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Summary. In this paper we characterize k-chromatic graphs without isolated vertices 
and connected k-chromatic graphs having a minimal number of edges. 
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Graphs, considered here, are finite and simple (without loops and multiple edges), 

and [1, 2] are followed for terminology and notation. Let G = (V, E) be an undirected 

graph, with V the set of vertices and E the set of edges, such that |V | = n and 

\E\ = m. By colouring a graph we mean paiting the vertices of the graph with 

one or more distinct colours. By properly colouring a graph, we mean painting the 

vertices of the graph in such a way that no two adjacent vertices are piiinted with 

the same colour. T h e chromatic number j(G) of a graph G is the least number of 

distinct colours t h a t can be used to colour the graph properly. A graph is said to be 

complete, if every two vertices of it are joined by an edge. We shall denote by Kn 

the complete graph on n vertices. I f f is an arbitrary vertex of (7, we shall denote by 

G — v the subgraph obtained from G by deleting v together with its incident edges. 

A set of vertices in a graph is said to be an independent set if no two vertices in 

it are adjacent. 

For any real number x, we use \x] to denote the smallest integer greater than or 

equal to #, and [x\ to denote the greatest integer less than or equal to x. 

T h e o r e m 1. If G = (V, E) is a graph without isolated vertices and j(G) = k, 

then 

(îWт*!-m ^ 
\2J I 2 l 
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P r o o f . First, suppose that for each v G V the subgraph G — v contains isolated 

vertices. Let w be an isolated vertex of G — v, that is, w is adjacent only to v in G. 

However, the subgraph G — w also contains isolated vertices. Thus, (v, w) G E and 

vertices v, w are not adjacent to other vertices in G. 

Repeating this reasoning, we obtain that if for each v G V the subgraph G — v 

contains isolated vertices and G does not contain isolated vertices, then n is even, 

7(G) = 2 and 
71 / 2 \ n - 2 

However, this number is the minimal number of edges of G> since G does not contain 

isolated vertices and, hence, the degree d(v) of each vertex of G is at least equal to 1. 

Therefore, we have 

2m = 2_] d(v) ^ 7i, 
v£V 

that is, 

m > 

Thus, in this case, the theorem is proved. 

In the sequel, we shall prove the theorem by induction on n. So, suppose that 

the theorem is true for all graphs G having ?i — 1 vertices and the chromatic number 

equal to k (k ^ n — -)• Let G be a graph with n vertices. If y(G) = n, then G is 

isomorphic to A'n, and the theorem is proved. Suppose that y(G) = k ^ n — 1. Let 

v G V be such that G — v does not contain isolated vertices. If such a vertex does 

not exist, we have seen above that the theorem is true. We have two cases. 

(a) y(G — v) = k. Thus, by the induction hypothesis, the minimal number of edges 

of the subgraph G — v is equal to 

G И ^ ľ 
But v is not an isolated vertex. Thus, d(v) ^ 1 and, therefore, the number of edges 
of G is greater than or equal to 

(O+p^i^GW^i-
We obtain equality, that is, 

-=(;w-ri-
only if n — Jb is odd, d(v) = 1 and the subgraph G — v has a minimal number of edges. 
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(b) 7(G — v) = k — 1. In this case there exists a partition of V consisting of 

independent sets in the form {v}, C\y C2, ..., C J I - I , and v is joined by an edge to at 

least one vertex from each class C\, C2, . . . , Cjk-i. Thus d(v) ^ k — 1, as otherwise 

7(G) ^ k — 1, which contradicts the hypothesis, that is, the fact that 7(G) = k. 

Hence, the number of edges of G — v plus k — 1 is a lower bound for m and, by the 

induction hypothesis, we have 

kл 

m > ( v ) + p i ^ 1 + t _ | = Q + [!Li 
The equality holds only if d(v) = k— 1 and the subgraph G — v has a minimal number 

of edges. • 

Following the above proof and the cases when inequalities become equalities, we 

obtain, by induction, the characterization of graphs G without isolated vertices, with 

n vertices and 7(G) = fc, which have a minimal number of edges, as follows. 

If n — k is even, the graph G with a minimal number of edges is unique (up to an 

isomorphism) and consists of a subgraph A'/, and n — k vertices which are pairwise 

joined by ^(n — k) edges. 

If n — k is odd, then there are two types of non-isomorphic graphs which have 

a minimal number of edges: a graph consisting of subgraph A'*., n — k — \ vertices 

which are pairwise joined by | ( n — k — 1) edges, and another vertex which is joined 

by an edge to an arbitrary vertex of AV The other type consists of a subgraph A'*, 

n — k—l vertices which are pairwise joined by ^(n — k— \) edges, and another vertex 

which is joined by an edge to a vertex which does not belong to A'&. Obviously, for 

k = 2, these two types of graphs coincide. 

Indeed, in case (a), in order to obtain the minimal value of m, the number n — k — l 

must be even. Thus, the subgraph G — v having a minimal number of edges is unique, 

and for t; we have two possibilities of joining it by an edge such that d(v) = 1. 

In case (b), the vertex v is joined to all vertices of the subgraph A'/._i of G—v which 

has a minimal number of edges, as otherwise we obtain 7(G) < k, contradicting the 

hypothesis (7(G) = k). Hence, the minimal graph must have necessarily the above 

indicated structure. If G has n vertices, 7(G) = k and no restriction is imposed on G, 

then the minimal number of edges is equal to (*), since between two arbitrary classes 

of a partition of V consisting of k independent sets there exists at least one edge, 

as otherwise 7(G) < k, contradicting the hypothesis (7(G) = k). It is easy to show 

similarly, by induction on ?i, that the single graph having this minimal number of 

edges consists of a subgraph A'* and n — k isolated vertices. Thus, we have obtained 

k2 — k n — k 

45 



or 
k2 - 2k + n - 2m ^ 0, 

wherefrom 
k <$ 1 + >/2m - n -f- 1. 

Corollary. If G = (V, F) is a graph without isolated vertices, then 

7(6') ^ 1 + > /2m- n - f l . 

It is easy to see that this inequality becomes equality, for example, if G is isomor­
phic to Kn. 

According to [3], if G is connected, then 

7(o)^r^+; "j-
Thus, if G is connected and 7(G) = k, we have 

(*) + »-*. m > 

The connected graph having this minimal number of edges is not unique. For exam­
ple, it consists of a subgraph A'* and n — k vertices, each of them being joined by 
an edge to a vertex of A'*, or it consists of a subgraph A'& and a path with n — k 

vertices which is joined by an edge to a vertex of A'*. 
For k = 2, these graphs are trees with n vertices. For k — 3, such a minimal 

connected graph is composed by an odd cycle with p vertices (3 $ p ^ n), such that 
the other n — p vertices either are joined to a vertex of the cycle or form paths joined 
by an edge to a vertex of the cycle. More generally, we have 

Theorem 2. The minimal number of edges of a connected graph G with n vertices 

and 7(G) = k (2 ^ k ^ n) is equal to 

(*) + »-*• 

Tiie graphs having this minimal number of edges are of the following kind: 

(1) for k = 2, they are trees with n vertices; 

(2) for k = 3, they consist of an odd cycle with p vertices (3 ^ p ^ n) and n — p 

vertices such that if the vertices of the cycle are identified to a single vertex, then 

the resulting graph is a tree; 
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(3) for k ^ 4, they consist of a subgraph Kk and ?i — k vertices such that if the 
vertices of Kk are identified to a single vertex, the resulting graph is a tree. 

P r o o f . Obviously, for k = 2, the theorem is true. The connected graph G 
with n vertices and j(G) = 2 which has a minimal number of edges is a tree with 
n — 1 edges, since the existence of a cycle is in contradiction with the hypothesis 
of minimality for the number of edges. For k ^ 3, we proceed by induction on n. 
Obviously, for n = 2, 3, the theorem is true. So, suppose that the theorem is true 
for all graphs with n — 1 vertices and let G be a connected graph with n vertices 
and 7(C) = k. For n ^ 3, there exists a vertex v such that the subgraph G — v is 
connected as well. We have two cases. 

(a) If j(G — v) = k, then, by the induction hypothesis, the minimal number of 
edges of G — v is equal to 

J + n - k - 1, 

and G — v is of one of the above kinds. Thus, (2) + n — k is a lower bound for the 
number of edges of G since, C being connected, we must have d(v) ^ 1. 

The connected graph G has a minimal number of edges only if G — v has a minimal 
number of edges and d(v) = V Hence, G is of a kind specified in the theorem. 

(b) If j(G — v) = k — 1, then G has a colouring consisting of classes {v}, Ci, C2, 
.. ., Cfc-i, and v is joined by an edge to at least one vertex of each independent set 
Cu C 2 , • •., C f c_i. Thus, d(v) >k-\. Then 

( ^ + n - f c + Ł-! = (*)+„. 

is a lower bound for the number of edges of G, and G has a minimal number of edges 
only if d(v) = k — 1 and the connected graph G — v has a minimal number of edges. 

If k ^ 5, then by the induction hypothesis, the minimal connected subgraph G — v 
is of kind 3. Thus, the vertex v is joined to each vertex of the subgraph Kk-i of 
G — v, as otherwise we obtain 7(G) = k — 1, contradicting the hypothesis (7(G) = k). 
Hence, in this case, G is also of kind 3. 

If k = 4, the minimal subgraph G — v consists of a triangle and ?i — 4 vertices 
which form trees which are joined by an edge to a variable vertex of the triangle, 
and the vertex v is joined to all vertices of the triangle due to the fact that d(v) = 3, 
since, otherwise, 7(G) = 3. In this case, the minimal graph G is of kind 3. 

If k = 3, the subgraph G — v is a tree with n — 1 vertices and d(v) = 2. Thus, the 
graph G contains a single odd cycle since 7(G) = 3, the other vertices being vertices 
of some trees which are joined by an edge to a variable vertex of the odd cycle. In 
this case, the minimal connected graph G is of kind 2. D 
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