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I. INTRODUCTION 

The following elementary example shows that separately continuous functions are 

not connected functions: 

Define / : R x R ->• R such that 

r-rz-2> (*>y)*(o,o) 
f((x,y)) = { *2+V2 

[0, (x,y) = (0,0). 

Now let E = {(x,y): x ^ 0,y >. 0 and \x ^ y s$ 3a;}. Then the image of E is not 

connected. In this paper, we show that, for separately continuous functions, if the 

connected set is also open, then its image is a connected set in the range space. This 

condition, which we call "O-connectedness," is strictly weaker than connectedness, 

as shown by the following example: 

( 0, x < 0 

1, x = 0 

sin i x > 0 



In Theorem 2 and Corollary 1, we show that, with suitable restrictions on the 

domain and range spaces, O-connected functions (including separately continuous 

functions) have connected cluster sets. Theorem 4 and Corollary 2 show that the 

closed graph property, combined with O-connectedness, yields continuity. Corollary 

3 presents a similar result for separately continuous functions. 

Throughout this paper a function / from a space X into a space Y will be denoted 

by / : X -> Y. We say that a function / : X -» Y is O-connected if the image of 

every connected open set in X is a connected set in Y. 

II . SEPARATE CONTINUITY AND O-CONNECTEDNESS 

The following lemma is similar to Theorem 3.5 of [2]: 

L e m m a . Let f: X x Y -> R be a real-valued separately continuous function, 

where X and Y are topological spaces. Let A C X and B C Y be connected sets in 

the topologies on X and Y respectively. Then f(A x B) is a connected set in K. 

P r o o f . Let E = {f(x, y): x 6 A and y e B}. If the set E consists of a single 

point, we are done. Let z\ and z2 be any two points in E such that z\ ^ z2. There 

exist points (x\,y\) and (x2,y2) in AxB such that f(x\,y\) = Z\ and f(x2,y2) = z2. 

Since / is continuous in each variable separately, if X\ = x2 or yx = y2, then every 

value between z\ and z2 is in E. If X\ ^ x2 and y\ / y2, consider the point (x2. y\) 

m AxB. Again, since / is separately continuous, every value between f(x\,y\) = z\ 

and f(x2,y\) = z3 is in E. Similarly, every value between z3 and z2 is in E. That is, 

E contains every value between z\ and z2. Since Z\ and z2 were chosen arbitrarily, 

the set E must be an interval in R. • 

Before presenting the next result, we recall that if O is an open cover of a connected 

set 5 in a space X, then any two points a and b of S can be connected by a simple 

chain consisting of elements of O. (See, for example, Theorem 26.15 of [4], the proof 

of which is readily adapted to the subspace topology.) 

T h e o r e m 1. Let f: X x Y -> R be a real-valued separately continuous function, 

where X and Y are locally connected spaces. Then f is O-connected. 

P r o o f . Let G be a connected open subset of X x Y. Then G is the union 

of a collection of basis elements of the form U x V, where each U and each I7 is 

open and connected. Since these basis elements form an open cover of the connected 

set G, any two points (x\,y\) and (x2,y2) in G can be joined by a finite collection 

[U\ x V\, U2 x V2,..., Un x Vn] of such basis elements, such that (x\,y\) €(U\ x V,) 
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and (x2,y2) £ (Un x Vn) and any two successive sets (Ui x Vi) and (Ui+1 x Vi+i) 

have at least one common point. Thus, if f(G) is not a singleton, by mimicking the 

argument in the proof of the Lemma above, we can show that, for any two points z\ 

and z2 in f(G), every value between z\ and z2 is in f(G). Hence, f(G) is connected 

in R. • 

I I I . C L U S T E R SETS, O-CONNECTEDNESS AND SEPARATE CONTINUITY 

For a function f:X-¥Y, where X and Y are first countable spaces, we say that 

the cluster set of / a t x e X, denoted by C(f;x), is the set of all y in Y such that 

there exists a sequence (xn) in X converging to x and (f(xn)) converges to y. It is 

easy to show that the set C(f; x) is always closed. Also, C(f; x) is never empty, since 

f(x) is always an element of C(f; x). In [2] W. Pervin and N. Levine showed that for 

a connected function f:X-+Y, where X is first countable and locally connected, 

and y is first countable and compact Hausdorff, the cluster set C(f; x) is connected 

for every x in X. Only slight modifications of the proof of Pervin and Levine are 

needed to prove the next result. For the convenience of the reader, we set forth the 

entire proof. 

T h e o r e m 2. Let X be a locally connected and first countable space, and let Y 

be compact Hausdorff and Srst countable. Suppose that f: X -> Y is O-connectcd. 

Then for any x in X, C(f; x) is a connected subset ofY. 

P r o o f . Assume that C(f;x) is disconnected for some x in X. Then let 

C(f;x) = A\B be a separation. Since C(f;x) is closed, then A and B are closed 

subsets of y . But Y is compact and Hausdorff and therefore normal. Thus, there 

exist disjoint open sets U and V such that AcU and B CV. Then C(f; x) c UOV. 

The claim now is there exists an open set G containing x such that f(G) C U U V. 

Assume that for every open set G containing x there exists a point x' in G such that 

f(x') G y \ (U U V). As we shall see, this will lead to a contradiction. Since X is 

first countable, we can construct a sequence (.?:'„) in X such that (x'n) converges to 

x. Consider the sequence (f(x'„)) in Y. Since Y \ (U U V) is a closed subset of the 

compact space Y, it is also compact. Thus, (f(x'n)) has a convergent subsequence 

converging to some y' in Y \ (U U V). But y' is in C(f; x), and this contradicts the 

fact that C(f;x) C U U V. Therefore, there is some open set G containing x such 

that f(G) C U U V. Since X is locally connected, there exists a connected open 

set H in G containing x such that f(H) C U U V. Since / is O-connected, f(H) is 

connected in Y, and thus f(H) lies entirely in U or V. Then either A or B must be 

59 



empty, because the other can have no points of C(f; x) in it; i.e., H contains the tai 
of every sequence (xn) converging to x. Hence, C(f;x) is connected. C 

Corollary 1. Let / : R x R -> / be a separately continuous function from th 
real plane into a closed interval I. Then for any point (x, y) in the domain of f. th 
cluster set of f at (x,y) is connected. 

Proof . Apply Theorem 1 and Theorem 2. C 

R e m a r k 1. In Corollary 1 the cluster set is degenerate at points of joint conti 
nuity. We also remark that the converse of Corollary 1 is not true, as illustrated b; 
the following function of the form / : R X R -+ [—1,1]: 

cn (sin^+y2)-1), (x,y)?(0,0) 
mx'v)) = U <-,»>« <M> 

Now by application of Theorem 1 and Corollary 1 above, we obtain the following 

Theorem 3. Let f:Uxk—> I be a separately continuous function from tin 
real plane into a closed interval I. Let (x',y') be any point in I x R . Then in anj 
connected open set containing (x1 ,y'), f takes on every value in C(f;(x',y')) [excep 
possibly the end points ifC(f; (x',y')) is an interval]. 

Proof . If C(f; (x',y')) = {f(x',y')}, we are done. If C(f;(x',y')) is a closet 
interval [a, b], then any open set containing (x',y') contains the tail of a sequence 
(xn,yn) such that the sequence f(xn,yn) converges to a. A similar sequence con 
verges to b. Now apply Theorem 1. C 

IV. CLOSED GRAPH, O-CONNECTEDNESS AND SEPARATE CONTINUITY 

We say that a function / : A" —> Y is locally w* continuous if there exists an opei 
basis B for the topology on Y such that /~1[Fr(V')] is closed in X for any V £ B 
where Fr() denotes the frontier operator [1], Local w* continuity is a generalizatioi 
of the closed graph property for functions of the form / : X —* Y, where Y is localh 
compact and Hausdorff [1]. The next theorem and its corollary generalize the well 
known result that a connected function with a closed graph, is continuous. 

Theorem 4. Let X be a locally connected space and let f: X —> Y be locally w 
continuous. If f is O-comiected. then f is continuous. 

Proof . Let x E X and let W C Y be an open set containing f(x). By loca 
w* continuity, there exists a basic open set V C Y such that f(x) G V C W am 
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/ _ 1 [ F r ( V ) ] is closed in X. Then the complement of / _ 1 [ F r ( V ) ] , which we shall 

call G, is open and contains x. Since X is locally connected, there exists an open 

connected set U such that x 6 U C G. Claim: f(U) C V C W. Assume there exists 

x' e U such that f(x') $ V. Now Y \ Fr(V) is a disconnected subspace of Y. Since 

f(U) is connected, f(U) is contained in V or in Y \ C1(V). But this is impossible. 

D 

Corollary 2. Let f: X -> Y be a function, where X is locally connected and 

Y is locally compact and Hausdorff. Suppose that f has the closed graph property. 

Then if f is O-connected, f is continuous. 

P r o o f . The function / is locally w* continuous. Now apply Theorem 4. D 

C o r o l l a r y 3. Let f: X x Y -» R be a separately continuous real-valued function, 

where X and Y are locally connected spaces. If f is locally w* continuous, then f is 

continuous. 

R e m a r k 2. For a more general result, see [1], 
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