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Summary. We prove the existence of the least positive eigenvalue with a corresponding
nonnegative eigenfunction of the quasilinear eigenvalue problem

~ div(a(z, )| VuP 2 Vu) = Ab(z, w)[ulf2u  in Q,
u=0 on 99,

where  is a bounded domain, p > 1 is a real number and a(z, u), b(z, u) satisfy appropriate
growth conditions. Moreover, the coefficient a(x, ) contains a degeneration or a singularity.
We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunc-
tion in L*°(£2). The main tool is the investigation of the associated homogeneous eigenvalue
problem and an application of the Schauder fixed point theorem.

Keywords: weighted Sobolev space, degenerated quasilinear partial differential equations,
weak solutions, eigenvalue problems, Schauder fixed point theorem, boundedness of the
solution
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1. INTRODUCTION

The aim of this paper is to prove the existence of the least positive eigenvalue A and
the corresponding nonnegative eigenfunction u of the nonhomogeneous degenerated
quasilinear eigenvalue problem

— div(a(z,u)| V u|P"2 Vu) = Ab(z, u)[u[P%u in Q,

1.1
(1) u=20 on 99,

* The autor has been supported by the Grant Agency of the Czech Republic under Grant
No. 201/94/0008
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where € is a bounded domain, p > 1 is a real number and a(z, s),b(z,s): QxR — R
are real functions satisfying appropriate growth conditions (see Section 4). Moreover,
the function a(z,s) may contain a degeneration or a singularity. We work in a
suitable weighted Sobolev space Wol”’(w, Q) with the weight function w > 0 a.e. in
(see Section 2) and prove that for a given R > 0 there exists the least A > 0 and a
corresponding u € Wol”’(w, Q) NL®(Q) such that u >0 a.e. in Q, ||ullLro) = R and
the equation in (1.1) is fulfilled in the weak sense (see Theorem 4.10). In fact, a more
general result (dealing with more general growth conditions imposed on b(z, s)) is
proved in Theorem 4.5.

This paper generalizes the result of Boccardo [5] and Drabek, Kudera [6] (where
nondegenerated uniformly elliptic quasilinear operators were considered) and com-
pletes the papers on eigenvalues of p-Laplacian published by Anane [2], Barles [3],
Bhattacharya [4], Garcia Azorero, Peral Alonso [9], Otani, Teshima [14] and oth-
ers (where nondegenerated and homogeneous operators were considered). Let us
note that neither global results for nonlinear eigenvalue problems, nor Ljusternik-
Schnirelmann theory can be used, since the operator in (1.1) is not (in general) a
potential operator.

The paper is organized as follows. In Section 2, which has a preliminary character,
we define appropriate weighted Sobolev spaces and prove some useful imbeddings.
‘We prove also a version of Friedrichs inequality in the weighted Sobolev space. More-
over, an auxiliary assertion due to Stampacchia is proved and we present some conse-
quences of Clarkson's inequality. In Section 3 we study the homogeneous eigenvalue
problem associated with (1.1) (i.e. we consider the problem (1.1) with a(z,u) = a(z)
and b(z,u) := b(z)). We prove the existence of the least positive eigenvalue and the
corresponding nonnegative eigenfunction of this problem. We show that the eigen-
function belongs to L>(§}). We also prove the simplicity of the least eigenvalue
and study some useful properties of the homogeneous operator associated with the
principal part. The main result we prove in Section 4. The tools are an a apriori
estimate in L*(£2),.the results for the homogeneous eigenvalue problem (namely
the continuous dependence of the least eigenvalue and the corresponding nonnega-
tive eigenfunction of the homogeneous problem with respect to a(z), b(z)) and the
Schauder fixed point theorem. Finally, Section 5 contains ezamples which illustrate
our general result.
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2. PRELIMINARIES

2.1. Weighted Sobolev space. Let us suppose that Q is an open bounded
subset of the n-dimensional Euclidean space R™, p > 1 is an arbitrary real number
and w is a weight function (i.e. positive and measurable) in Q. Assume that

1 1
(2.1) we L, (Q) and — € LI ().
w

Let us define the weigted Sobolev space W1P(w, Q) as the set of all real valued

functions u defined in Q for which

1
(2.2) el ,pw = (/ |u|”dw+/w[Vu|”dz)' < 0.
Q Q

It follows from (2.1) that WP (w, () is a reflezive Banach space and that Wy ?(w, )
is well defined as the closure of C§°(02) in W1 (w, Q) with respect to the norm ||{|1,p,»
(see e.g. Kufner, Sandig [11]).

Let s > ;1—1 be a real number. A simple application of the Holder inequality yields
that the continuous imbedding

(2.3) Whe(w,Q) = W™ (Q)

holds provided
ps
s+
2.2. Compact imbeddings. It follows from (2.3) and from the Sobolev imbed-
ding theorem (see e.g. Adams [1], Kufner, John, Fuik [10]) that for s + 1 < ps <
n(s + 1) we have

1 € L*(Q) and py =
w

(2.4) Wy (w, Q) — Wy (Q) < LI(Q),

where 1 < ¢ = f% = T:{)ﬁ—*p‘s’ and for ps > n{s + 1) the imbedding (2.4) holds

with arbitrary 1 < g < oo.
Moreover, the compact imbedding

WP (w, Q) > L(Q)

holds provided 1 < r < q.
An easy calculation yields that s > 2 implies ¢ > p. In particular, we have

(2.5) WP (w, ) <> LPT(Q)
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for 0 < < ¢ — p provided
1 n 1

(2.6) —eLl(Rands€ | —,+00|N|—=,F00].
w P p—1

2.3. Friedrichs inequality in weighted Sobolev spaces. In what follows we
will always assume that (2.6) is fulfilled. Let u € C§°(€?). Then due to ¢ > p and
the imbedding W&”"(SZ) — LI(Q) we have

27 </ﬂ Iul”dz)% <a (/Ql“’” dx)'l' < C2(/ﬂ[|u|"‘ X WWIN%) %'

The Friedrichs inequality in W **(Q) yields

28 (/n[\"l”‘ +|Vu|’”]dz>ﬁ < Cs(/ﬂ [V ulP d:c)ﬁ.

Using the Hoélder inequality we obtain

.

A
7 1 "
(/ | VulP dx)” = (/IVU\”‘W%—EdI) ‘
Q Q wr
1 r=r1 1
r 1 .
(29 < (/wlvul”dﬂf) (/ TIdT) nr
Q Qw? rorn
1 - i
([ (forwred)
Q w* Ja

(see Subsection 2.1 for the relation between s, p and p1). It follows from (2.7)—(2.9)

that
[ < [ wlvures
Q Q

with a constant ¢4 > 0 independent of u € C§°(€2). Hence the norm

el = (/ﬂwwuvdx)"'

on the space W, 7 (w, ) is equivalent to the norm |} - |11 5w defined by (2.2).

2.4. Equivalent norms. Let us assume that 10 is a weight function defined in
) and satisfying inequalities

(2.10) csw(e) < (z) < cowl®)
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for a.e. « € Q with some constants cg 2> ¢s > 0. Then obviously
Wo'P (i, Q) = Wy P (w, Q)

and the norms || - || and | - || are equivalent on W' (w, Q). It follows from Clark-
son’s inequality (see Kufner, John, Fuik [10]) that Wy ?(w, Q) is a uniformly convez
Banach space with respect to the norm || - || for any @ satisfying (2.10).

2.5. Lemma. (cf. Murthy, Stampacchia [13]). Let { = ((t) be a nonnegative,
nonincreasing function on a half line t > ko > 0 such that

(211) ¢(R) < er(h = k)7 (¢(k))?
for h > k > ko. Theno > 0,6 > 1 imply
C(ko +d) =0,
1 -1 3
where d = cf (((ko)) = - 27T
Proof. Let us define a sequence (k.) by

d
(2.12) kn=k,h1+§, n=12,....

Substituting (2.12) into (2.11) we get by induction
(ko)

on3eT

Ckn) < =0

for n = oco. Since lim k, = ko + d and ( is nonincreasing, we obtain ((ko + d) = 0.
n—oo
a
2.6. Lemma. Let p > 2. Then

_ ty —4|”
(2.13) ol ~ P > plt et 1) + 222

for all points t; and t2 in R™.
Let 1 < p<2. Then

3plp—1)  |ta -t

2.14 P — 1P = pltiP (e )+ L2
(2.14) [to|” — 1P > plts P t1(t2 — t1) 6 Ghl+TG)?

for all points ¢, and t; in R™.

Proof of this lemma is based on Clarkson’s inequality and can be found in Lindqvist
[12].
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2.7. Remark. It follows from (2.13) and (2.14) that the inequality
(2.15) [t2lP = |01 [P > plta | ?ta (82 — 1)
holds for any t;,t2 € R™, t; # t» and for any p > 1. Note that inequality (2.15) is

just a restating of the strict convexity of the mapping ¢t — |t|” and can be proved
independently of (2.13) and (2.14).

3. HOMOGENEOUS EIGENVALUE PROBLEM

3.1. Weak formulation. Let us suppose that w is the weight function satisfying
(2.1) and (2.6). Let a(z), b(z) be measurable functions satisfying

(3.1) < afz) < csw(z),

(3.2) 0 < b(x)

for a.e. x €  with some constant ¢g > 1, and b(z) € L'«':‘:T(Q) for p < ¢* < g,
b(x) € L*®(§) for ¢* = p (see Subsection 2.2 for q). Moreover, let

(3.3) meas{z € ; b(z) > 0} > 0.

Further we will assume that p < ¢* < q. The proofs in the forthcoming subsections
can be performed in the same way also in the case ¢* = p.
Let us consider homogeneous eigenvalue problem
—div(a(z)| VulP"? Vu) = Ab(z)|ul’ 2w in Q,

3.4
34 u=0on 9.

We will say that A € R is an eigenvalue and u € Wol"’(w. Q), u # 0, is the
corresponding eigenfunction of the eigenvalue problem (3.4) if

(3.5) / a(z)|Vu\P_2VuV<pdx:A/ b(z)ulP~?up da
Q Q
holds for any @ € Wy (w, Q).
3.2. Lemma. There exists the least (the first) eigenvalue A; > 0 and at least
one corresponding eigenfunction u; > 0 a.e. in Q(u1 # 0) of the eigenvalue problem
(3.4).
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Proof. Set

A =inf{/na(a:)\Vv|”dx; /ﬂb(z)|v|”dx:]}

Obviously A1 > 0. Let (v,) be the minimizing sequence for Ay, i.e.
(3.6) / b(z)|va|Pdz = 1 and / a(2)| Vup|P dz = Ay + 0n,
Q Q

with §, — 04 for n = oo. It follows from (3.6) that ||vn|le < co, with co > 0
independent of n. The reflexivity of W[} P(w, Q) (see Subsection 2.4) yields the weak
convergence v, ~ u; in Wy'*(w, ) for some u; (at least for some subsequence of
(vn)). The compact imbedding Wol”’(w,Q) ey L7 () implies the strong conver-
gence v, — uy in L9 (). It follows from (3.2),(3.6), from the Minkowski and the
Holder inequality that

1= lim (/ﬁb(z)lvn\”dx)%
< Jim (/ﬂb(z)!vn —umdx)'l' v (/Qb(z)luﬂ”dz)%
< Jim. (/Q(b(z))ﬁ% dm)l—? - </ﬂ|u,, TS d1)7 + (/ﬂb(w)\ullpdz)%

1

= (/ﬂb(r)\ull”dz)w,

and analogously

P 1

(f b(w)lmlpdm)% < Jin ([ @ans o) - ([ =i a)”
+ Tim (/ﬂb(m)\vn\”dz)% -1

/ b(@)wa P do = 1.
Q

In particular, u; # 0. The property of the weakly convergent sequence (v,) in
Wo'P(w, Q) yields

Hence

YRS / a(z)| Vui|P de = flw||? < lim inf [jun ||}
o nboo
= limi P = limi P
= hﬂnimf-/na(rHVz;"l do = hnnlmf()\l +6n) = A1,
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@7 M= / (@) V w [P de.
Q

It follows from (3.7) that A\; > 0 and it is easy to see that A, is the least eigenvalue
of (3.4) with the corresponding eigenfunction u;. Moreover, if  is an eigenfunction
corresponding to A; then |u| is also an eigenfunction corresponding to A,. Hence we
can suppose that u; > 0 a.e. in Q. a

3.3. Remark. It follows from the proof of Lemma 3.2 that v, — wu; in
Wo'P(w, ) and [[valle = [luille- The uniform convexity of WyP(w, Q) (see Subsec-
tion 2.4) then implies the strong convergence v, — uy in Wy'? (w, ).

3.4. Lemma. Let u € Wol"’(w, Q), v > 0 ae in Q, be the eigenfunction cor-
responding to the first eigenvalue A\; > 0 of the eigenvalue problem (3.4). Then
uwe L™(Q) forany 1 < r < oo.

Proof. The assertion of lemma is fulfilled automatically if ps > n(s + 1) (see
Subsection 2.2). Let us suppose that ps < n(s + 1). For M > 0 define

vm(z) = inf{u(z), M} € WyP(w, ) 0 L=().

Let us choose ¢ = v57* (k > 0) in

(3.8) /ﬂ a(@)| VulP 2 vuveds = A /m b(z)|ulPup da.
Ob‘;iously © € Wy (w, Q) N L=(R). It follows from (3.8) that

(3.9) (kp + 1)/Qa(x)u;;|vv,v,|rdx - /ﬂb(z)u”-‘u;;’“ da.
Due to (3.1) and the imbedding W, ”(w, ) = LI(f2) we have

(Np+1)/ a(z)vyy | Vom|P dz
Q

2&p+1

(3.10) -

/ w(z)vyr| Voum|P dz
Q

.
_ _kp+l K41 K41yg N
= m/ﬂw(INV(UM WPdz > co Q(UM yide) .
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Hence it follows from (3.2), (3.8), (3.9), (3.10) and the Holder inequality that

L
5
( /ﬂ U;T‘)"da:) <o /ﬂ b(z)ur ot dg

< Cw(/ b(z)?ﬂ:T dr) . (/ ulete’ dz) .
Q Q

Since u € L™(f2) for any 1 < r < ¢ (see Subsection 2.2), we can choose & in (3.11) in
the following way:

(3.11)

(3.12) (k+1)¢" =q.

Then substituting (3.12) into (3.11) we obtain

H =
(3.13) </ ot dx) gcu</ uqdz) < e,
Q Q

ie va € LY(Q),q = (k+1)q, for any M > 0. We have u(z) = A}im vm(z),z € N
oo
Then the Fatou lemma and (3.13) yield

z L
, a , a
(/ u? dz) < lim inf (/ vl dm) < ¢,
Q Moo Q

ie. ue LY(Q), where
r_ 9
¢ ==q
q
Repeating the same argument we can choose & in (3.11) as (k + 1)¢* = ¢’ and get
ue L9(Q),¢" = q(q—":)z, etc. Since ¢ > gx, the bootstrap argument implies the

assertion of lemma. a

3.5. Lemma. Let u € WQP(w,Q),u > 0 ae. in Q be the eigenfunction cor-
responding to the first eigenvalue Ay > 0 of the eigenvalue problem (3.4). Then
ue L=(Q).

Proof. Letk >0 be a real number. Set
o) = sup {u(a),k} ~ k
n (3.8). We obtain
/ a(z)| V olP dz = A\ / b(z)(p + k)P lpda,
Qu>k) Q(u>k)
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@) [ w@IVeldr<he [ b+ k) eds
Qu>k) Q(u>k)
Let us choose N
r> max{——(p_ Vag , }
plg—q)

Due to the homogeneity of (3.8) and Lemma 3.4 we can assume without loss of
generality that
[lullr@y = B > 0.

The imbedding Wy (w, ) < LI($2) implies
(315) [ w@ivepde> ol
Qu>k)

Since r > g, the Holder inequality yields

/ b(z)(p + k)P lpdz
Qusk)

e
q* Cal _q_
< bzv‘*l'dz> (/ N 7
(/Q(u>k) (=) n(.,>,c)((p+k) v prdx
(3.16) =
3.16 <c (/ +kq'dz) (/ .
" n(u>k)(w ) o ¢! dz

p=1

Scu(/qux) ' (measﬂ(u>k))'$(1,a;>
Q

°

(us k)

x </ 7 dz) ! (meas Qu > k))%(l_u"l)
Q .

It follows from (3.14)—(3.16) that

22l(1-

(3.17) llolifada) < ers(R)(measQu > k) ™1 Dt e,
On the other hand, for A > k we obtain
-
bty = ([ ki)
(3,18) Qu>k) .
=t

> (/ = kJ7 dz) "> (b ke -
Q(u>h) 1(measﬂ(u > h))r_"_
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Set ¢(t) = measQ(u > t). Then ((¢) is a nonnegative and nonincreasing function

and it follows from (3.17), (3.18) that

iy c15(R) oLy k(-1
¢y ™ < m((( )) s
ie. : s
(h) < as(B)(h = k)1 (¢(R))°,
where

- e qp-ln Oy, 1 O
7=% 6_p—-1|:q* (A T)+q*(1 q)]
Due to the choice of r we have § > 1. It follows from Lemma 2.5 that there exists
d = d(r,q, R, meas ) > 0 such that {(d) = 0. Hence u(z) < d for a.e. z € Q. [u]

3.6. Proposition. There exists precisely one nonnegative eigenfunction wui,
e = 1, corresponding to the first eigenvalue A\; > 0 of the eigenvalue
La* () g £ 14
problem (3.4).

Proof. Due to the variational characterization of A\; the function u €
WOI"’(w, Q) is an eigenfunction corresponding to A; if and only if

/ a(x)|Vul? dz — A / bz)ufdz =0
o Q

= inf {/a(z)Wu[”dz—A]/b(z)iv|”dx}.
veW (w2 L Jo Q

This imlies that if u;,us € Wol”’(w, Q) are two eigenfunctions corresponding to A
then also
vi(z) = max{ui(x), u2(z)}, w2(x) = min{ui(2), uz(2)}
z€Q z€ER

are eigenfunctions corresponding to A} provided that v, # 0. Indeed, we have vy,v2 €
WyP(w, ) and

/a(z)|Vvl\”d$—/\1 / b(x)[vd”d:c#—/ a(z)|Vue|P dz — ,\1/ b(z)|v2|? dz
Q Q Q Q

:/Qa(m)fVul["dx»/\1/Qb(x)|u1|”dz+/ﬂa(z)Wu2J”dz—AlLb(x)qudez.

Hence

/na(rr)]VUl Pdr — A /ﬂ b(z)ln|Pdz = /(;a(x)|Vuzlp dz — A\ /Qb(:r)lvﬂ” dz =0.
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Let u3 > 0 and ua > 0 be two eigenfunctions corresponding to A; such that
u # uz.glei!rzl{ul (z),uz(z)} # 0 and
luillpor () = llu2ll Lo () = 1-

Denote v3(z) = kiva(2) = k1 meig{ul(z),ug(z)}, where k; > 0 is chosen in such a
@
way that
Hvslim'(sz) =1

Then v3 € WO1 "P(w, Q) is again an eigenfunction corresponding to A; such that vz #
uy. Moreover,
{z € Q; ui(z) =0} C {z € Q; v3(z) = 0}.

Set vs () = kava(z) = ko mglt{ul(z),vg(z)}, where k; > 0 is chosen such that
llvsll Lo @) = 1.
Then vy € W(; "P(w, Q) is an eigenfunction corresponding to A; such that vs # uy and
{z € Q; v5(z) = 0} = {z € Q; us(z) = 0}.

Let, now, u1 > 0 and us > 0 be two eigenfunctions corresponding to A; such that
w1 2 uz, lurllgo () = lluzllper @) = 1 and

rrnei{rzl{ul(x),uQ(z)} =0.
Denote %; = ks max{ui(z),u2(z)}, where 0 < k3 < 1 is chosen such that
sl ) = 1,
and dg = ky max{u(z), 41 ()}, where 0 < ks < 1 is such that
flaalipo (@) = 1-
Then @ and iz are eigenfunctions corresponding to A; such that @, # @2 and
{z€Q; @ =0} ={z€Q; Gy =0}

We will prove the assertion of proposition via contradiction. Due to the argument
presented above we assume that « 2> 0 and v > 0 are eigenfunctions corresponding
to A1 such that

(3.19) lull o 0y = ol por (@ =1, uZw,
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and vanishing in € on the same set (almost everywhere in the sense of the Lebesgue
measure). Then

(3.20) / a(@)| VuP P vuveds =X\ /ﬂb(r)\u|"‘2u<pdx
%]

for any ¢ € Wy (w,Q), and

(3.21) /a(z)|Vu|”_2 Vuvedes =X\ /Qb(w)|u|"‘2v1bdz
Q

for any v € Wu"”(w,ﬂ)‘ For € > 0 set

ue =u+eand v =v+e.

Substitute
_up—vf
= ufix
into (3.20) and
_vi-ul
¥ o1

into (3.21). Since %=, % € L*() and

ve ! Ue

vo= o) oues() o
vo=lieo (%) ]res() o

we have p,9 € WP(w, Q). Adding (3.20) and (3.21) (with ¢ and ¢ chosen above)
we obtain

/ﬂa(z){[1+(p~1>(§—i)p]\vw+ [1+<p—1>(j—§)p]|vv1*’}dm

p-1 »-1 .
A/a[z){p(v—s) |V1L|”"2Vuvv+p(:—!> \VU!'“ZVUVU} dz
Q Ue 3
NTAD S A L PP
Y /n”(”[(uf) () Jaz -
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Since | VIogu,| = JZ—:L[, the last equality is equivalent to

[ a@)at -l Viogucl - v loguPla
Q
- / a(z)pv?| Vlogue|P2 v log u. (V log ve — V log u,) dz
Q

(3.22)
—/ a(z)puf| v 1og ve [P 72 V log ve (V log ue — V log ve) dz
Q

=\ /n b(gc)[(ul‘s—)’H - (;’—E)p’l}(ug — o) da.

Let p > 2. We use (2.13) in order to estimate the left hand side of (3.22) (we first
set t; = Vlogu., t; = Vlogv, and then t; = Vlogv,, t2 = Vlogu.). We obtain

a omKuﬂ) - (%)P_Il(uﬁ—vf) az

1
(3.23) > o A a(z)| ¥ logue — Vlogve [P (u +7) dz

1 1 1
= m‘/ﬂa‘(av)(g + u—€>\v5Vu—uEVv|”dz >0.

Let 1 < p < 2. We use (2.14) in order to estimate the left hand side of (3.22)
(similarly as above) obtaining

N o\ P!
el N P _ P
wfol ) - (5) Juemmen
3p(p—-1) 1 1 Jve Vu — ue Vo?
P ——— — oy vy el 4,
Z 18 ,/§7a<z)(11f +Uf)(uF]Vu\-#uAVvDZ*P de>0

We have u,v € L=(2) (see Lemma 3.5) and

(3.24)

u v
3.9 — =1, —=1 -0
(3.25) w - > (e +)

a.e. in @ where u > 0 and v > 0, respectively;

v
3.26 — = — =0 (f >0
(3.26) w 0, " (for any )

elsewhere (since u and v vanish on the same set in ). Hence it follows from (3.25),
(3.26) and the Lebesgue theorem that for any p, 1 < p < oo,

M /nb(a:)[(%)’)—l - (%)H] f =)z -0 (e 05).
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This together with (3.23), (3.24) and the Fatou lemma implies
[vVu-uvol=0ae inQ

for any 1 < p < co. Hence there exists a constant k > 0 such that v = kv a.e. in Q.

But (3.19) yields k = 1, i.e. u = v a.e. in §, which is a contradiction. m]

The proof of Proposition 3.6 follows the lines of the proof of Lemma 3.1 in Lindqvist
[12] for the nondegenerate case (a(z) =1 in Q).

3.7. Lemma. Let J: WP (w, Q) — [Wy P (w,Q)]* be an operator defined by
) = [ @IV vuvpds
Q

for any u,pp € WyP(w,Q) (here (,-) denotes the duality between [Wy P (w,Q)]*
and Wy P(w,Q)). Then J is surjective and J~!: [Wol"(w,ﬂ)]‘ — Wol’p(w, Q) is
bounded and continuous.

Proof. The operator J is bounded, strictly monotone, continuous and coercive.
Then it follows from the Browder theorem (see e.g. Fulik, Kufner [8]) that J is
surjective. It follows from the Holder inequality that

(3.27) (J() = J(u),v —u) = (IR~ = ulZ) vl - lulla)
for any u,v € Wo'f (w, ). The boundedness of J=! follows immediately from (3.27).
Let us suppose to the contrary that J~! is not continuous. Then there exists a

sequence (f,) such that f, — f in [Wo'P(w, )]* and |J"1(f,) = T2 (f)lla = 6 for
some 6§ > 0. Denote up, = J1(fa),u = J71(f). It follows from (3.27) that

Ilfulls - Nunlle 2 (frrun) = (J(un), un) 2 Jluallf,

l[unll2™ < [l Fnlls
(Il -}l denotes the norm in the dual space (W, " (w, 2)]*). Then (u) is bounded in
W (w, Q) and we can assume that there exists @ € Wy'?(w, ) such that u, — 4
in W3'? (w, ©2). Hence we have

(J(un) — J(@),un — @) =

(3.28) ) _ _
= (J(un) = J(w),un — @) + (J () = J(@), un — &) — 0

since J(un) — J(u) in [WyP(w,2)]*. It follows from (3.27) (where we set v =
Uy, u = @) and (3.28) that ||unlle = ||%[la- The uniform convexity of Wg”’(w,ﬂ)
equipped with the norm || - |jo (see Subsection 2.4) implies u, — @ in W7 (w, Q).
This convergence together with the convergence J(u,) — J(u) in [Wé"’(w,ﬂ)]‘
implies @ = u which is a contradiction. The continuity of J~! is proved. [m]
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4. NONHOMOGENEOUS EIGENVALUE PROBLEM
4.1. Weak formulation. In this section we will consider the nonhomogeneous
eigenvalue problem

—div(a(z,u)| Vu[f 2 Vu) = Ab(z,u)[ulP"u in Q,
(4.1)
u =10 on 0.

Let g: [0,00) — [1,00) be a nondecreasing function, a(z) € LT"L—:'(Q) for ¢ >
q¢* > p,a(z) € L®(R) for ¢* = p (for ¢,q" see Subsection 3.1), 3 > 0 a constant.
We assume that a(z,s),b(z,s) are Carathéodory functions (i.e. continuous in s for

a.e. z € © and measurable in z for all s € R) and

«2) U0 < aa,9) < exgllshuo)
8
«3) 0< b(a,9) < afa) + Hlsl7

hold for a.e. z €  and for all s € R.
Moreover, assume that

(4.4) meas {z € Q; b(z,v(z)) >0} >0

for any v € L9 (),v # 0. (Note that the condition (4.4) is fulfilled e.g. if b(z, s) > 0

for a.e. z €  and for all s #0.)
We will say that A € R is an eigenvalue and u € WyP(w,),u # 0, is the

corresponding eigenfunction of the eigenvalue problem (4.1) if
(4.5) / a(z,u(z)| Vulf?vuveds = /\/ b(z, u(z))|ufP2updz
Q Q

holds for any ¢ € Wy P(w, ).

4.2. Proposition (apriori estimate). Let u € L°°(Q),”u”“«m) =R>0,
u > 0 be any eigenfunction of (4.1) corresponding to the eigenvalue X. Then there
exists d(R) > 0 (independent of g) such that |[ul[ =)y < d(R).

Proof. Choose ¢ = u***! in (4.5) with x > 0. We obtain

(kp+1) /s; a(x, u(z))u"?| v u|P dz = /\./xlz b(z, u(z))ulTV? d, ie.
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kp+1
(k+1)?

(4.6) /ﬂa(z,u(z))\ V(P de = /\/Qb(z,u(z))u(“ﬂ)f' dz.

It follows from (4.2) and the imbedding W&’P(w‘ﬂ) < L7(Q) that
[ate @ v s> = [ w@iveerda
Q 8 Ja
4.7
> el / wlsa dg)§
2
with ¢i1¢ > 0 independent of &, R and g.

Applying the Holder inequality, (4.3) and the Minkowski inequality we obtain

/ bz, u(z))u VP dg
Q

%

(4.8) < (/Q (b(x,u(x))) o dz) w (/Qu(”“)“' dw) !
< [(/(la(l,)#:—r dz) - +ﬂ</ﬂu"' d.‘l_‘) J%L:I (/ﬂu(’”l)"' dz> {T

It follows from (4.6), (4.7) and (4.8) that

/ wlF e g
[

(k+1)¢ . (/ e *
Sar——x|llall » +BRTP|". st 4z )
s [hedl, e ()

(4.9)

with ¢17 > 0 independent of x, R and g. Let j be a nonnegative integer. Substitute

P (ay .
K= 5—(%%,—)— into (4.9):

P
™ T
w7 dz 017—[‘(”]—1
Q gi=(g")i z
(4.10) (G +1]
[l srr ([ wed o) ”
x o +pBRTP]Y = .
|cx I,T‘L—iA(xz) ~/ﬂu i
Since X
P+

lim — =
e (g =%

there exists the least jo such that
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1t follows from (4.9), (4.10) (setting j = jo,jo — 1,---,1) that

(/ﬂu’dz)% <R®),

where R > 0 is independent of g.
Now we set a(z) := a(z,u(z)) and b(z) := b(z,u(z)) in the proof of Lemma 3.5.
Following the lines of this proof we obtain

lull L=(a) < d(R),

where d = d(R) is independent of g. This completes the proof of Proposition 4.2.
' o

4.3. Truncation in the principal part. Let R > 0 and d = d(R) > 0 be as
above. We define
a(z, s) for z € Q, 15| < d(R),
(4.11) a(z,s) = ¢ a(z,d(R)) for z € Q,s5 > d(R),
a(z,—d(R)) forz€Q,s< —d(R).

Let us consider the nonhomogeneous eigenvalue problem

~div(a(z,w)| Vul’~? V u) = Mb(z,u)uP 2w in Q,

(4.12)
u =0 on 9.

Then it follows from Proposition 4.2 that u € Wy ? (w, ), [lell o) = R, u 2 01is
an eigenfunction of (4.12) if and only if it is an eigenfunction of (4.1).

4.4. Application of the fixed point theorem. For a given v € L9 () set
a,(z) = a(z,v(z)), by (z) = b(z,v(z)). It follows from (4.2), (4.3), (4.4) and (4.11)
that a,(z) and b,(z) fulfil (3.1), (3.2), (3.3) for any fixed v € L9 (). Let us consider
the homogeneous eigen.value problem

— div(a,(2)| VulP"? Vu) = Aby(x)|u[P"?u in Q,

4.13
(4.13) u=0o0n o0

for any fixed v € L9 (). Due to the results of Section 3 there exists the least
eigenvalue A, > 0 of (4.13) and precisely one corresponding eigenfunction u, such

186



that u, > 0 ae. in Q,u, € L®(N) and [[usflze* (@) = R. Hence we can define the
operator
S: LI (Q) = LT ()

which associates with v € L9"(Q) the first nonnegative eigenfunction wu, of (4.13)
such that |[uul| g @) = R.

Let us assume for a moment that S is a compact operator. Since it maps the ball
Bgr = {u € LT (), llull or (@) < R} into itself it follows from the Schauder fixed
point theorem (see e.g. Fudik, Kufner [8]) that S has a fized point u € Bgr. Hence
there exists A, > 0 such that

—div(au(®)| VulP"? Y1) = Auby(z)|ulP~2u in Q,
u= 0 on 99,

and it follows from the considerations in Subsection 4.3 that A, > O is the least
eigenvalue of (4.1) and u € L°(Q),u > 0 a.e. in £, is the corresponding eigenfunction
satisfying [[ullpq* (@) = R-

The main result of this paper follows from the considerations presented above.

4.5. Theorem. Let the assumptions from Subsection 4.1 be fulfilled. Then for a
given real number R > 0 there exists the least eigenvalue A > 0 and the corresponding
eigenfunction u € Wol *P(w, ) N L®(Q) of the nonhomogeneous eigenvalue problem
(4.1) such that u > 0 a.e. in Q and ||uf| Lo+ () = R.

In the forthcoming subsections it remains to prove the compactness of the operator
S in order to justify our assumption in Subsection 4.4.

4.6. The Nemytskii operators. Let us define the Nemytskii operators
Gr:iuv [ulf2u, Gaiuw [uff, Gs:ue b(z,u(z)).

Then G; is a bounded and continuous operator from L4 () into LT'I:—‘(Q) fori=1,
from L9 () into L:L'(ﬂ) for i = 2, and from L9 () into L?g—T(ﬂ) for i = 3 (see
e.g. Vajnberg [15], Fu¢ik, Kufner [8]). The Nemytskii operator

=1

Ga: (U, 21, - 20) = a(z, u(@) (2 (@) + ... + 22(2)" T

is bounded and continuous from L4 () x LP(w,Q) x ... x LP(w,Q) into
LT (™57 ,9) (see e.g. Drabek, Kufner, Nicolosi {7], Kufner, Sandig [11]).
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4.7. Lemma. Let z,2, € Wy P (w, Q) and

/au(z)]Vzl”’zszApdm:/f(m)go(x)dx,
Q o

/ Gy, (T)| V2P 2V 2, Vpdz = / Fa(@)(z) dz

13 Q

for any ¢, % € Wy'P(w, Q) and let v, — v in LI (Q), fr = f in [W2P(w,Q)]*. Then
Zn = 2 in WEP(w, Q).

Proof. Define operators J, Jn: Wy'P(w, Q) — [Wy P (w, Q)] by

(J(w), ) = /n 0@ VP VU v pds,

(n(w), 9} = /Q 0, (@) VUlP 2 Vu v da

for any ©,%,u € Wo'P(w, ). Hence J(z) = f and J,(2n) = fo.
Let n € N be fixed. Consider the equation

Jou(u) = h.

It follows that

[an@vuras= [ b s,
Q Q

ullf, < cisllhlfflulluw,
o
(414 172 (W)l < easllR]|ET
for any h € [Wé”’(w, 2)]*, where ci1g > 0 is independent of n and h. Analogously
A
(415) 177 ()l < erslRIEFT
(cf. Lemma 3.7). Applying Lemma 3.7 for a(z) := a,(z) we obtain continuity of J=1
(with J defined in this subsection).
Assume that (uy) is a sequence satisfying u,, — z in Wol"’(w,ﬂ). It follows from
the continuity of the Nemytskii operator G4 that
1 (un) = J(un)llx = | Slup [(Jnlun) = J(un), )|

llellw <1

[ @0() = @)V 0P T Ve
Q

= sup
llefhw <1
(4.16)
< sup / [@v, @V un|P™? Vun — ay(2)| V2P 2V 2] Vo da
Jlellw<1 1/
+ sup / [au(@)| V2P 2V 2 — ay(z)| Vun |2 ¥ u,) Vpdr
lleflmst 1 /02
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=1

< sup (/ w(z)’fllﬁ‘ |0, (%) V[P 72 V tn — a,(z)] ¥ 2[P~2 Vz|”;‘ dz') Y
llelle<t \JQ
1

«([w@ivare)

+ sup (/ w(z)™F |aw(@)| V 2P72 ¥ 2 — ay(2)] V ua| 72 Vun|'7‘;_‘ dz)
Q

llellw<1
1
»
X (/ w(z)|V<p|sz) =0
Q
for n = oo.

Set u, = J~1(fn). Then the assumptions of lemma and the continuity of J-t
imply

p=1
3

(4.17) Un — 2 in WP (w, Q).
The relations (4.14)-(4.17) and the continuity of J~! now yield

S = T E + 17 () = T H
I n = DI Elhw + 17 (Fn) = TH
< easlln(un) = J@a)lFT + 1774 (fa) = T o — 0

flzn — 2llw

for n — oo, which completes the proof. a

4.8. Proposition. The operator S: LT () — L9 () defined in Subsection 4.4
is compact.

Proof. We prove that S is a continuous operator from L?" () into Wy ™ (w, 2).
The assertion then follows from the compact imbedding Wy ? (w, Q) <> L9" (£2) (see
Subsection 2.2). Let u,, = S(va), %y, = S(v). Suppose to the contrary that v, = v
in L7 (Q) and
(4.18) o, = vollw > &

for some § > 0. We have

@9 [ a@I Vel v eds=), / bu(@) P 2o d,
Q Q

420 [0 @IV 0P Vi, Tdr = [ b @l P, e
Q Q

189



for any ¢, € WhP(w,Q). It follows from Lemma 3.7 that for any vn, € L (1)
there exists z, € W P (w, ) such that

@2) [ an@Ivaltvaveds = [ W@l tued

[ Q
for any @ € WOI“’(w, ). Lemma 4.7 yields z, — u, in Wy ""(w, ) (and hence also
in L9°(?)). Applying the Holder inequality, (4.3) and the Minkowski inequality, we

obtain

’/ b(z, v())|uo [P 2uu(2n — uy) dz
Q

< ( [ 0ot T dz) L( e dx)‘%

< </§z(b<$’v(r)))ﬁ:_”dx>l% | |
x (/Q uo|? dz) ks (/ﬂ o — w7 dz) =N
) K/“a(r)ﬂl_d“)# #6( [ 1wt as) u]

x (/ e |4 dz> ! (/ |2 — uy|? dr)q -0
fo fo

for n = co. Applying the Holder inequality, (4.3), the Minkowski inequality and the
continuity of the Nemytskii operators G2, G3 we obtain

| [ [ vntaiet = aata ] az

< ' [ e vn@ el - ) de

+| [ 1tasonto) — oG]
) [( /n o) # dx) - + ﬂ( /Q fon (2)[¢" dx) u}
x (/n [lznl? = lu,,[”{ﬂ":dx>£-

+ (/n [b(z, vn()) ~ bz, v(z))|FF dz) w (/Q | dz) ¥,

N
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for n — oo. It follows from the variational characterization of Av,, (4.19)-(4.23) that
< Jo @ @IV o
Vn X T 1 TN oA
fn by, (2)]2,)P dx
A Jg b (@) |ue PP uy e d . Jabo(@u,lPdz
Jo bon (@)]2nlP dz b @ dr Y

Hence
(4.24) limsup Ay, < Ao.

Applying the Holder inequality, the Minkowski inequality and the assumptions (4.2),
(4.3) we obtain from (4.20) (with ¢ = u,,):

1
Dl < [ @ e =, [ @l e
Cg Q Q

(4.25) < o [( /n la(a)| 7 dz) - +8 ( /Q foa@)| dz) LYL]
x (/{l2 |Uv,,1". dz) #.

1t follows from the assumption ||, [lpe @) = R, from v, = v in L9 (Q) and
from(4.25) that

(4.26) ||to, llw < const

for any n € N. Due to (4.26) we have

(4.27) Uy, = u in WyP(w, Q)

(at least for some subsequence) for some u € Wo'P(w,Q) and hence u, — u in
L7 ().

The Holder inequality, the Minkowski inequality, (4.3) and the continuity of the
Nemytskii operators Gy and G imply

@29 } [ bl vaal P, = b o)z

< ‘ [ b onto) = oot P 00

+ \/ b(z, v(z)) [|uu,_ [P=2y,, ~ |u\“‘2u}<pdz <
Q
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p=t
i

< </Q [b(z, vn(z)) — b(z,v(m))]a‘i‘:‘u dz) - (/Q o |7 dz)

1

x (/Qlwl"' dz)"
* {([z ate) 5 ax) - +0( [ 1ol az) LLJ
o (] I 72, = 2 ) B ([ 1ot ax) ? Lo

for any ¢ € WOl P (w, ). Passing to suitable subsequences we can assume that
(4.29) Av, 2 AE[0,A]

(see (4.24)).
Letuwe WDI"’(w, (1) be the unique solution of

(4.30) /ﬂav (@) Va2 vavpds = ,\f bo (@) ulP~2ugp da
Q

for any ¢ € WO1 "P(w, ) (Lemma 3.7 guarantees the existence of @). It follows from
(4.28)—(4.30) and from Lemma 4.7 that

(4.31) Uy, = T in WEP(w, Q).

Now, (4.27), (4.31) imply u = @ and u,, — u in W;"?(w,2). Hence we have

fg a,(2)| V ul’ dz . fn ay(z)| v aff dz

Ay A= — > f e

v Z b @luPds © o [oby(z)aFdz
GEWS T (w,Q)

_ Joa(@) | VuPde
T b@hfrds T

This implies that A = A, and u = u, (see the uniqueness of u, > 0, [|uy|[Le= () = R

in Section 3).
In particular, this means that

Uy, = uy in Wo'P(w, ),
which contradicts (4.18). This completes the proof of Proposition 4.8. m]
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49. Remark. The proofs in Section 4 can be performed in the same way
working with L>(f) instead of L77 () in the case ¢* = p. Hence we obtain the
following special version of Theorem 4.5.

4.10. Theorem. Let (4.2)—(4.4) be fulfilled with o(z) € L*(Q) and ¢* = p.
Then for a given real number R > 0 there exists the least eigenvalue A > 0 and the
corresponding eigenfunction u € Wo'? (w, ) U L () of (4.1) such that u > 0 a.e. in
2 and |Jul|Lr@) = R.

4.11. Remark. Since the eigenvalue problem (4.13) is homogeneous, we can
define the operator §: L7"(Q) — L () which associates with v € L () the first
nonpositive eigenfunction ~u, of (4.13) such that || — .||z () = R. It is clear from
the above considerations that S has the same properties as S defined in Subsection
4.4. Hence repeating the same arguments as in Subsections 4.2-4.4, 4.6-4.8 we prove
the following dual version of Theorem 4.5.

4.12. Theorem. Let the assumptions of Theorem 4.5 be fulfilled. Then for a
given real number R > 0 there exists the least eigenvalue X > 0 and the corresponding
eigenfunction i € WO1 P(w, Q) N L*() of the nonhomogeneous eigenvalue problem
(4.1) such that 4 < 0 a.e. in Q and ||l Lo+ () = R

4.13. Remark. Let A and X be the least eigenvalues guaranteed by Theorem
4.5 and 4.12, respectively, for a given fixed R > 0. Then A # X may hold due to the
fact that the eigenvalue problem (4.1) is not homogeneous in general.

5. EXAMPLES

51. Example. Let Q2 be a bounded domain in R™, p > 1, w(z) be positive
and measurable in Q satisfying w(z) € L}, (), 555 € L°(Q) for s > max{Z, 13}
Consider the eigenvalue problem
—div(w(w)e“zl VulP 2V u) = AulP~%u in Q,

5.1
61 % =0 on 9.

In this case we have
a(z,s) = m(z)e52 ,b(z,8) =1

for a.e. z € Q and for all s € R.

It follows from Theorem 4.10 that for any given real number R > 0 there ezists the
least eigenvalue A > 0 and the corresponding eigenfunction u € W,Jl“’(w,ﬂ) NL>(Q)
of (5.1) such that u > 0 a.e. in Q and ||ullz»(0) = R.
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52. Example. Let us consider for Q2 the plane domain Q = (~1,1) x (~1,1)
(ie. @ C R?). For z = (z1,72) € Q set

1, 71 <0,
w(z) = a1 —21)7, x>0, 23 >0,

[z2|#(1 = 21)7, 21 >0, 22 <0
with v, g, -y real numbers. Consider the eigenvalue problem

—div(w(z)(1 + u')| V)2 Vu) = A’ in O,

5.2
62 u =0 on IN.

In this case we have p = 4,
a(z, s) = w(z)(1 +s*),b(z,s) = s°

for a.e. z € Q and for all s € R. Thus the principal part of the differential operator
has a degeneration (or singularity) which is concentrated on a part Ty of the boundary
a9,

Ty ={z=(21,22); 1 = 1,23 € (-1,1)},

as well as on a segment 2 in the interior of Q,
Ty = {z = (21,22); 21 € (0,1),22 = 0}.

Condition (2.1) indicates that we have to choose v and p from the interval (—1,3)
with no condition on . Let us assume that

4 4
(5.3) l/,ue(—l,a), 'yE(—-oo,g)
1t follows from (5.3) that ;i € L%(9) and g = 12 (see Subsection 2.2). Hence the
growth condition (4.3) is fulfilled e.g. with ¢* = 10. Applying Theorem 4.5 we have
the following assertion.

Let us assume (5.3). Then for a given real number R > 0 there exists the least
eigenvalue A > 0 and the corresponding eigenfunction u € Wol"‘(w,ﬂ) N L*®(Q) of
(5.2) such that u > 0 a.e. in  and |fuljpw0@) = R.

Note that for v, u and 7 positive we have a degeneration of the same extent at I'y
and T'y. On the other hand, the singularity can occur in a limited extent at I'; (for
v or ju negative, but bigger than —1), but big enough at I'y (for any v < 0).
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