Mathematic Bohemia

Ján Jakubík

Convergence l-groups with zero radical

Mathematica Bohemica, Vol. 122 (1997), No. 1, 63-73

Persistent URL: http: //dml.cz/dmlcz/126180

Terms of use:

(C) Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CONVERGENCE ℓ-GROUPS WITH ZERO RADICAL

Ján Jakubík, Košice

(Received October 13, 1995)

Summary. In this paper we investigate abelian convergence ℓ-groups with zero radical such that each bounded sequence has a convergent subsequence.

Keywords: convergence ℓ-group, b-sequential compactness, completely subdirect product MSC 1991: 06F20, 22C05

Sequentially compact convergence groups were studied by Dikranjan [3]; cf. also the references given there.

All ℓ-groups (= lattice ordered groups) dealt with in the present paper are assumed to be abelian.

For convergence ℓ-groups we apply the same definitions and notation as in [6].
Let G be a convergence ℓ-group. The corresponding convergence will be denoted by α; thus if a sequence $\left(x_{n}\right)$ converges to x in G, then we express this fact by writing $x_{n} \rightarrow_{\alpha} x$.

If every sequence in G has a converging subsequence, then G is said to be sequentially compact.

It turns out that the role of the notion of sequential compactness for convergence ℓ-groups is rather modest. Namely, G is sequentially compact if and only if $G=\{0\}$. If every bounded sequence in G has a converging subsequence, then G will be called b-sequentially compact.

We use the notion of the radical of an ℓ-group as in Conrad [2] (the definition is recalled in Section 1 below); ℓ-groups with zero radical were investigated in [1] in connection with the lateral completion of ℓ-groups.

In the present article we deal with the case when G satisfies the following conditions:
(a) the radical of G is zero;
(b) G is b-sequentially compact.

The symbols Z and R denote the additive group of all integers or of all reals, respectively, with the natural linear order.

The notion of o-convergence has the usual meaning; we apply the notation $x_{n} \rightarrow_{\alpha(o)} x$.

The ℓ-group G is said to satisfy the condition (F) if each bounded disjoint subset of G is finite (cf. [2]).

We prove the following results.
Let G be a convergence ℓ-group satisfying the Urysohn axiom.
(A) Suppose that G satisfies the conditions (a) and (b). Then G is a completely subdirect product of ℓ-groups $G_{i}(i \in I)$ such that
(i) for each $i \in I, G_{i}$ is isomorphic either to Z or to R;
(ii) if $x_{n} \rightarrow_{\alpha} x$ holds in G and if $i \in I$, then for the natural projection p_{i} of G onto G_{i} the relation $p_{i}\left(x_{n}\right) \rightarrow_{\alpha(o)} p_{i}(x)$ is valid.
(B) Suppose that G is a completely subdirect product of ℓ-groups $G_{i}(i \in I)$ such that the conditions (i) and (ii) from (A) are satisfied. Further suppose that the condition (F) is valid. Then G is b-sequentially compact and its radical is zero.
By an example we show that the assumption on the validity of (F) cannot be cancelled in the above theorem.

1. Preliminaries; sequential precompactness

In what follows, \mathbb{N} denotes the set of all positive integers. For the sake of completeness we recall the following definitions from [6].

Let G be an ℓ-group, $g \in G$ and $\left(g_{n}\right) \in G^{\mathbb{N}}$. If $g_{n}=g$ for each $n \in \mathbb{N}$, then we write $\left(g_{n}\right)=$ const g. For $\left(h_{n}\right) \in G^{\mathbb{N}}$ we set $\left(h_{n}\right) \sim\left(g_{n}\right)$ if there is $m \in \mathbb{N}$ such that $h_{n}=g_{n}$ for each $n \in \mathbb{N}$ with $n \geqslant m$.

The set $G^{\mathbb{N}}$ is an ℓ-group under the obvious definition of the partial order and of the operation + . Let α be a convex subsemigroup of the lattice ordered semigroup $\left(G^{\mathbb{N}}\right)^{+}$such that the following conditions are satisfied:
(I) If $\left(g_{n}\right) \in \alpha$, then each subsequence of $\left(g_{n}\right)$ belongs to α.
(II') Let $\left(g_{n}\right) \in \alpha$ and $\left(h_{n}\right) \in\left(G^{\mathbb{N}}\right)^{+}$. If $\left(h_{n}\right) \sim\left(g_{n}\right)$, then $\left(h_{n}\right) \in \alpha$.
(III) Let $g \in G$. Then const g belongs to α if and only if $g=0$.

Under these conditions α is said to be a convergence on G
For $\left(g_{n}\right) \in G^{\mathbb{N}}$ and $g \in G$ we put $g_{n} \rightarrow_{\alpha} g$ if and only if $\left(\left|g_{n}-g\right|\right) \in \alpha$. It is easy to verify that $g_{n} \rightarrow_{\alpha} 0$ if and only if $\left(g_{n}\right) \in \alpha$.

We denote by conv G the set of all convergences on G.
Let $\alpha(o)$ be the set of all sequences $\left(g_{n}\right)$ in G^{+}having the property that there exists $\left(h_{n}\right) \in\left(G^{\mathbb{N}}\right)^{+}$such that (i) $h_{n+1} \leqslant h_{n}$ for each $n \in \mathbb{N}$; (ii) $\bigwedge_{n \in \mathcal{N}_{N}} h_{n}=0$; (iii) there is $m \in \mathbb{N}$ such that $h_{n} \geqslant g_{n}$ for each $n \in \mathbb{N}$ with $n \geqslant m$. Then $\alpha(o) \in \operatorname{conv} G ; \alpha(o)$ is said to be the o-convergence in G.

Further let $\alpha(d)$ be the set of all $\left(x_{n}\right) \in\left(G^{\mathbb{N}}\right)^{+}$such that $\left(x_{n}\right) \sim$ const 0 . Then clearly $\alpha(d) \in \operatorname{conv} G$; it is said to be the discrete convergence on G.

Let us remark that if $x_{n} \rightarrow_{\alpha} x, y_{n} \rightarrow_{\alpha} y$ and $\circ \in\{+,-, \wedge, \vee\}$, then

$$
x_{n} \circ y_{n} \rightarrow_{\alpha} x \circ y
$$

also, if $\left(x_{n}\right)=$ const x, then $x_{n} \rightarrow_{\alpha} x$. (Cf. [6].)
The system conv G is partially ordered by the set-theoretical inclusion. The least element of conv G is $\alpha(d)$.

The convergence α is said to satisfy the Urysohn axiom if it fulfils
(II) Whenever $\left(g_{n}\right)$ is a sequence in G^{+}such that each subsequence of $\left(g_{n}\right)$ has a subsequence belonging to α, then $\left(g_{n}\right) \in \alpha$.
The system of all elements of conv G which satisfy the Urysohn axiom will be denoted by Conv G.

Let $0 \neq g \in G$. We denote by A_{g} the system of all convex ℓ-subgroups A of G such that $g \notin A$; further let R_{g} be the subgroup of G generated by the set $\cup A\left(A \in A_{g}\right)$. The radical $R(G)$ of G is defined to be the set $\cap R_{g}(0 \neq g \in G)$. (Cf. [2].)

A subset X of G^{+}is said to be disjoint if $x \geqslant 0$ for each $x \in X$, and if $x_{1} \wedge x_{2}=0$ whenever x_{1} and x_{2} are distinct elements of X.

Let $\left(G_{i}\right)_{i \in I}$ be an indexed system of ℓ-groups and let φ be an isomorphism of an ℓ-group G into the direct product $\prod_{i \in I} G_{i}$ such that, whenever $i \in I$ and $x^{i} \in G_{i}$, then there exists $g \in G$ with

$$
\begin{aligned}
& \varphi(g)_{i}=x^{i} ; \\
& \varphi(g)_{j}=0 \quad \text { for each } j \in I \backslash\{i\} .
\end{aligned}
$$

Under these assumptions we say that φ is a completely subdirect product decomposition of the ℓ-group G. The notion of the completely subdirect product is due to Sik [7].

The condition defining the completely subdirect product decomposition can be expressed also by writing

$$
\sum_{i \in I} G_{i} \subseteq \varphi(G) \subseteq \prod_{i \in I} G_{i}
$$

A sequence $\left(x_{n}\right)$ in a convergence ℓ-group G is called a Cauchy sequence if, whenever $\left(y_{n}\right)$ and $\left(z_{n}\right)$ are subsequences of $\left(x_{n}\right)$, then $y_{n}-z_{n} \rightarrow_{\alpha} 0$.
G is called sequentially precompact if each its sequence has a Cauchy subsequence. (Cf. [3] for the case of convergence groups.)
G will be said to be b-sequentially precompact if each its bounded sequence has a Cauchy subsequence.
1.1. Lemma. Let G be a convergence ℓ-group, $0<x \in G, x_{n}=n x$ for each $n \in \mathbb{N}$. Then the sequence $\left(x_{n}\right)$ has no Cauchy subsequence.

Proof. By way of contradiction, suppose that $\left(y_{n}\right)$ is a Cauchy subsequence of $\left(x_{n}\right)$. We have $y_{n+1}-y_{n} \geqslant x>0$ for each $n \in \mathbb{N}$, hence the relation

$$
y_{n+1}-y_{n} \rightarrow_{\alpha} 0
$$

cannot hold and so we arrive at a contradiction.
1.2. Corollary. Let G be a convergence ℓ-group. Suppose that G is b-sequentially precompact. Then G is archimedean.

Proof. If G is not archimedean, then there are $x, y \in G$ such that $0<n x<y$ is valid for each $n \in \mathbb{N}$. Thus in view of $1.1, G$ is not sequentially precompact.
1.3. Corollary. Each b-sequentially compact convergence ℓ-group is archimedean.

2. Congruence relations

Again, let G be a convergence ℓ-group with the convergence α.
A subset X of G is said to be closed with respect to α if, whenever $x_{n} \rightarrow_{\alpha} x$ and all x_{n} belong to X, then x belongs to X as well.
2.1. Lemma. Let A be a convex ℓ-subgroup of G and let $g_{1} \in G$. Then $g_{1}+A$ is closed with respect to α if and only if A is closed with respect to α.

Proof. This is an immediate consequence of the fact that the convergence is compatible with the operations + and - .

Let, A be as in 2.1 and suppose that A is closed with respect to α. For each $x \in G$ and $X \subseteq G$ we put

$$
\bar{x}=x+A, \quad \bar{X}=\{\bar{x}: x \in X\} .
$$

Hence \bar{G} is the factor ℓ-group of G corresponding to the ℓ-ideal A, i.e., $\bar{G}=G / A$. We set

$$
\bar{\alpha}=\left\{\left(\bar{x}_{n}\right):\left(x_{n}\right) \in \alpha\right\}
$$

2.2. Lemma. $\bar{\alpha} \in \operatorname{conv} \bar{G}$.

Proof. We have to verify that the conditions (I), (II') and (III) are satisfied for $\bar{\alpha}$.
i) Let $\left(\bar{g}_{n}\right) \in \bar{\alpha}$ and let $\left(\bar{h}_{n}\right)$ be a subsequence of $\left(\bar{g}_{n}\right)$. Hence there is $\left(x_{n}\right) \in \alpha$ such that $\left(\bar{g}_{n}\right)=\left(\bar{x}_{n}\right)$. Then $\left(\bar{h}_{n}\right)=\left(\bar{y}_{n}\right)$, where $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$. We have $\left(y_{n}\right) \in \alpha$, therefore $\left(\bar{h}_{n}\right) \in \bar{\alpha}$.
ii) Let $\left(\bar{g}_{n}\right) \in \alpha,\left(\bar{h}_{n}\right) \in\left(\bar{G}^{\mathcal{N}}\right)^{+}, \bar{g}_{n} \sim \bar{h}_{n}$. Further let $\left(x_{n}\right)$ be as in (i). There is $m \in \mathbb{N}$ such that $\bar{h}_{n}=\bar{g}_{n}$ for each $n \in \mathbb{N}$ with $n \geqslant m$. Put $y_{n}=h_{n}$ for $n<m$ and $y_{n}=x_{n}$ otherwise. Then $\left(y_{n}\right) \sim\left(x_{n}\right)$, whence $\left(y_{n}\right) \in \alpha$. Clearly $\left(\bar{h}_{n}\right)=\left(\bar{y}_{n}\right)$. Thus $\left(\bar{h}_{n}\right) \in \bar{\alpha}$.
iii) Let $g \in G,\left(\bar{g}_{n}\right)=\operatorname{const} \bar{g}$.

Suppose that $\left(\bar{g}_{n}\right) \in \bar{\alpha}$. Hence there exists $\left(x_{n}\right) \in \alpha$ with $\left(\bar{g}_{n}\right)=\left(\bar{x}_{n}\right)$. Then $x_{n} \in g+A$ for each $n \in \mathbb{N}$. We have $x_{n} \rightarrow_{\alpha} 0$ and thus in view of 2.1 we obtain that $0 \in g+A$ yielding that $\bar{g}=\overline{0}$.

Conversely, suppose that $\bar{g}=\overline{0}$. Put $x_{n}=0$ for each $n \in \mathbb{N}$. Then $\left(x_{n}\right) \in \alpha$ and $\left(\bar{x}_{n}\right)=\left(\bar{g}_{n}\right)$, whence $\left(\bar{g}_{n}\right) \in \bar{\alpha}$.

Under the notation as above we always consider \bar{G} to be a convergence ℓ-group with the convergence $\bar{\alpha}$.

For $X \subseteq G$ we denote by X^{δ} the polar of X (cf. [2]).
2.3. Lemma. Let $X \subseteq G$. Then X^{δ} is closed with respect to α.

Proof. Put $X^{\delta}=A$. Denote $X_{1}=\{|x|: x \in X\}$. Then $X^{\delta}=X_{1}^{\delta}$ and $X_{1} \subseteq G^{+}$. Hence without loss of generality we can suppose that $X \subseteq G^{+}$.

Let $a_{n} \in A$ for each $n \in \mathbb{N}, a_{n} \rightarrow_{\alpha} g$. Then $a_{n} \vee 0 \in A, a_{n} \vee 0 \rightarrow_{\alpha} g \vee 0$. Let $x \in X$. We have $x \wedge\left(a_{n} \vee 0\right)=0$, whence $x \wedge(g \vee 0)=0$ and thus $g \vee 0 \in A$.

Further, $-\left(a_{n} \wedge 0\right) \in A$, thus

$$
x \wedge\left(-\left(a_{n} \wedge 0\right)\right)=0
$$

yielding that

$$
x \wedge(-(g \wedge 0))=0
$$

hence $-(g \wedge 0) \in A$. Therefore $g \wedge 0 \in A$. Since A is a convex subset of G we get $g \in A$.
2.4. Corollary. Each direct factor of the ℓ-group is closed with respect to α.

For an ℓ-subgroup A of G we denote

$$
\alpha_{A}=\alpha \cap\left(A^{\mathbb{N}}\right)^{+}
$$

Then applying the conditions (I), (II') and (III) we immediately obtain
2.5. Lemma. $\alpha_{A} \in \operatorname{conv} A$.

The ℓ-subgroup A is always regarded as a convergence ℓ-group with the convergence α_{A}.

Now suppose that the ℓ-group G is represented as a direct product

$$
\begin{equation*}
G=A \times B \tag{1}
\end{equation*}
$$

In view of $2.4, B$ is closed with respect to α; let us denote by $\bar{\alpha}$ the corresponding convergence on the ℓ-group G / B.

Each element $g \in G$ can be uniquely represented as $g=a+b$ with $a \in A$ and $b \in B$; if $g \geqslant 0$, then $a \geqslant 0$ and $b \geqslant 0$. Hence each element $g+B$ of G / B can be written as

$$
a+b+B=a+B
$$

with $a \in A$. If $a_{1} \in A$ and $a_{1}+B=a+B$, then $a-a_{1} \in B$, whence $a=a_{1}$.
2.6. Proposition. Let (1) be valid.
a) Let $\left(a_{n}\right) \in \alpha_{A}$. Then $\left(\bar{a}_{n}\right) \in \bar{\alpha}$.
b) Let $\left(\bar{g}_{n}\right) \in \bar{\alpha}, g_{n}=a_{n}+b_{n}, a_{n} \in A, b_{n} \in B$. Then $\left(a_{n}\right) \in \alpha_{A}$.

Proof. a) Let $\left(a_{n}\right) \in \alpha_{A}$. Then $\left(a_{n}\right) \in \alpha$ and thus $\left(\bar{a}_{n}\right) \in \bar{\alpha}$.
b) Let $\left(\bar{g}_{n}\right) \in \bar{\alpha}$ and let a_{n}, b_{n} be as above. In view of the definition of $\bar{\alpha}$ there exists $\left(h_{n}\right) \in \alpha$ such that $\left(\bar{h}_{n}\right)=\left(\bar{g}_{n}\right)$. Let $h_{n}=a_{n}^{\prime}+b_{n}^{\prime}, a_{n}^{\prime} \in A, b_{n}^{\prime} \in B$. Then $\left(a_{n}^{\prime}\right) \in\left(A^{\mathbb{N}}\right)^{+}$and for each $n \in \mathbb{N}$ we have

$$
a_{n}^{\prime}+B=a_{n}^{\prime}+b_{n}^{\prime}+B=\bar{h}_{n}=\bar{g}_{n}=a_{n}+b_{n}+B=a_{n}+B
$$

whence $a_{n}^{\prime}=a_{n}$. Thus $0 \leqslant a_{n} \leqslant h_{n}$ for each $n \in \mathbb{N}$. Since α is a convex subset of $\left(G^{\mathbb{N}}\right)^{+}$we infer that $\left(a_{n}\right) \in \alpha$. Hence $\left(a_{n}\right) \in \alpha_{A}$.
2.7. Lemma. Let A be a convex ℓ-subgroup of G and let $\left(\bar{g}_{n}\right)$ be a bounded sequence in $\bar{G}=G / A$. Then there exists a bounded sequence $\left(h_{n}\right)$ in G such that $\bar{h}_{n}=\bar{g}_{n}$ for each $n \in \mathbb{N}$.

Proof. In view of the assumption there exist $x, y \in G$ such that $\bar{x} \leqslant \bar{g}_{n} \leqslant \bar{y}$ for each $n \in \mathbb{N}$. Put $h_{n}=\left(x_{1} \vee g_{n}\right) \wedge y_{1}$, where $x_{1}=x \wedge y$ and $y_{1}=x \vee y$. Then

$$
\bar{x}_{1}=\bar{x}, \quad \bar{y}_{1}=\bar{y}, \quad \bar{h}_{n}=\bar{g}_{n}, \quad x_{1} \leqslant h_{n} \leqslant y_{1}
$$

for each $n \in \mathbb{N}$.
2.8. Lemma. Suppose that G is b-sequentially compact and that A is an ℓ-ideal of G which is closed with respect to α. Then G / A is b-sequentially compact.

Proof. This is an immediate consequence of the definition of $\bar{\alpha}$ and of 2.7.
From 2.6 and 2.8 we obtain
2.8.1. Corollary. Suppose that G is b-sequentially compact and that (1) is valid. Then A is b-sequentially compact.
2.9. Lemma. Let (1) be valid, $g_{n} \in G, g_{n}=a_{n}+b_{n}\left(a_{n} \in A, b_{n} \in B, n \in \mathbb{N}\right)$. Then the following conditions are equivalent:
(i) $\left(g_{n}\right) \in \alpha$;
(ii) $a_{n} \in \alpha_{A}$ and $b_{n} \in \alpha_{B}$.

Proof. (i) Let $\left(g_{n}\right) \in \alpha$. Since $0 \leqslant a_{n} \leqslant g_{n}$ we obtain that $\left(a_{n}\right) \in \alpha$ and thus $\left(a_{n}\right) \in \alpha_{A}$. Similarly, $\left(b_{n}\right) \in \alpha_{B}$.
(ii) Let $\left(a_{n}\right) \in \alpha_{A}$ and $\left(b_{n}\right) \in \alpha_{B}$. Then $\left(a_{n}\right),\left(b_{n}\right) \in \alpha$ and thus $\left(g_{n}\right)=$ $\left(a_{n}+b_{n}\right) \in \alpha$.

By the obvious induction we can generalize the above result for the case

$$
\begin{equation*}
G=A_{1} \times A_{2} \times \ldots \times A_{k} \tag{2}
\end{equation*}
$$

2.10. Lemma. Let (2) be valid. Then G is b-sequentially compact if and only if all $A_{i}(i=1,2, \ldots, k)$ are b-sequentially compact.

Proof. This follows from 2.6, 2.8.1 and 2.9.

3. The case of linearly ordered groups

In this section we suppose that G is as above and that, moreover, G is linearly ordered.

3.1. Lemma. Let $\left(g_{n}\right) \in \alpha$. Then $\left(g_{n}\right) \in \alpha(o)$.

Proof. From $\left(g_{n}\right) \in \alpha$ we obtain that $g_{n} \geqslant 0$ for each $n \in \mathbb{N}$. The case $G=\{0\}$ being trivial we can suppose $G \neq\{0\}$. Let $0<x \in G$. If the set $S_{x}=\{n \in \mathbb{N}$: $\left.g_{n} \geqslant x\right\}$ is infinite then there exists a subsequence $\left(h_{n}\right)$ of $\left(g_{n}\right)$ such that $h_{n} \geqslant x$ for each $n \in \mathbb{N}$. Since $h_{n} \rightarrow_{\alpha} 0$ we would have $x_{n} \rightarrow_{\alpha} 0$, where $\left(x_{n}\right)=$ const x, which is a contradiction. Hence for each $0<x \in G$ the set S_{x} is finite. This yields that for each $m \in \mathbb{N}$ the set $\left\{g_{n}: g_{n} \geqslant g_{m}\right\}$ has a greatest element; this will be denoted by g_{m}^{0}. Then $g_{1}^{0} \geqslant g_{2}^{0} \geqslant \ldots \geqslant 0$. Since each g_{m}^{0} is equal to some g_{n} with $n \geqslant m$, we have $\bigwedge_{n \in \mathbb{N}} g_{n}^{0}=0$. Hence $\left(g_{n}\right) \in \alpha(o)$.

As a corollary we obtain
3.2. Proposition. If G is linearly ordered, then $\alpha(o)$ is the greatest element of conv G.

In general, if G fails to be linearly ordered, then $\operatorname{conv} G$ need not have the greatest element. For related questions cf. [5].
3.3. Proposition. (Harminc [4].) Suppose that G is linearly ordered. Then
(i) $\alpha(o)$ belongs to Conv G;
(ii) if α belongs to Conv G, then either $\alpha=\alpha(d)$ or $\alpha=\alpha(o)$.

In the remaining part of this section we assume that G is linearly ordered and b-sequentially compact. We also suppose that α belongs to Conv G. In view of 1.4, G is archimedean. It is well-known that each archimedean linearly ordered group is isomorphic to an ℓ-subgroup of R. Hence without loss of generality we can assume that the ℓ-group G coincides with an ℓ-subgroup of R. We also assume that $G \neq\{0\}$.

There exists $x \in R$ with $x>0$ such that the interval $[0, x]$ of R contains an element of G distinct from 0 . Put $A=G \cap[0, x]$. We distinguish two cases:
a) The set A is finite.
b) The set A is infinite.

Firstly suppose that a) is valid. Then there exists an element g_{1} in G such that g_{1} covers the element 0 . It is a routine to verify that in this case G is isomorphic to Z.

Further let us suppose that b) holds. Then for each $y \in R$ with $y>0$ there exist distinct elements $g_{1}, g_{2} \in G$ such that $0<g_{1}<g_{2} \leqslant x$ and $g_{2}-g_{1}<y$.

This yields that there is a sequence $\left(g_{n}\right)$ in G such that $g_{1}>g_{2}>\ldots>g_{n}>$ $g_{n+1}>\ldots>0$ and $\bigwedge_{n \in \mathbb{N}} g_{n}=0$. No subsequence of $\left(g_{n}\right)$ belongs to $\alpha(d)$. Thus, since G is b-sequentially compact, $\alpha \neq \alpha(d)$. Therefore in view of $3.3, \alpha=\alpha(o)$.

The symbol $\alpha(o)$ means the o-convergence in G; now we will denote it by $\alpha(o, G)$ in order to distinguish it from the o-convergence in R, which will be denoted by $\alpha(o, R)$. It is clear that

$$
\begin{equation*}
\alpha(o, G)=\left(G^{\mathbb{Q}}\right)^{+} \cap \alpha(o, R) \tag{3}
\end{equation*}
$$

Suppose that there is $t \in R$ such that t does not belong to G. Then $t^{\prime}=|t|>0$ and $t^{\prime} \notin G$. For each $n \in \mathbb{N}$ there exists $g_{n} \in G$ such that

$$
0<g_{n}<\frac{1}{n}, \quad g_{n}<t^{\prime}
$$

Since G is archimedean there is $n^{\prime} \in \mathbb{N}$ such that

$$
n^{\prime} g_{n}<t^{\prime}<\left(n^{\prime}+1\right) g_{n}
$$

Denote $n^{\prime} g_{n}=g_{n}^{1},\left(n^{\prime}+1\right) g_{n}=g_{n}^{2}$. Thus $g_{n}^{1}<t^{\prime}<g_{n}^{2}$ and $g_{n}^{2}-g_{n}^{1}<\frac{1}{n}$. From these relations we easily obtain that

$$
g_{n}^{1} \rightarrow_{\alpha(o, R)} t^{\prime}, \quad g_{n}^{2} \rightarrow_{\alpha(o, R)} t^{\prime}
$$

$\left(g_{n}^{1}\right)$ is a bounded sequence in G. If $\left(h_{n}\right)$ is a subsequence of $\left(g_{n}^{1}\right)$, then

$$
h_{n} \rightarrow_{\alpha(o, R)} t^{\prime}
$$

whence in view of (3), $\left(h_{n}\right)$ is not convergent with respect to the c-convergence in G. Thus G is not b-sequentially compact and so we arrive at a contradiction. Therefore $G=R$.

Summarizing, we conclude:
3.4. Lemma. Let G be a convergence ℓ-group with the convergence α such that (i) G is linearly ordered, (ii) G is b-sequentially compact, and (iii) α satisfies the Urysohn axiom. Then either
a) G is isomorphic to Z and $\alpha=\alpha(d)$,
or
b) G is isomorphic to R and α coincides with the o-convergence.

4. ℓ-GROUPS WITH ZERO RADICAL

4.1. Lemma. Let G be an archimedean ℓ-group with zero radical. Then G is a completely subdirect product of linearly ordered groups.

Proof. This is a consequence of Theorem 3.5 and Theorem 5.4 in [2].
Proof of (A).
Suppose that G is a convergence ℓ-group with the convergence α such that
a_{1}) the radical of G is zero;
a_{2}) G is b-sequentially compact;
$\left.a_{3}\right)$ the Urysohn condition is satisfied.
Then in view of a_{2}) and 1.4, the ℓ-group G is archimedean. Thus according to 4.1, the ℓ-group G is a completely subdirect product of linearly ordered groups $A_{i}(i \in I)$.

Each A_{i} is a direct factor of G. We consider the convergence $\alpha_{i}=\alpha_{A_{i}}$ on A_{i}. Then in view of 2.8.1, A_{i} is b-sequentially compact. Since α satisfies the Urysohn axiom, α_{i} satisfies this axiom as well. Thus according to 3.4 , some of the conditions a) or b) from 3.4 holds.

Proof of (B).
Suppose that the assumptions from (B) are satisfied. Thus in view of 3.4, all G_{i} are b-sequentially compact.

Let $\left(g_{n}\right)$ be a bounded sequence in G. Using translations we see that without loss of generality it suffices to consider the case when $0 \leqslant g_{n} \leqslant g$ for some $g \in G$. Let $g_{i}=g\left(G_{i}\right)$. Then $\left\{g_{i}\right\}_{i \in I}$ is a disjoint subset of $[0, b]$. Put $I_{1}=\left\{i \in I: g_{i}>0\right\}$. The case $I_{1}=\emptyset$ is trivial; suppose that $I_{1} \neq \emptyset$. Since G satisfies the condition (F), the set I_{1} is finite and we can write $I_{1}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Thus $[0, b]$ is a subset of $G_{i_{1}} \times G_{i_{2}} \times \ldots \times G_{i_{k}}=B$. Now according to 2.10 there exists a subsequence $\left(h_{n}\right)$ of $\left(g_{n}\right)$ which is convergent with respect to α_{B} and hence this subsequence is convergent also with respect to α. Hence G is b-sequentially compact. From the definition of the radical we obtain that $R(G)=\{0\}$.

The following example shows that the condition (F) in (B) cannot be omitted.
Let $G=\prod_{i \in I} G_{i}$, where $I=\mathbb{N}$ and $G_{i}=Z$ for each $i \in I$. If $g \in G$, then the component of g in G_{i} will be denoted by $g(i)$. We consider the discrete convergence $\alpha(d)=\alpha$ on G. Then for each $i \in I, \alpha_{G_{i}}$ is the discrete convergence on G_{i}. Hence all assumptions of (B) except the validity of (F) are satisfied.

For $0 \leqslant x \in R$ we denote by int x (the integral part of x) the greatest integer y with $y \leqslant x$.

Let $n \in \mathbb{N}$. We define $g_{n} \in G$ as follows. For each $i \in I$ we put

$$
g_{n}(i)=\operatorname{int}\left(\frac{1}{n} i\right)
$$

Then we have $g_{1}>g_{2}>\ldots>g_{0}$, where g_{0} is the zero element of G. Thus $\left(g_{n}\right)$ is a bounded sequence in G. No subsequence of $\left(g_{n}\right)$ is convergent with respect to α. Hence G fails to be b-sequentially compact.

We conclude by remarking that for each infinite cardinal k there exists a convergence ℓ-group G such that G is b-sequentially compact and card $G=k$. Indeed, let I te a set of indices with card $I=k$ and for each $i \in I$ let $G_{i}=Z$; put $G_{0}=\prod_{i \in I} G_{i}$. We denote by G the ℓ-subgroup of G consisting of all $g \in G_{0}$ such that the set $\{i \in I$: $g(i) \neq 0\}$ is finite. (In other words, G is a weak direct product of ℓ-groups G_{i}.) Then G satisfies the assumptions of (B) if we put $\alpha=\alpha(d)$. Hence the convergence ℓ-group G is b-sequentially compact. It is clear that card $G=k$.

References

[1] P. Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444-480.
[2] P. Conrad: Lattice ordered groups. Tulane University, 1970.
[3] D. N. Dikranjan: Convergence groups: sequential compactness and generalizations. Rendinconti Ist. Math. Trieste 25 (1993), 141-173
[4] M. Harminc: Sequential convergences on abelian lattice ordered groups. Convergence Structures, Proc. Conf. Bechyně 1984, Math. Research 24 (1984), 153-158
[5] M. Harminc, J. Jakubik: Maximal convergences and minimal proper convergences in C-groups. Czechoslovak Math. J. 39 (1989), 631-640.
[6] J. Jakubik: Sequential convergences in ℓ-groups without Urysohn's axiom. Czechoslovak Math. J. 42 (1992), 101-116.
[7] F. Sik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400-424.

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia.

