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A NOTE TO A BIFURCATION RESULT OF H. KIELHOFER 
FOR THE WAVE EQUATION 
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(Received March 18, 1988) 

Summary. A modification of a classical number-theoretical theorem on Diophantine approxi­
mations is used for generalizing H. Kielhofer's result on bifurcations of nontrivial periodic 
solutions to nonlinear wave equations. 
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In [1] (and in [2] in collaboration with P. Kotzner) H. Kielhofer studied the 
bifurcation of time-periodic solutions for the equation 

utt - "xx = f(K *, w) > (t,x)eR x (0, n) , 

with homogeneous Dirichlet or Neumann boundary conditions, where the peridd 
P > 0 is of the form P = 2TT/V(H2 - Q), n e N, Q = fu(X0, x, 0) with A0 fixed. The 
methods used in [ l ] , [2] require to choose the numbers Q, n in order to fulfil the 
following conditions: 

(1) the set S = {(kj) e N x Z; k2 - j2(n2 - Q) - Q = 0} is finite, 

(2) there exists (5 > 0 such that \k2 - j2(n2 - Q) - Q\ = 5 for 

(kj)e(N x Z ) \ 5 . 

Investigating the case of Q rational, H. Kielhofer finds a dense subset A cz R such 
that for Q e A the conditions (1), (2) are satisfied for an appropriate choice of n e N. 

The aim of this note is to prove the following theorem. 

Theorem. There exists an uncountable dense subset A cz R of irrational numbers 
such that for Q e A and for some ne N the conditions (1), (2) hold. 

The proof is based on the following lemma (cf. [3], Theorem III of Chapter II). 
For a e U w e denote ||a|| = inf {|a — fc|, k e Z}. 

Lemma 1. For each e > 0 there exists an uncountable set Bt a (0, e) such that 
j8eJ5£=>liminfI||IiS|| ^ J. 

J-00 

245 



, Proof of,the Theorem. We choose a fixed r\ < \. For e = r\\2, ne N and p e Bt 

we put a = n -F /?, £ = ±2n/? - J?2. We have <x2 = n2 - Q and ||/a|| = ||;/f|| for 
y € Z. Indeed, by symmetry we can assume j e N. Let us denote 

(3) t(kj) = |fc2 - r V - e) - Q\ = |fc2 - «2;2 - e| • 

We have t(kj) = 0 <=>(&,/) = (n, 1), hence (1) is satisfied. For proving (2) we 
construct the sets 

Mt = {(fc,l); fce/V\n}}, 

M2 = {(kJ)eN2;j\k-<xj\^rj}, 

•M3 = {(kj) e /V2; j = 2, |fc - aJ| = a;} . 

We have inf £(fc, j) = 1 and inf £(fc, I) > 0, since by Lemma 1 the set M2 is finite. 
Mi M 2 

For (kj) e M3 we obtain from (3) 

C(fc,I) = |fc - o/| \k + aj\ - |O| = x2j2 - |(?| > 2 . 

It remains to investigate the case (fc,j) e /V2 \ (Mj u M2 u M3 u {n, 1}). Now, (3) 
yields 

C(kJ) = 2o/|fc - o/| - |fc - o/|2 - |e| = 

= 2â y - A/2/12 - \Q\ .= */" - >/2 

and (2) is verified. The theorem is proved if we put 

A = {QGR; Q = ±2np - p2, neN, peBs) . 

Remarks. 1. The sets Be contain in particular the numbers (z + (pm)~l, where 
z e AV is sufficiently large and cpm is a root of the Markoff form Fm. We have for 
instance cp^ = 1(V(5) — 1), <Pi = V(2) ~ 1 etc-

2. Another sequence of numbers QER satisfying the Theorem is given again by 
the formula Q = ±2np - p2, where P = (b - J(b2 - l))/a, a,b,neN, b = 2, 
n > b/a.Here we use the elementary inequality j||ja|| =I||I7?|| ^ [2a V(&2 — l ) ] " 1 . 

(i-[w2-i)r)-
3. The Lebesgue measure of the sets BB is zero ([3]). 
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Souhrn 

POZNÁMKA K BIFURKAČNÍMU VÝSLEDKU H. KIELHĎFERA 
PRO VLNOVOU ROVNICI 

OTTO VEJVODA, PAVEL KREJČÍ 

Varianta klasického číselně teoretického výsledku o diofantických aproximacích je užita 
k zobecnění práce H. Kielhófera o bifurkaci netriviálních periodických řešení nelineární vlnové 
rovnice, 
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