.

If $u \notin S u$, then $L(s) \subset L(u)$ implies that $L(s) \subseteq S u$ and $u \notin L(s)$. Moreover $(u, t) \notin L(s) \times L(t)=L(s, t)$. But $u \notin S u, t \in T t$ implies that $L(u, t)=(u, t) \cup[S u \times$
$L(t)] \supseteq(u, t) \cup L(s) \times L(t) \supset L(s) \times L(t)=L(s, t)$, since $(u, t) \notin L(s) \times L(t)$. We get again that $L_{(s, t)}$ is no maximal \mathscr{L}-class in $S \times T$.
b) Conversely, let $L_{(s, t)}=L_{s} \times L_{t}$ be no maximal \mathscr{L}-class in $S \times T$. Then there is $(u, v) \in(S \times T)-L_{(s, t)}$ such that $L(s, t)=L(s) \times L(t)=S s \times T t \subset L(u, v) \subseteq$ $L(u) \times L(v)$. It implies $L(s) \subseteq L(u)$ in $S, L(t) \subseteq L(v)$ in T. However, $(u, v) \notin L(s, t)$, hence either $u \notin L(s)$ or $v \notin L(t)$. Therefore, either $L(s) \subset L(u)$ in S, or $L(t) \subset L(v)$ in T. It means that either L_{s} is no maximal \mathscr{L}-class in S, or L_{t} is no maximal \mathscr{L} class in T.

Theorem 7. Let $(s, t) \notin(S s \times T t)$. Then $L_{(s, t)}$ is a maximal \mathscr{L}-class in $S \times T$ iff either $s \in S-S^{2}$, or $t \in T-T^{2}$ or both of them.

Proof. a) Let $(s, t) \notin(S s \times T t)$ and let $L_{(s, t)}$ be a maximal \mathscr{L}-class in $S \times T$. Then by Lemma 3 and Remark 2 we have $(s, t) \in(S \times T)-\left(S^{2} \times T^{2}\right)$, hence either $s \in S-S^{2}$ or $t \in T-T^{2}$, or both $s \in S-S^{2}$ and $t \in T-T^{2}$.
b) If $s \in S-S^{2}, t \in T$, then $(s, t) \in S \times T$ and $(s, t) \notin S^{2} \times T^{2}$ since $s \notin S^{2}$, hence $(s, t) \in(S \times T)-\left(S^{2} \times T^{2}\right)$ and by Lemma $3 L_{(s, t)}=\{(s, t)\}$ is a maximal \mathscr{L}-class in $S \times T$.

Theorem 1 presents conditions under which $L(s, t)=L(s) \times L(t)$, Theorem 3 presents conditions under which $L_{(s, t)}=L_{s} \times L_{t}$ for a given element $(s, t) \in(S \times T)$.

The next statements express conditions under which $L(s, t)=L(s) \times L(t), L_{(s, t)}=$ $L_{s} \times L_{t}$ for any $(s, t) \in(S \times T)$.

From Theorem 1 we immediately get

Theorem 8. $L(s, t)=L(s) \times L(t)$ for any $(s, t) \in(S \times T)$ iff at least one of the following conditions holds:

1) $S s=\{s\}$ for any $s \in S$;
2) $T t=\{t\}$ for any $t \in T$;
3) $s \in S s$ and $t \in T t$ for any $s \in S, t \in T$.

Theorem 9. $L_{(s, t)}=L_{s} \times L_{t}$ for any $(s, t) \in S \times T$ iff at least one of the following conditions holds:

1) $s \in S s$ and $t \in T t$ for any $s \in S, t \in T$.
2) Either for any $s \in S, s \in S s, L_{s}=\{s\}$, there is at least one element $t \in T$ such that $t \notin T t$, or for any $t \in T, t \in T t, L_{t}=\{t\}$, there is at least one element $s \in S$ such that $\mathrm{s} \notin S$ s.
3) $L_{s}=\{s\}, L_{t}=\{t\}$ for any $s \in S, t \in T$.

Praof. a) Let $L_{(s, t)}=L_{s} \times L_{t}$ for any $(s, t) \in S \times T$. As we know from Theorem 5, $L_{(s, t)} \subset L_{s} \times L_{t}$ iff either $s \notin S s$ and $\left|L_{t}\right|>1$, or $\left|L_{s}\right|>1$ and $t \notin T t$.

If we suppose that $L_{(s, t)}=L_{s} \times L_{t}$, then we have to eliminate the conditions under which $L_{(s, t)} \subset L_{s} \times L_{t}$.

In our procedure the following cases are considered:
$\alpha)$ Neither S nor T contain elements $s \in S, t \in T$ such that $s \notin S s, t \notin T t$.
β) Just one of the semigroups S, T contains at least one element $s \in S$ or $t \in T$, respectively such that $s \notin S s, t \notin T t$.
$\gamma)$ Both S and T contain at least one element $s \in S, t \in T$ such that $s \notin S s$, $t \notin T t$.

If α) holds, then any $s \in S, t \in T$ satisfy $s \in S s, t \in T t$, and this is 1).
If β) holds and $s \in S, s \notin S s$, then for any element $t \in T$ we have $t \in T t$ and $L_{t}=\{t\}$, because if it were $\left|L_{t}\right|>1$, then for $(s, t) \in L_{s} \times L_{t}$ we would have $L_{(s, t)} \subset L_{s} \times L_{t}$. Hence, $L_{t}=\{t\}$ for any $t \in T$. In the case that T contains such element $t \in T, t \notin T t$, we proceed analogously obtaining $L_{s}=\{s\}$ for any $s \in S$, and this is 2).
γ) Let S contain at least one element $s \in S$ such that $s \notin S s$, and let T contain at least one element $t \in T$ such that $t \notin T t$. Then β) implies that $L_{t}=\{t\}$ for any $t \in T$ and $L_{s}=\{s\}$ for any $s \in S$, and this is 3).
b) Conversely, if 1) holds, then by Theorem $3 L_{(s, t)}=L_{s} \times L_{t}$.

If 2) holds, then for any $s \in S, s \in S s, L_{s}=\{s\}$ there is at least one $t_{1} \in T$ such that $t_{1} \notin T t_{1}$. Let $t \in T$ be any element. If $t \in T t$, then the condition 2) of Theorem 3 is satisfied and therefore $L_{(s, t)}=L_{s} \times L_{t}$. If $t \notin T t$, then $L_{t}=\{t\}$ (Lemma 2), $L_{s}=\{s\}$ for any $s \in S$, so $L_{(s, t)}=L_{s} \times L_{t}$. In the second possibility we proceed analogously.

If 3) holds, then $L_{s}=\{s\}, L_{t}=\{t\}$ for any $s \in S, t \in T$. Then $L_{(s, t)}=L_{s} \times L_{t}$.

References

[1] Abrhám I.: On (H,T)-ideals in the direct product of semigroups, Mat. časopis 21 (1971), 199-211.
[2] Clifford A.H. and Preston G.B.: The algebraic theory of semigroups, American Math. Soc., Providence, R.I., 1961.
[3] Fabrici I.: On semiprime ideals in the direct product of semigroups, Mat. Casopis 18 (1968), 201-203.
[4] Ivan J.: On the direct product of semigroups, Mat.-fyz. Ceasopis (1953), 57-66.
[5] Petrich M.: Prime ideals in the cartesian product of two semigroups, Czechoslov. Math. J. 12 (1962), 150-152.
[6] Petrich M.: Introduction to semigroups, Charles E. Merrill Publishing CO. A Bell and Howell Company, Ohio.
[7] Plemmons R.: Maximal ideals in the direct product of two semigroups, Czechoslov. Math. J. 17 (1967), 257-260.

Author's address: Department of Mathematics, Slovak Technical University, Radlinského 9, 81237 Bratislava.

