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SEQUENTIAL CONVERGENCES IN DISTRIBUTIVE LATTICES 

JAN JAKUBIK, Kosice 

(Received March 22, 1993) 

Summary. In this paper we investigate the system Conv L of all sequential convergences 
on a distributive lattice L. 
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Filter convergences on distributive lattices were studied in [1]. In the paper [8] 
there were investigated FLUSH sequential convergences (cf., e.g., [9], [10]) on lat
tices such that certain natural relations between the convergence and the order were 
fulfilled. 

In the present paper the definitions and notations from [8] will be used. Through
out the paper, L denotes a distributive lattice. 

The following results (A), (B) and (C) will be established. 
(A) The partially ordered set Conv L of all sequential convergences in L is a complete 

lattice if and only if the following condition (i) and its dual are satisfied: 
(i) Whenever {(xn))X),((xn),x) are regular elements of LN x L and y is an 

element of L such that x ^ xn, x ^ xn and x ^ y < xn Vxn for each n € N, 
then x = y. 

(B) If L is (No* 2)-distributive, then Conv L is a complete lattice. 

For lattice ordered groups and for Boolean algebras the results analogous to (B) 
were proved in [7]. A related result (concerning filter convergences in completely 
distributive lattice ordered groups) was established in [2], Propos. 1.15. 

If L is represented as a direct product L = f| Li and if a* € Conv Li for each 

i E / , then a = J\ ai -s defined in a natural way. 
i€l 
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(C) Under the above notations, a is a maximal element of Conv L if and only if, for 
each i G I, a* is a maximal element of Conv L». 

For the case of lattice ordered groups the result analogous to (C) was shown to 
be valid in [6]. On the other hand, the analogous result does not hold for groups 
(cf. [3], [5]); neither does the analogous result hold for topological groups (cf. [4]). 

The questions whether the above theorems (A) and (C) remain valid without 
assuming the distributivity of L remain open. 

1. REGULAR SETS 

For the notion of convergence in L cf. [8], Definition 1.1. We recall that a set 
A C L is said to be regular if there exists a G ConvL such that AC a. 

In this section the assertion (A) mentioned above will be proved. 
Let A be a nonempty subset of LN x L. Denote 

-4+ = {(xn V rr), x): ((xn), x) G A}, 

and let A~ be defined dually. 

1.1. Lemma. Let 0 ^ A C LN x L. Then the following conditions are equivalent: 

(i) A is regular. 

(ii) Both A+ and A~ are regular. 

P r o o f . Let A be regular. Thus there is a G ConvL with A C a. Then both 
A+ and A~ are subsets of a, hence they are regular. Conversely, let (ii) hold. There 
are a i , a 2 G ConvL with A+ C a\ and A~ C a 2 . Hence A+ C a* and A~ C a~: 

In view of 3.7, [8], there is a G ConvL such that a = af V a~. Thus _4+ C a and 
A~ C a. According to 3.2, [8], we obtain AC a. Therefore A is regular. • 

If 0 ^ A C LN x L, then we denote by T(A) the m-convergence in L generated by 

the set A (cf. [8], Section 2). 
We recall the following notation from [8]. 

Let 0 C A C LN x L. We denote by A1 the set of all ((xn),x) € LN x L such that 

either 

(i) there exists ((yn),2/) G A such that x = y and (yn) is a subsequence of (~cn), or 

(ii) there is ra G N such that xn = x for each n^m. 

1.2. Lemma. Let 0 ^ A C LN x L, _4+ ='A. Let ((xn),x) e LN x L be such 

that xn ^ x for each n G N. Then the following conditions are equivalent: 

(i)((xn),x)€T(A). 
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(ii) There are k £ N, a k-ary lattice polynomial / , elements zl,z2,... ,zk in L and 
(zn) £LN (j = l,2,...,k) suchthat((zn),z>)£Al for each j £ {1,2,.. .,k} and 

f(z\z2, ...,zk) = x^xn^ f(zn, z\,..., zk) for each n£N. 

Proof . The implication (ii)=I>(i) is obvious. The converse implication is a 
consequence of [8] (2.3 and 2.4). D 

1.3. Lemma. Let A and ((xn),x) be as in 1.2. Then the following conditions 
are equivalent: 

(i)((xn),x)£T(A). 
(ii) There are I e N and (tn) £ LN (j = 1,2,..., k) such that ((tn),x) £ A1 for 

each j E {1,2,.. . , k}, t n ^ x for each n £N and each j e {1,2,..., fc}, and 

Xn^tl
nVtl\/ ...Vtn for each n£N. 

Proof . The assertion follows from 1.2 by applying the same steps as in the 
proof of 5.1, [8]. D 

1.4. Lemma. Let A be as in 1.2. Then the following conditions are equivalent: 
(i) A is regular. 
(ii) If ((xn),x) and ((xn),y) belong to T(A), then x = y. 

Proof . This is an immediate consequence of the definition of regularity. D 

1.5. Lemma. Let A be as in 1.2. Then the following conditions are equivalent: 
(i) A is not regular. 
(ii) There are x,z £ L and (xn) £ LN such that ((xn),x) £ T(A) and x < z ^ xn 

for each n £ N. 

Proof . Let (i) be valid. Hence T(A) £ Conv L. Thus in view of 1.4 there exist 
((xn),x) and ((xn),y) in T(A) such that £ # y. Denote xMy = z. Then either z > x 
or z > y; without loss of generality we can assume that z > x. According to 1.2 we 
have xn ^ x and xn ^ y for each n £ N, hence xn ^ z for each n £ N. Therefore (ii) 
is valid. 

Conversely, assume that (ii) holds. By way of contradiction, assume that A is 
regular. Hence there is a £ ConvL with AC a. Then T(A) C a, thus ((xn),x) £ a. 
Now in view of (ii) we would have x < z and (const z,x) £ a, which is impossible. 

D 
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Prom 1.5 and 1.3 we obtain 

1.6. T h e o r e m . Let 0 ^ A C LN x L, _4+ = .4. Then fciie following conditions 

are equivalent: 

(i) A is not regular. 

(ii) There exist (tn) e LN (j = 1,2,. . . , k), x G L and z G L with ((*£), z) G -41 

for each j G {1 ,2 , . . . , k}, tn ^ x for each j G {1 ,2 , . . . , A;} and each n €N such that 

x < z ^ t\ V 4 V . . . V tn for each neN. 

In view of 1.6, 1.1 and by using duality we infer: 

1.7. Corollary. Let A be a nonempty subset of LN x L. Then the following 

conditions are equivalent: 

(i) A is not regular. 

(ii) Either A+ satisfies the condition (ii) from 1.6 or A~ satisfies the condition 

dual to the condition (ii) from 1.6. 

1.8. Lemma. The following conditions are equivalent: 

(i) Conv L possesses the greatest element. 

(ii) The condition (i) from (A) and its dual are satisfied. 

P r o o f . Let (i) be valid and let ((xn),x), ((x'n), x) be as in the condition (i) from 
(A). Then there exist ai,a2 G ConvL such that ((xn),x) G c*i and ((xn),x) G a.2. 
In view of (i) there exists the greatest element a in ConvL. Hence both ((xn),x) 

and ((x'n),x) belong to a. Thus ((xn V x'n),x) belongs to a as well. If y G L such 
that x < y < xn V xn for each neN, then ((const y), x) G a, hence y = x, Therefore 
the condition (i) from (A) is satisfied. Analogously we can verify that the dual of 
this condition is satisfied as well. 

Assume that (ii) is valid. By way of contradiction, suppose that Conv L has no 

greatest element. Hence there exists a subset {ai}i^i of ConvL which is not upper 

bounded in ConvL. Thus T( U ai) fails to belong to ConvL. In other words, U a -
iei iei 

fails to be regular. Thus in view of 1.1, at least one of the sets ( U a 0 > ( U a * ) ~ 
iei iei 

is not regular. 
Suppose ( U ai) is not regular (if this assumption fails to be valid, then we 

iei 
proceed by applying a dual method). Let us use Theorem 1.6 with A = ( U a%) • 

iei 
Then A = A* and the condition (ii) from 1.6 holds for some k £N. 
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Hence there are regular elements ((tn),x) G LN x L (j = l ,2, . . . ,fc) such that 
tn ^ x for each j G {1 ,2 , . . . , fc} and each n G N, and in view of 1.6, the set 

a) mi),x),...,((tk
n),x)} 

fails to be regular. Let fc be the least positive integer having this property^ 

The case fc = 1 is impossible. Suppose that fc > 2. Then 

{((tl
nhx)y...,((tn-

l)lX)} 

is regular. Hence the element ((tn V tn V . . . V t^"1), x) of LN x L is regular. In view 

of the induction assumption, the set 

{ ( ( iv fJv . -v^U) , ((tk),x)} 

is regular and then 
((* nV* nV.. .V* n ) ,a ; ) 

is regular as well. This implies that the set (1) is regular, which is a contradiction. 

Therefore we would have fc = 2; let z be as in 1.6. We arrived at a contradiction 

with the condition (ii). This completes the proof. D 

Lemma 1.8 and [8], Corollary 1.4, yield that Theorem (A) above is valid. 

2. T H E (N0 ,2)-DISTRIBUTIVITY 

In this section Theorem (A) above will be applied for proving that Theorem (B) 

is valid. 

2 .1 . L e m m a . Let ((xn),x) G LN x L. Assume that ((.rn),x) is regular and that 

xn ^ x for each n G N. Let 1(1), 2(1), 3(1) , . . . be a subsequence of the sequence 

1,2,.... Then A ^n(i) = x. 
n€N 

P r o o f . In view of the condition (i) of 1.1 in [8], ((xn(i)),x) is regular. Thus 
there is a G ConvL with ((xn^),x) € a. By way of contradiction, suppose that the 
relation / \ £n(i) = x does not hold. Hence there is y G L such that 

n€N 

x < y ^ a;n(!) for each n £N. 

Then in view of the condition (vi) of 1.1 in [8] we have 

((consty),x) G a. 

According to the condition (iv) of 1.1 in [8] we arrived at a contradiction. • 
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The assertion dual to 2.1 can be verified analogously. 

P r o o f of T h e o r e m (B). 
Assume that L is (No,2)-distributive. By way of contradiction, suppose that 

ConvL fails to be a complete lattice. Then in view of (A), either the condition 
(i) from d(A) or the corresponding dual condition does not hold. 

Suppose that the condition (i) in (A) is not satisfied (in the opposite case we apply 
a dual method). Hence there are regular elements ((xn),x) and ((x'n),x) of LN x L; 
and y G L such that x -̂  xn, x < xn and x < y ^ rrn V xn for each n E N. 

Denote yn = xn A y and yn = xn A y for each n €N. Then ((yn), #) and ((y'n),x) 
are regular elements of LN x L. Moreover, yn ^ rr and yn^ x for each nGN. Hence 
in view of 2.1 we have 

(1) A 0»(i) = x = A »n(l) 
n^N n6N 

for each subsequence (yn(i)) of (yn) and each subsequence (ynrx\) of (yn). Next 

(2) VnVy'n = (xn A y) V (x'n A y) = (xn V s'J A y = y for each n G N. 

According to (2) we have 

(3) (yi V y[) A (y2 V y'n) A .. . A (yn V yn) A .. . = y. 

Let $ be the set of all mappings <p of the set N into the set {1,2}. We put zn^n^ = xn 

if <p(n) = 1, and xn^n) = yn otherwise. 
Let <p be fixed; consider the set 

(4) {^(n)}n6N. 

We have zn,<p(n) ^ x f°r eac-- n G N. At least one of the sets {nGN: <p(n) = 1}, 
{nGN: <p(n) = 2} is infinite. Hence according to (2), 

A **,*(*) = X ^°r each ̂  € *' 
n6N 

Therefore 

(5) V A Mn) = *• 
(pe&neN 

Since x <y, the relations (3) and (5) show that L is not (No,2)-distributive, which 
is a contradiction. Hence Conv L must be a complete lattice. D 
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3. DIRECT PRODUCTS 

Let / be a nonempty set and for each i e I let L» be a distributive lattice. 
Consider the direct product L = [] Li. For x e L and i G I we denote by x(i) the 

iei 
i-th component of x. 

For each t € 7 let a{ e ConvL*. The set of all ((xn),x) e LN x L such that 
((xn(t)),.r(i)) G a* for each i e I will be denoted by f] a*. 

-61 
From the definition of convergence in L (cf. [8], 1.1) we obtain immediately: 

3.1. Lemma. Let L = Yl Li, a» G ConvL* for each i G J. Then n a* ^ ConvL. 
i€1 -€1 

Let (3 C LN x L and t G 7. We put 

/8(i) = {(xn(z)),x(i):((xn),x)G/9}. 

3.2. Lemma. Let L be as in 3.L Let 0 7- /J C LN x L such that /3+ = /?. Then 
the following conditions are equivalent: 

(i) The set (3 is regular. 
(ii) For each i e I, the set /3(i) is regular. 

Proof . In view of /3+ = /? we have f3(i)+ = (5(i) for each i G 7. 
Let (i) be valid. By way of contradiction, suppose that (ii) does not hold. Hence 

there is i e I such that fi(i) fails to be regular. Thus either the condition (ii) from 
1.6 or the dual of this condition is valid, where A and L are replaced by /3(i) and Lt-. 
Let the first case be true. This means that there are ((tJ

n), x) G f3(i)1 (j = 1,2,..., k) 
with tn ^ x for each (n, j) G N x {1,2,..., k} such that 

x < z ^ tl
n V t\ V ... V tk

n 

for each n eN and for some z G Li. 
Let j e {1,2,... ,k}. There exists ((un),u

j) G /31 such that < ( i ) = tn for each 
nG N, and u*(i) = x. Since /? is regular, there is a G ConvL with / J C a ; thus 
(31 C a. Denote 

u = u1 V u2 V .. . V uk, un = unyuny...Wun for each neN. 

Then we have ((un),u) e a and u ^ un for each n E N . Next, there is v G L such 
that v(i) = 2 and v(*(l)) = u(i(l)) for each i(l) e I \ {i}. Hence u < v. Also, 
un ^ v for each n G N . Thus according to 1.6 the set a is not regular, which is a 
contradiction. 
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Conversely, let (ii) be valid. By way of contradiction, assume that (i) fails to hold. 
Thus the condition (ii) from 1.6 (or the dual of this condition) is satisfied for A = p. 
Let the first mentioned case hold. There is i G I such that x(i) < z(i). Now it is 
easy to verify that the condition (ii) from 1.6 holds if L and A are replaced by L{ 
and (3(i)\ therefore in view of 1.6 the set 0(i) is not regular, which is a contradiction. 

• 

3.3. Lemma. Let L be as in 3.1 and let i G I, ((xn),x) G LN x L, xn ^ x for 
each n G I} xn(i(l)) = x(i(l)) whenever n e I and i(l) ^ i. Then the following 
conditions are equivalent: 

(i) ((xn),x) is regular. 
(ii) ((xn{i)),x(i)) is regular. 

Proof . This is a consequence of 3.2 (in view of the condition (hi) from 1.1, [8], 
and 1.2, [8]). • 

The assertions dual to 3.2 and 3.3 can be verified analogously. Hence in view of 
1.1, the assumption /3+ = /3 in 3.2 can be omitted. Similarly, the assumption xn ^ x 
for each n G N in 3.3. can be omitted. 

The following assertion is easy to verify. 

3.4. Lemma. Let L be as in 3.1. Let a G ConvL. Then a ^ \\ <x(i)-
i€l 

Let us remark that there are a distributive lattice L and a G Conv L such that 
a < n o(t). 

3.5. Corollary. Let Lbeas in 3.1. Let a be a maximal element of Conv L. Then 

a = n<*(0-
iei 

3.6. Lemma. Let L be as in 3.1 and Jet a be a maximal element of ConvL. 
Then for each i G I, a(i) is a maxima] element of Conv Li. 

Proof . By way of contradiction, suppose that there exists i G I such that a(i) 
is not maximal in ConvL^. Hence there is /?* in ConvLt- with a(i) < /?*. Thus there 
exists ((xn),x) G /?* \a(i) such that either xn ^ x or xn ^ x for each n GN; without 
loss of generality we can suppose that the first case occurs. Choose yj G Lj for each 
j £l and let x°,a:n G L (n = 1,2,...) such that 

x°(i)=x, x°(j) = yj for each j G I \ {i}, 

x°n(i) = xn, x°n(j) = yj fo reachJG/ \{ i} . 
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Next, put Pi = /?*' and fa = a(j) for each j G I \ {i}, (3 = fl ft- T h e n a < ft 
t€1 

Moreover, ((#£), a;0) G /?\a, whence a < (3 and /3 G ConvL, which is a contradiction. 

• 

3.7. L e m m a . Let L be a distributive lattice and let a € ConvL. Then there is 

p € ConvL such that (i) a ^ /?, and (ii) /? is a maximal element ofConvL. 

P r o o f . This is an immediate consequence of the definition of Conv L. D 

3.8. L e m m a . Let L be as in 3.L Assume that for each i G I, at- is a maximal 

element of Conv Li. Then fj at- = a is a maximal element of Conv L. 
iei 

P r o o f . By way of contradiction, assume that a is not maximal. Then there is 
a maximal element /3 of Conv L such that a < /?. In view of 3.5 we have a* < /?(£) 
for some i G I. Hence ax- is not maximal in ConvLt-, which is a contradiction. D 

By summarizing, from 3.5, 3.6 and 3.8 we obtain: 

3.9. T h e o r e m . Let L = \[ Li and a G ConvL. Then the following conditions 
iei 

are equivalent: 

(i) a is a maximal element of Conv L. 

(ii) For each i G / , a(i) is a maximal element of Conv Li, and a = J] a(i). 
iei 

Next, 3.9 yields: 

3.10. Corollary. Let L= Yl Li and a G ConvL. Then the following conditions 
iei 

are equivalent: 

(i) a is the greatest element of ConvL. 

(ii) For each i G I,a(z) is the greatest element of Conv Li, and a = Yl a W -
iei 

3.11. Corollary. Let L = H -^.- Then the following conditions are equivalent: 
iei 

(i) Conv L has a greatest element. 
(ii) For each i £ I, Conv Li has a greatest element. 
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