Mathematic Bohemica

Imrich Abrhan

On minimal ideals in semigroups with respect to their subsets. I.

Mathematica Bohemica, Vol. 122 (1997), No. 1, 1-12

Persistent URL: http: //dml.cz/dmlcz/126184

Terms of use:

(C) Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

S-A 1182/122. 1997.

ON MINIMAL IDEALS IN SEMIGROUPS WITH RESPECT TO

Summary. In the paper, the following concept are defined:
(i) a minimal left (right, two-sided) ideal with respect to a subset B of a semigroup S, (ii) a kernel with respect to a subset B of a semigroup S, and their basic properties are investigated.

Keywords: minimal left (right, two-sided) ideal with respect to a subset B of a semigroup S, kernel with respect to a subset B of a semigroup S, partial group

MSC 1991: 20M10, 20M12

In many papers concerning the algebraic theory of semigroups, properties of the following types of ideals in semigroups are investigated:

1) the minimal left (right, two-sided) ideals (see for example [3], [5], [6], [7], [8], [9], [11]);
2) the 0-minimal left (right, both-sided) ideals (see for example [4]);
3) the minimal quasi-ideals (see for example [12]);
4) the simple left (right, two-sided) ideals (see for example [8], [10]).

In this paper, the following concepts are defined:
a) a minimal left (right, two-sided) ideal with respect to a subset B of a semigroup S;
b) a kernel with respect to a subset B of a semigroup S.

An example of two semigroups, each satisfying exactly one of the following two properties, is given:
a) S_{1} does not contain any minimal left (right, two-sided) ideal (it does not have a kernel), and it contains infinitely many mutually different subsets such that with
respect to each of them S_{1} contains minimal left (right, two-sided) ideals and the kernel.
b) S_{2} contains at least one minimal left (right, two-sided) ideal, hence it contains the kernel, nonetheless it does not contain any simple left (right, two-sided) ideal and contains infinitely many mutually different subsets such that with respect to each of them S_{2} has minimal, left (right, two-sided) ideals (none of them is a minimal left (right, two-sided) ideal of S) and with respect to each of them it also has the kernel.

Let S be a semigroup and let $\emptyset \neq B \subseteq S$. In this paper, basic properties of a minimal left (right, two-sided) ideal with respect to the set B of the semigroup S (under certain conditions on a subset B of a semigroup S) are investigated. The main result of this paper is Theorem 3, which is a generalization of Corollary 9 (see [3]).

After the basic assertions on minimal left (right, two-sided) ideals with respect to a set B of a semigroup S, some well known corollaries will be given, e.g. on minimal left, on 0-minimal right (if the semigroup S is a semigroup with the zero 0) and on simple left (if the semigroup S contains the kernel) ideals of a semigroup S.

Throughout the paper, the following notation will be used
$X \subset Y$ will mean that X is a proper subset of the set Y (to distinguish it from $X \subseteq Y$ which means either $X \subset Y$ or $X=Y$).

Let S be a semigroup and let $\emptyset \neq A \subseteq S . L(A)(R(A), J(A))$ is the left (right, two-sided) ideal generated by A. If $a \in S$ and $A=\{a\}$, then instead of $L(\{a\})$ we will write $L(a)$.
$\mathscr{L}(\mathscr{R}, \mathscr{J})$ is the Green \mathscr{L}-equivalence (\mathscr{R}-equivalence, \mathscr{F}-equivalence) on S (see [1]).
$S / \mathscr{L}(S / \mathscr{J}, S / \mathscr{R})$ is the set of all \mathscr{L}-classes (\mathscr{J}-classes, \mathscr{R}-classes) which belong to the equivalence $\mathscr{L}(\mathscr{J}, \mathscr{R})$ on S.
$L_{a}\left(J_{a}, R_{a}\right)$ is the element of $S / \mathscr{L}(S / \mathscr{J}, S / \mathscr{R})$ containing the element $a \in S$.
\leqslant is a partial ordering on $S / \mathscr{L}(S / \mathscr{I}, S / \mathscr{R})$ (see [1]). We will write $R_{a}<R_{b}$ provided $R_{a} \leqslant R_{b}$ and $R_{a} \neq R_{b}$.
$N L(A)(N(A), N R(A))$ will denote the set of all elements $x \in S$ such that for each $a \in A: L_{a} \notin L_{x}\left(J_{a} \notin J_{x}, R_{a} \nless R_{x}\right)$ (see [13]).
$L_{B}\left(R_{B}\right)$ will denote the set $\cup\left\{L_{b} \mid b \in B\right\}\left(\cup\left\{R_{b} \mid b \in B\right\}\right)$.
\bar{A} is the set $S \backslash A$.
We will use the following assertion: Let S be a semigroup and let $\emptyset \neq A \subseteq S$. Then (see [13]):

If $N L(A) \neq \emptyset,(N(A) \neq \emptyset, N R(A) \neq \emptyset)$, then $N L(A)(N(A), N R(A))$ is a left (two-sided, right) ideal in S.

In what follows the definitions of new concepts will be mostly omitted and the theorems about them will be given only for left ideals of S. Theorems on left ideals
of S will be referred to (without further notice) in case analogous theorems (concepts) concerning right (two-sided) ideals of S should be used.

Definition 1. Let S be a semigroup and let $\neq B \subseteq S$. A left ideal L of a semigroup S will be called a minimal left ideal with respect to a subset B of a semigroup S (or in S), if $L \cap B \neq \emptyset$ and there is no left ideal L^{\prime} in S such that $L^{\prime} \subset L$ and $L^{\prime} \cap B \neq \emptyset$.

Remark 1. a) If we put $B=S(B=S \backslash\{0\})$ in Definition 1, then we have for each $\emptyset \neq L \subseteq S$:
L is a minimal left (0 -minimal left) ideal with respect to a subset B of the semigroup S (of the semigroup S with 0) if and only if L is a minimal left ideal of the semigroup S (of the semigroup with 0).
b) Let S be a semigroup with the kernel K and let $K \neq S$. A left ideal L of the semigroup S is called a simple left ideal of the semigroup S, if $K \subset L$ and there is no left ideal L^{\prime} in S such that $K \subset L^{\prime} \subset L$ (see [10]). Put $B=S \backslash K$. In the paper it is shown how to get theorems on minimal left ideals with respect to the subset B of the semigroup S using theorems on simple left ideals of the semigroup with the kernel K.

Example 1. Let S_{1} be the set of all real numbers $x \in \mathbb{R}$ such that $0<x<1$. A binary operation on S_{1} will be defined in the following way: $x y=\min \{x, y\}$ for each two elements $x, y \in S_{1}$. Then S_{1} is a semigroup.

Let $S_{2}=\{a, b, c\}$ and let a binary operation on S_{2} be defined in the following way:

	a	b	c
a	a	b	c
b	a	b	c
c	a	b	c

Then S_{2} is a semigroup. Let $S_{3}=S_{1} \times S_{2}$ be the direct product of semigroups S_{1}, S_{2}. For each $\alpha \in(0,1)$ put $M^{\alpha}=\{y \mid y \in \mathbb{R}$ and $\alpha \leqslant y<1\}$ and $B^{\alpha}=M^{\alpha} \times S_{2}$. Then for each $\alpha \in(0,1)$ the set $\left\{L(\alpha, u) \mid u \in S_{2}\right\}$ is the set of all minimal left ideals with respect to the set B^{α} of the semigroup S_{3}. It is easy to prove that the semigroup S_{3} contains no minimal two-sided ideal. In this example instead of the set S_{1} take a set S_{10} of all real numbers $x \in \mathbb{R}$ such that $0 \leqslant x<1$. Define the binary operation on S_{10} analogously as on S_{1}. Then S_{10} is a semigroup. Let $S_{30}=S_{10} \times S_{2}$ be the direct product of semigroups S_{10}, S_{2}. Then we can easily prove that the semigroup S_{30} has the following properties:
a) S_{30} contains at least one minimal left and one minimal right ideal and hence S_{30} has the kernel,
b) S_{30} does not contain any simple left (two-sided) ideal,
c) S_{30} contains infinitely many mutuaily different subsets ($B^{\alpha}, \alpha \in(0,1)$) such that with respect to each of them S_{30} has minimal left ideals (none of them is a minimal ideal of S).

For each $\beta \in(0,1)$ put $N^{\beta}=\{y \mid y \in \mathbb{R}$ and $0<\beta<y<1\}$ and $B^{\beta}=N^{\beta} \times S_{2}$. Then for each $\beta \in(0,1)$ the set of all minimal left (right, two-sided) ideals with respect to the set B^{β} of the semigroup S_{3} is empty.

Remark2. By means of an example it can be shown that there exists a semigroup having a kernel and containing no minimal left (right), simple left ideal, while containing infinitely many mutually different subsets such that with respect to each of them it has both a minimal left ideal and the kernel.

Theorem 1. Let S be a semigroup and let $\emptyset \neq B \subseteq S$. Then for each $\emptyset \neq L \subseteq S$ the following holds:
(a) L is a minimal left ideal with respect to the subset B of the semigroup S if and only if there exists an element $b \in B$ such that $L=L(b)$ and L_{b} is a minimal element of $\overline{N L(B)} / \mathscr{L}$.
(b) For each $b \in B: L(b)$ is a minimal left ideal with respect to the subset B of the semigroup S if and only if $L(b) \cap \overline{N L(B)}=L_{b}$.

Proof. (a) I. Suppose that L is a minimal left ideal with respect to the subset B of the semigroup S. Let $b \in L \cap B$. Then $L(b) \subseteq L$ and $L(b) \cap B \neq \emptyset$. It follows from the assumption that $L=L(b)$. Let $a \in \overline{N L(B)}$ and let $L_{a} \leqslant L_{b}$. Then there exists an element $c \in B$ such that $L_{c} \leqslant L_{a}$. This implies that $L(c)=L(b)$, hence $L_{a}=L_{b}$. Therefore, L_{b} is a minimal element of $\overline{N L(B)} / \mathscr{L}$.
II. Let $b \in B, L=L(b)$ and let. L_{b} be a minimal element of $\overline{N L(B)} / \mathscr{L}$. Let L^{\prime} be a left ideal of the semigroup S such that $L^{\prime} \subset L$ and $L^{\prime} \cap B \neq \emptyset$. Let $c \in L^{\prime} \cap B$. Hence $L(c) \subseteq L^{\prime}(c) \subset L(b)$. Therefore $L_{c}<L_{b}$ and $L_{b}, L_{c} \in \overline{N L(B)} / \mathscr{L}$. This is a contradiction with the fact that L_{b} is a minimal element of $\overline{N L(B)} / \mathscr{L}$. Therefore $L(b)$ is a minimal ideal with respect to the subset B of the semigroup S.
(b) Let $b \in B$.
I. Suppose that $L(b)$ is a minimal left ideal with respect to the subset B of the semigroup S. Using (a) we get that $L_{b} \subseteq L(b) \cap \overline{N L(B)}$. Suppose that there is an element $d \in L(b) \cap \overline{N L(B)}$ such that $d \notin L_{b}$. Hence $L_{d} \subseteq \overline{N L(B)}$ and $L_{d}<L_{b}$. This is a contradiction with the fact that L_{b} is a minimal element of $\overline{N L(B)} / \mathscr{L}$. Therefore $L(b) \cap \overline{N L(B)} \subseteq L_{b}$.
II. Suppose that $L(b) \cap \overline{N L(B)}=L_{b}$. Further suppose that there exists a left ideal L of the semigroup S such that $L \subset L(b)$ and $L \cap B \neq \emptyset$. Then $L \cap L_{b} \neq \emptyset$. Hence
$L(b) \subset L$, which contradicts $L \subset L(b)$. Therefore $L(b)$ is a minimal left ideal with respect to the subset B of the semigroup S.

Corollary 1. Let S be a semigroup. Then for each $\emptyset \neq L \subseteq S$ the following holds:
(a) L is a minimal left ideal in S if and only if there exists an element $b \in S$ such that $L=L(b)$ and L_{b} is a minimal element in S / \mathscr{L}.
(b) For each $b \in S: L(b)$ is a minimal left ideal in S if and only if $L(b)=L_{b}$.

Proof. Put $B=S$. Then $\overline{N L(B)}=S$. Using Theorem 1 we get Corollary 1 . ,

Corollary 2. Let S be a semigroup S with zero 0 . Put $B=S \backslash\{0\}$. Then for each $\emptyset \neq L \subseteq S$ the following holds:
(a) L is a 0-minimal left ideal of the semigroup S if and only if there exists an element $b \in B$ such that $L=L(b)$ and L_{b} is a minimal element in B / \mathscr{L}
(b) For each $b \in B, L(b)$ is a 0 -minimal left ideal of the semigroup S if and only if $L(b)=\{0\} \cup L_{b}$.

Proof. From the assumption we have that $B=S \backslash\{0\}$. Then $\overline{N L(B)}=S \backslash\{0\}$. Using Theorem 1 we get Corollary 2.

Corollary 3. Let S be a semigroup with the kernel K and let S be not simple. Put $B=S \backslash K$. Then for each $L \subseteq S$ the following holds:
L is a simple left ideal in S if and only if there exists an element $b \in B$ such that $L=K \cup L(b)$ and $L(b)$ is a minimal left ideal with respect to the subset B of the semigroup S.

Proof. I. Let L be a simple left ideal in S. Let $b \in L \backslash K$. Then $K \cup L(b) \subseteq L$ and $K \cup L(b)$ is a left ideal containing the kernel K. Then the assumption implies that $L=K \cup L(b)$. Suppose that L_{b} is not a minimal element of B / \mathscr{L}. There exists an element $c \in B$ such that $L_{c}<L_{b}$. Then $L(b) \backslash L_{b} \neq \emptyset$ and $\left(L(b) \backslash L_{b}\right) \cap B \neq \emptyset$. Then $L_{1}=K \cup\left(L(b) \backslash L_{b}\right)$ is a left ideal of the semigroup S and $K \subset L_{1} \subset L$. This is a contradiction with the fact that L is a simple left ideal of S. It follows that L_{b} is a minimal element in B / \mathscr{L}. Using Theorem 1 we get that $L=K \cup L(b)$ and $L(b)$ is a minimal ideal with respect to the subset B of the semigroup S.
II. Let $L=K \cup L(b)$ and let $L(b)$ be a minimal left ideal with respect to the subset B of the semigroup S. Suppose that there exists a left ideal L^{\prime} in S such that $K \subset L^{\prime} \subseteq L$. Let $d \in L^{\prime} \cap L_{b}$. Then $L_{b}=L_{d} \subseteq L(d) \subseteq L^{\prime}$. We get $L \subseteq L^{\prime}$. Hence $L^{\prime}=L$. Therefore L is a simple left ideal of S.

Definition 2. We will say that a semigroup S satisfies the condition $m_{L B}\left(m_{B}\right)$ if $\emptyset \neq B \subseteq S$ and the set of all minimal left (two-sided) ideals with respect to the subset B in S is nonempty.

Let S be a semigroup and let $\emptyset \neq B \subseteq S$. A minimal left ideal L with respect to the subset B of the semigroup S will be called a left $m B$-ideal of the semigroup S if L has the following property: for each left ideal L^{\prime} of S the following holds: If $L^{\prime} \subset L$ and $c \in S$ then $L^{\prime} c \cap \overline{N L(B)}=\emptyset$.

Lemma 1. Let a semigroup S satisfy the condition $m_{L B}$. Let either $N L(B)=\emptyset$, or let $N L(B)$ be a two-sided ideal of S. Then its every minimal left ideal with respect to the subset B of the semigroup S is a left $m B$-ideal of the semigroup S.

The proof is clear.
Let S be a semigroup without zero (with zero 0). Put $B=S(B=S \backslash\{0\})$. Let S satisfy the condition $m_{L B}$. Then each minimal (0 -minimal) left ideal with respect to the set $B=S(B=S \backslash\{0\})$ of the semigroup is a left $m B$-ideal of S.

It can be shown by means of an example that there is a semigroup S and its nonempty subset $B \subseteq S$ with the following properties:
a) $\overline{N L(B)} \neq S$ and $N L(B)$ is not a two-sided ideal of S,
b) S satisfies the condition $m_{L B}$,
c) S contains a minimal left ideal with respect to the subset B of S that is its left $m B$-ideal and contains a minimal left ideal with respect to the subset B of S that is left $m B$-ideal of S.

Example 2. Let $S=\{0, \alpha, \beta, u, v, e\}$. Define on S a binary operation as follows:

	α	β	u	v	e
α	α	0	0	v	e
β	0	β	u	0	0
u	u	0	0	β	u
v	0	v	e	0	0
e	e	0	0	v	e

Then S is a semigroup. Put $B=\{\alpha, \beta\}$. Then $\overline{N L(B)} \neq \emptyset, \overline{N L(B)}$ is not a twosided ideal of $S . S$ satisfies the condition $m_{L B}$ and constains a minimal left ideal with respect to the subset of S that is not its left $m B$-ideal of S and contains a minimal left ideal that is its left $m B$-ideal of S.

Lemma 2. Let a semigroup S satisfy the condition $m_{L B}$. Let L be a left $m B$-ideal of the semigroup S. Then for each $c \in \overline{N L(B)}$ the following holds: If $L c \cap \overline{N L(B)} \neq \emptyset$, then $L c$ is a minimal left ideal with respect to the subset B of the semigroup S.

Proof. Let $c \in \overline{N L(B)}$, and let $L c \cap B \neq \emptyset$. Suppose there exists a left ideal L^{*} of S such that $L^{*} \subset L c$ and $L^{*} \cap B \neq \emptyset$. By L_{1} we will denote the set of all elements $a \in L$ such that $a c \in L^{*}$. Then by the assumption we get that $L_{1} \neq \emptyset$ and $L_{1} \cap \overline{N L(B)} \neq \emptyset$. If $s \in S$ and $a \in L_{1}$, then $(s a) c=s(a c) \in s L^{*} \subseteq L^{*}$. Hence L_{1} is a left ideal of S. Due to the assumption we have $L_{1}=L$. Hence $L c=L_{1} c \subseteq L^{*}$. This is a contradiction with $L^{*} \subset L c$. Therefore $L c$ is a minimal left ideal with respect to the subset B of the semigroup S.

Corollary 4. (See [3].) Let L be a minimal left ideal of a semigroup S and let $c \in S$. Then $L c$ be a minimal left ideal of the semigroup S.

Proof. Put $B=S$. Then L is a left $m B$-ideal of S. By Lemmas 1 and 2 we get Corollary 4.

Corollary 5. (See [4].) Let. S be a semigroup with zero 0 . Let L be a 0 -minimal left ideal of S, and let $c \in S$. Then either $L c=\{0\}$ or $L c$ is a 0 -minimal left ideal of S.

Proof. Put $B=S \backslash\{0\}$. Then $\overline{N L(B)}=S \backslash\{0\}$ and $N L(B)=\{0\}$. Due to Lemmas 1 and 2 we get Corollary 5.

Corollary 6. (See [10].) Let S be a semigroup with the kernel K and let L be a simple left ideal of S. Let $c \in S$. Then the set $K \cup L c$ is either a simple left ideal of S or $K=K \cup L c$.

Proof. Put $B=S \backslash K$. Then using Corollary 3 and Lemma 2 we get Corollary 6 .

Let a semigroup S satisfy the condition $m_{L B}$. By ${ }_{*} B$ we will denote the set of all elements of B such that for each minimal left ideal with respect to the subset B there exists exactly one element $b \in_{*} B$ such that $L=L(b)$ (see Theorem 1) and $L(b)$ is a minimal left ideal with respect to the subset B of S for each $b \in{ }_{*} B$. The set ${ }_{*} B$ will be called the left lower basic (minimal) set of the subset B of the semigroup S. Clearly ${ }_{*} B$ is such a minimal subset of the set B that the sets of all minimal ideals with respect to B and of those with respect to ${ }_{*} B$ coincide.

Definition 3. We will say that a semigroup S satisfies the condition $m_{L B}^{*}$ if S satisfies the condition $m_{L B}$ and the left lower basic set ${ }_{*} B$ of the set B has the following properties:
i) If $b \in{ }_{*} B, c \in S$ and $L(b) c \cap \overline{N L(B)}=\emptyset$, then there exists an element $d \in{ }_{*} B$ such that $L(b) c \subseteq L(d)$.
ii) $\overline{N L(B)}=\overline{N(B)}$.

Remark 4. It is easy to prove that the following assertion holds:
(a) Let a semigroup S contain at least one minimal left ideal. Put $B=S$. Then the semigroup S satisfies the condition $m_{L B}^{*}$.
(b) Let a semigroup S with 0 contain at least one 0 -minimal left ideal. Put $B=S \backslash\{0\}$. Then the semigroup S satisfies the condition $m_{L B}^{*}$

Lemma 3. Let a semigroup S satisfy the condition $m_{L B}^{*}$. Then the set union of all minimal left ideals with respect to the subset B of S is a two-sided ideal of S.

Proof. Put $M=\cup\left\{L(b) \mid b \in{ }_{*} B\right\}$. Let $a \in M$ and $c \in S$. There exists an element $d \in{ }_{*} B$ such that $a \in L(d)$. Then either $\left.\alpha\right) L(d) c \cap \overline{N L(B)}=\emptyset$, or $\beta) L(d) c \cap \overline{N L(B)} \neq \emptyset$. First suppose that α) holds. Then by the assumption, there exists an element $d^{\prime} \in{ }_{*} B$ such that $L(d) c \subseteq L\left(d^{\prime}\right)$. It follows that $a c \in M$. In the case β), due to Lemma 2 we get that there exists $h \in{ }_{*} B$ such that $L(b) c=L(h)$. It follows that M is a right ideal of S. Clearly M is a left ideal of S. Hence M is a two-sided ideal of S.

Definition 4. We will say that a semigroup S satisfies the condition $m_{L B}^{* *}$ if S satisfies the condition $m_{L B}^{*}$ and for each $b, c \in{ }_{*} B$ there exists an element $d \in \overline{N L(B)}$ such that $L(b) d=L(c)$.

Example 3. Let a semigroup S contain at least one minimal left ideal. Put $B=S$. Then $\overline{N L(B)}=S$. Let ${ }_{*} B$ be the left lower basic set of the subset of the set $B(\subseteq S)$. Then it is easy to prove that the semigroup S satisfies the condition $m_{L B}^{* *}$.

Theorem 2. Let a semigroup S satisfy the condition $m_{L B}^{* *}$. Then:
(a) For each two-sided ideal M of the semigroup S the following holds: If $M \cap_{*} B \neq$ \emptyset, then $L\left({ }_{*} B\right) \subseteq M$.
(b) The set $L\left({ }_{*} B\right)=\cup\left\{L(b) \mid b \in{ }_{*} B\right\}$ is a minimal two-sided ideal with respect to the subset ${ }_{*} B$ of the semigroup S.

Proof. (a) Let $b \in M \cap{ }_{*} B$. Suppose that $c \in{ }_{*} B$ and $c \notin M$. By the assumption there exists an element $d \in \overline{N L(B)}$ such that $L(b) d=L(c)$. This is a contradiction with $L(b) \subseteq M$ and $c \nsubseteq M$. Hence $L\left({ }_{*} B\right) \subseteq M$.
(b) By the assumption and Lemma $3, L\left({ }_{*} B\right)$ is a two-sided ideal of the semigroup S. Suppose that there exists a two-sided ideal M^{\prime} of the semigroup S such that $M^{\prime} \subset L\left({ }_{*} B\right)$ and $M^{\prime} \cap{ }_{*} B \neq \emptyset$. Using (a) we get $L\left({ }_{*} B\right) \subseteq M^{\prime}$. This contradicts the assumption.

Corollary 7. Let a semigroup S contain at least one minimal left ideal. Then the set union of all minimal left ideals of the semigroup S is its minimal two-sided ideal (for the kemel of the semigroup S see e.g. [3], [9]).

Remark 5. Let S be a semigroup in Example 2 and $B=\{\alpha, \beta\}$. Then
a) S satisfies the condition $m_{L B}^{*}$ and does not satisfy the condition $m_{L B}^{* *}$.
b) The set union of all minimal ideals with respect to the set B of a semigroup S is not a minimal two-sided ideal of S and $L_{B} \neq R_{B}$.

Definition 5. Let S be a semigroup and let $\emptyset \neq B \subseteq S$. Denote by K_{B} the intersection of all two-sided ideals N of the semigroup S such that $N \cap B \neq \emptyset$. If $K_{B} \neq \emptyset$ then the two-sided ideal K_{B} of S will be called the kernel with respect to the subset B of the semigroup S.

Clearly the following holds: If $B=S$ and $K_{B} \neq \emptyset$, then K_{B} is the kernel of the semigroup S.

Corollary 8. Let a semigroup S satisfy the condition $m_{L B}^{* *}$. Then $L\left({ }_{*} B\right)$ is the kernel with respect to the subset ${ }_{*} B$ of the semigroup S.

We get Corollary 8 using Theorem 2 .
Example 4. Let $S_{1}, S_{2}, S_{3}, S_{10}, S_{30}$ be semigroups from Example 1. Let for each $\alpha \in(0,1), M^{\alpha}$ and B^{α} be the sets from Example 1. It is easy to show that each semigroup $S_{3}\left(S_{30}\right)$ satisfies the condition $m_{L B}^{* *}$ for each $\alpha \in(0,1)(\alpha \in\langle 0,1))$. The semigroup $S_{3}\left(S_{30}\right)$ has the kernel with respect to its every subset $B^{\alpha}, \alpha \in(0,1)$ $(\alpha \in\langle 0,1))$, contains the kernel and does not contain any simple left (right, twosided) ideal.

Definition 6. Let S be a semigroup and let $\emptyset \neq B \subseteq S$. We will say that the semigroup S satisfies the condition $m u_{L B}^{* *}\left(m u_{R B}^{* *}\right)$ if it satisfies the condition $m_{L B}^{* *}$ ($m_{R B}^{* *}$) and for each $a, b \in{ }_{*} B\left(a, b \in B_{*}\right)$ we have $L_{a} b=L_{b}\left(b R_{a}=R_{b}\right)$.

Further, we denote by $D_{l}(B)\left(D_{r}(B)\right)$ the set of all elements $b \in B$ such that $b B=B(B b=B)$.

Definition 7. A semigroup S will be called a partial group if and only if $D_{r}(S) \neq$ \emptyset and $D_{r}(S)=D_{l}(S)$ (see [2]).

Further, we will use the following lemma (its proof see e.g. [1], [2]).
Lemma 4. Let S be a partial group. Then
(a) $D_{r}(S)=S$ if and only if S is a group.
(b) If $D_{r}(S) \neq S$, then $S \backslash D_{r}(S)$ is a two-sided ideal of S and $D_{r}(S)$ is a group.
(c) The unit of the group $D_{r}(S)$ is a unit of the semigroup S.

A nonempty subset H of the semigroup S will be called a filter of the semigroup S if for each two elements $a, b \in S$ the following holds: $a b \in H(a, b \in S)$ if and only
if $a \in H, b \in H$. If H is filter of the semigroup S and $S \backslash H \neq \emptyset$, then $S \backslash H$ is a two-sided ideal in S.

Lemma 5. Let a semigroup S satisfy the conditions $m u_{L B}^{* *}, m u_{R B}^{* *}$. Let $L_{* B}=$ $R_{B,}$ and let c, d be arbitrary elements of L, B. Put $G=R(c) L(d)$ and $D=G \cap L_{B}$. Then
(a) $L_{*} B$ is a filter in $L\left({ }_{*} B\right)$,
(b) $D \neq \emptyset$,
(c) $D \subseteq R_{c} \cap L_{d}$,
(d) $D=D_{r}(G)=D_{l}(G)$.

Proof. By the assumption and Theorem 2 we get that $L\left({ }_{*} B\right)$ is a two-sided ideal of S and $R\left(B_{*}\right) \subseteq L\left({ }_{*} B\right), L\left({ }_{*} B\right) \subseteq R\left(B_{*}\right)$. Therefore $L\left({ }_{*} B\right)^{*}=R\left(B_{*}\right)$. By the assumption, we get that $L\left({ }_{*} B\right) \backslash L_{* B}=R\left(B_{*}\right) \backslash R_{B_{*}}$. Put $K=L\left({ }_{*} B\right) \backslash L_{*} B$. Then $K=\cup\left\{L_{b} \cup L(b) \backslash L_{b} \mid b \in{ }_{*} B\right\} \backslash \cup\left\{L_{b} \mid b \in{ }_{*} B\right\}=\cup\left\{L(b) \backslash L_{b} \mid b \in{ }_{*} B\right\}$. Hence either (i) $L(b) \backslash L_{b}=\emptyset$ for all $b \in{ }_{*} B$, or (ii) there exists an element $b \in B$ such that $L(b) \backslash L_{b} \neq \emptyset$. Suppose that (ii) holds. Then $K \neq \emptyset$ and K is a two-sided ideal of S. Let a and b be elements of $L_{*} B$. Then by the assumption, $L_{a} b=L_{b} \subseteq L_{*} B$. It follows that L_{+B} is a filter in $L\left({ }_{*} B\right)$ (in the case (i) we have $L\left({ }_{*} B\right)=L_{+B}$).
b) Let c, d be elements of L_{B}. Then $c d \in R(c) L(d)=G$ and by (a) we get $c d \in L_{\text {. }}$. Hence $D \neq \emptyset$.
c) Since $G \cap L_{* B}=[R(c) L(d)] \cap L_{* B} \subseteq[R(c) \cap L(d)] \cap L_{* B}=\left[R(c) \cap L_{* B}\right] \cap[L(d) \cap$ $\left.L_{* B}\right]$, the assumption and Theorem 1 yield that $D \subseteq R_{c} \cap L_{d}$.
d) Let g be an element of D. By (c) we get $g \in R_{c}$ and $g \in L_{d}$. By the assumption we get that $L_{d}=L_{g}=L_{d} g \subseteq L(d) g \subseteq L(d) L(d) \subseteq L(d)$. Then $L(d)=L(d) g$. Analogously $g R(c)=R(c)$. Hence $g G=g R(c) L(d)=G$ and $G g=R(c) L(d) g=G$.

Let g be an element of G such that $g \notin D$. Then $g \in L(d)$ and $g \notin L$. B. Therefore $g \in K$. By (a), $L_{*} B$ is a filter in $L\left(_{*} B\right)$ and $K \neq \emptyset$, hence K is a two-sided ideal in $L\left({ }_{*} B\right)$. It follows that $G g \cap L_{*} B=\emptyset$ and $g G \cap L_{*} B=\emptyset$. According to (b) we get $G g \neq G$ and $g G \neq G$. The above considerations imply that the assertion (d) of Lemma 5 holds.

Theorem 3. Let the assumptions of Lemma 5 hold. Then:
(a) G is a partial group.
(b) $L(d)=S e, R(c)=e S$ and $G=R(c) \cap L(d)=e S e$ where e is the unit of the partial group G.
(c) $D=R_{c} \cap L_{d}$.

Proof. (a) Since $L(d)$ is a left ideal of the semigroup S, we get that $G G=$ $R(c) L(d) R(c) L(d) \subseteq R(c) L(d)=G$. According to (b) and (d) of Lemma 5 we get that G is a partial group.
(b) Let e be the unit of the partial group G. Then by Lemmas 4 and 5 we have $e \in$ R_{c} and $e \in L_{d}$. It means that $R(c)=e S$ and $L(d)=S e$. Then $e S e \subseteq e L(d) \subseteq L(d)$ and $e S e \subseteq R(c) e \subseteq R(c)$. It follows that $e S e \subseteq R(c) \cap L(d)$. Let x are an arbitrary element of $R(c) \cap L(d)$. Then there exists elements $u, v \in S$ such that $x=e u=v e$. Then $x=e u=e(e u)=e(e v)=e v e$, i.e. $x \in e S e$. Hence $R(c) \cap L(d) \subseteq e S e$.

Clearly $R(c) L(d) \subseteq L(d)$ and $R(c) L(d) \subseteq R(c)$. Therefore $G \subseteq R(c) \cap L(d)$. Let x be an element of $R(c) \cap L(d)$. By (b) there exists an element $u \in S$ such that $x=u e$. Then $x e=(u e) e=u e=x$. Therefore $x \in R(c) L(e)=R(c) L(d)$. Hence $G=R(c) \cap L(d)=e S e$, where e is the unit element of the partial group G.
(c) By (b), $R_{c} \cap L_{d} \subseteq R(c) \cap L(d)=G$. Since $R_{c} \subseteq L_{\text {. }}$ and $L_{d} \subseteq L_{*}$, we get that $R_{c} \cap L_{d} \subseteq G \cap L_{+B}$. Lemma 7 implies that $D=R_{c} \cap L_{d}$.

Corollary 9. (See [3].) Let $L(d)$ be a minimal left ideal and $R(c)$ a minimal right ideal of a semigroup $S(c, d \in S)$. Put $B=S, G=R(c) L(d)$ and $D=G \cap L_{*}$. Then:
(a) G is a group.
(b) $R(c)=e S, L(d)=S e$ and $G=R(c) \cap L(d)=e S e$, where e is the unit of the group G.
(c) $G=R_{c} \cap L_{d}$.

Proof. By the assumption, the semigroup S satisfies the conditions $m_{L B}$, $m_{R B}$, where $B=S$. Let ${ }_{*} B\left(B_{*}\right)$ be the left (right) lower basic set of the subset B of the semigroup S. Then it is easy to prove that the semigroup S satisfies the assumptions of Theorem 3. Because by the assumption, $L(d)$ is a minimal ideal of the semigroup S, using Theorem $1(B=S)$ we have $L(d)=L_{d}$. It follows that $G=R(c) L(d) \subseteq L(d)=L_{d} \cap L . B$. Therefore $D=G$. Using (d) of Lemma 6 we conclude that G is a group.

Example 5. Let $S_{1}=\{0,1,2,4,5,7,8,10,11\}$ be a semigroup of the semigroup $S_{12}=\{0,1,2, \ldots, 11\} \bmod 12 . S_{2}$ is the semigroup from Example 1. Let $S_{3}=S_{1} \times S_{2}$ be the direct product of S_{1}, S_{2}. Put $B_{1}=\{2\} \times S_{2}$ and $B_{2}=\{1\} \times S_{2}$. Then:
a) If $B=B_{1}$ then the semigroup S_{3} satisfies the condition $m_{L B}^{* *}$ and does not satisfy the condition $m u_{L B}^{* *}$.
b) If $B=B_{2}$ then ${ }_{*} B=\{1\} \times S_{2}, B_{*}=\{(1, a)\}, L_{. B}=R_{* B}$ and the semigroup S satisfies the condition $m u_{L B}^{* *}, m u_{R B}^{* *}$.

References

[1] A. H. Clifford, G. B. Preston: The algebraic theory of semigroups I, II. Amer. Matl Soc., Providence, 1961, 1967.
2] E. S. Ljapin: Semigroups. FIZMATGIZ, Moskva, 1960. (In Russian.)
[3] A. H. Clifford: Semigroups containing minimal ideals. Amer. J. Math. 70 (1948, 521-526.
4] A. H. Clifford: Semigroups without nilpotent ideals. Amer. J. Math. 71 (1949), 834-844
[5] L. Fuchs: On semigroups admitting relative inverses and having minimal ideals. Pub] Math. Debrecen 1 (1950), 227-231.
[6] G. B. Preston: Inverse semigroups with minimal right ideals. J. London Math. Soc. 2. (1954), 404-411.
[7] D. Rees: Note on semigroups. Proc. Cambridge Philos. Soc. 37 (1941), 334-435.
[8] S. Schwarz: Theory of semigroups. Sborník prác Prír. fak. Slov. univerzity, IV. Brati. slava, 1943. (In Slovak.)
[9] S. Schwarz: On the structure of simple semigroups without zero. Czechoslovak Math. J 1 (1951), 41-58. (In Russian.)
[10] S. Schwarz: On semigroups having a kernel. Czechoslovak Math. J. 1 (1951), 259-301 (In Russian.)
[11] A. Suschkiewitsch: Uber die endlichen Gruppen ohne Gesetz der eindeutigen Umkehrbarkeit. Math. Ann. 99 (1928), 30-50.
[12] O. Steinfeld: U̇ber die Quasideale von Halbgruppen. Publ. Math. Debrecen 4 (1956), 262-275.
[13] I. Abrhan: On \mathscr{I}-subalgebras in unary algebras, on simple ideals and \mathscr{f}-ideals in grupoids and semigroups. Math. Slovaca 28 (1978), no. 1, 61-80. (In Russian.)

Author's address: Imrich Abrhan, Department of Mathematics, Faculty of Mechanical
Engineering, Slovak Technical University, Nám. slobody 17, 81231 Bratislava, Slovakia.

