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Summary. We prove the existence of the least positive eigenvalue with a corresponding 
nonnegative eigenfunction of the quasilinear eigenvalue problem 

-d\V(a(x,u)\Vu\p-2Vu) = Xb(x,u)\u\p-2u in fj, 
u = 0 on dQ, 

where H is a bounded domain, p > 1 is a real number and a(x, u), b(x, u) satisfy appropriate 
growth conditions. Moreover, the coefficient a(x, u) contains a degeneration or a singularity. 
We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunc­
tion in L°°(f2). The main tool is the investigation of the associated homogeneous eigenvalue 
problem and an application of the Schauder fixed point the 

Keywords: weighted Sobolev space, degenerated quasilinear partial differential equations, 
weak solutions, eigenvalue problems, Schauder fixed point theorem, boundedness of the 
solution 

AMS classification: 35J20, 35J70, 35B35, 35B45 

1. I N T R O D U C T I O N 

The aim of this paper is to prove the existence of the least positive eigenvalue A and 
the corresponding nonnegative eigenfunction u of the nonhomogeneous degenerated 

quasilinear eigenvalue problem 

- d i v ( a ( x , « ) | V u | p _ 2 V u ) = Xb(x,u)\u\p~2u in 0 , 

u = 0 on dQ, 

* The autor has been supported by the Grant Agency of the Czech Republic under Grant 
No. 201/94/0008 
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where fi is a bounded domain, p > 1 is a real number and a(x, s), b(x, s): ft x R -> R 

are real functions satisfying appropriate growth conditions (see Section 4). Moreover, 

the function a(x, s) may contain a degeneration or a singularity. We work in a 

suitable weighted Sobolev space WQ'P(W, fl) with the weight function w > 0 a.e. in ft 

(see Section 2) and prove that for a given R > 0 there exists the least A > 0 and a 

corresponding u e W 0
1 ' p (u) ,n)nL° c (n) such that u^ 0 a.e. in fi, ||u||j>(f.) = R and 

the equation in (1.1) is fulfilled in the weak sense (see Theorem 4.10). In fact, a more 

general result (dealing with more general growth conditions imposed on b(x,s)) is 

proved in Theorem 4.5. 

This paper generalizes the result of Boccardo [5] and Drabek, Kucera [6] (where 

nondegenerated uniformly elliptic quasilinear operators were considered) and com­

pletes the papers on eigenvalues of p-Laplacian published by Anane [2], Barles [3], 

Bhattacharya [4], Garcia Azorero, Peral Alonso [9], Otani, Teshima [14] and oth­

ers (where nondegenerated and homogeneous operators were considered). Let us 

note that neither global results for nonlinear eigenvalue problems, nor Ljusternik-

Schnirelmann theory can be used, since the operator in (1.1) is not (in general) a 

potential operator. 

The paper is organized as follows. In Section 2, which has a preliminary character, 

we define appropriate weighted Sobolev spaces and prove some useful imbeddings. 

We prove also a version of Friedrichs inequality in the weighted Sobolev space. More­

over, an auxiliary assertion due to Stampacchia is proved and we present some conse­

quences of Clarkson's inequality. In Section 3 we study the homogeneous eigenvalue 

problem associated with (1.1) (i.e. we consider the problem (1.1) with a(x,u) := a(x) 

and b(x,u) := b(x)). We prove the existence of the least positive eigenvalue and the 

corresponding nonnegative eigenfunction of this problem. We show that the eigen-

function belongs to L°°(fi). We also prove the simplicity of the least eigenvalue 

and study some useful properties of the homogeneous operator associated with the 

principal part. The main result we prove in Section 4. The tools are an a apriori 

estimate in L°°(fi), .the results for the homogeneous eigenvalue problem (namely 

the continuous dependence of the least eigenvalue and the corresponding nonnega­

tive eigenfunction of the homogeneous problem with respect to a(x), b(x)) and the 

Schauder fixed point theorem. Finally, Section 5 contains examples which illustrate 

our general result. 
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2. PRELIMINARIES 

2.1 . Weighted Sobolev space. Let us suppose that Cl is an open bounded 

subset of the n-dimensional Euclidean space Rn, p > 1 is an arbitrary real number 

and w is a weight function (i.e. positive and measurable) in Cl. Assume that 

(2.1) weLlc(U) and I € L ^ ( n ) . 

Let us define the weigted Sobolev space W1'p(w, Cl) as the set of all real valued 

functions u defined in Cl for which 

(2.2) И\i,P,w= M\u\pás + J^w\Vuf d.r 

It follows from (2.1) that W1'p(w, Cl) is a reflexive Banach space and that WQ'P(W,CI) 

is well defined as the closure of C^(Cl) in W1'p(w,Ct) with respect to the norm |H|i,j>,t» 

(see e.g. Kufner, Sandig [11]). 

Let s >. —j be a real number. A simple application of the Holder inequality yields 

that the continuous imbedding 

(2.3) Wl'p(w,Cl)^Wl'Pi(Cl) 

holds provided 

- G Ls(fi) and pi = - ^ - . 
to s + 1 

2.2. Compact imbeddings . It follows from (2.3) and from the Sobolev imbed­

ding theorem (see e.g. Adams [1], Kufner, John, Fucik [10]) that for s + 1 ^ ps < 

n(s + 1) we have 

(2.4) W^'p(w, CI) <-> W1'"' (CI) <-> L"(fl), 

where 1 ^ q = ^ ^ - = , "pf_—, and for ps >- n(s + 1) the imbedding (2.4) holds 

with arbitrary 1 ^ q < oo. 

Moreover, the compact imbedding 

Wo'p(w,Cl) ^« - f LT(Cl) 

holds provided 1 ^ r < q. 

An easy calculation yields that s > ~ implies q > p. In particular, we have 

(2.5) W^p(w,Cl)^^Lp+"(Cl) 
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for 0 <_ r] < q — p provided 

(2.6) — € LS(Q) and s € ( - , + c o ) n ,+oo 
w \P ) IP-1 

2.3. Priedrichs inequality in weighted Sobolev spaces . In what follows we 

will always assume that (2.6) is fulfilled. Let u € Cg°(Ct). Then due to q > p and 

the imbedding W0
1 ,P l(n) <-> Li (to) we have 

(2.7) ( f \u\Pdxj" < d ( / |w|* d a ) * < c J i [ | « | p ' + | V « | M ] d a : 

The Friedrichs inequality in WQ'P1 (Q) yields 

(2.8) f" / [ | « | P I + | V u | p , ] d x V ' 1 ^c3(f\Vu 

Using the Holder inequality we obtain 

(J IVurdsV' = f/|V«r«;^--E-da; 

(2-9) < ( [w\Vu\pdx)"( J - j - T - d s 

< ( / - j d a r ) ( / H V i t | p d a : 

(see Subsection 2.1 for the relation between s, p and pi ) . It follows from (2.7)-(2.9) 

that 

/ | u | p d x < c 4 I w\Vu\pdx 
Jn Jn 

with a constant c4 > 0 independent of u 6 Co°(fi). Hence the norm 

\H\W = ( / w\Vu\pdx) 

on the space WQ'P(W,Q) is equivalent to the norm || • ||i,P,u> defined by (2.2). 

2.4. Equivalent n o r m s . Let us assume that w is a weight function defined in 

fi and satisfying inequalities 

(2.10) c5w(x) ^ w(x) ^ c6w(x) 
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for a.e. x e ft with some constants ce ^ c5 > 0. Then obviously 

W0
1'p(w,n) = W0

1'p(w,n) 

and the norms || • \\& and || • \\w are equivalent on W0'
p(w,Q). It follows from Clark-

son's inequality (see Kufner, John, Pucik [10]) that W0
l'p(w, ft) is a uniformly convex 

Banach space with respect to the norm || • ||a for any w satisfying (2.10). 

2 .5 . L e m m a , (cf. Murthy, Stampacchia [13]). Let C = C(t) be a nonnegative, 

nonincreasing function on a half line t >- k0 ^ 0 such that 

(2.11) ((h)^c7(h-k)-(((k))6 

forh>k^ k0. Then o > 0, 6 > 1 imply 

C(ko+d)=0, 

where d = cf (C(k0))~^~ • 2 J 3 T . 

P r o o f . Let us define a sequence (kn) by 

(2.12) kn = kn_! + ^ , n = l , 2 , . . . . 

Substituting (2.12) into (2.11) we get by induction 

for n —> oo. Since lim kn = k0 + d and £ is nonincreasing, we obtain £(k0 + d) = 0. 

• 
2.6. Lemma. Let p >• 2. Then 

(2-i3) | t2p - i*xp > P\ur%(t2 - h) + ' ^ " ^ 

for all points ti and t2 in R". 

Let 1 < p < 2. Then 

(2.14) ,t2r - i*r ^ p | t i r - t l ( t 2 - to + ^-1) ( |^ia-

for aii points ti and t2 in R". 

Proof of this lemma is based on Clarkson's inequality and can be found in Lindqvist 

[12]-
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2.7. R e m a r k . It follows from (2.13) and (2.14) that the inequality 

(2.15) M p - i * i i , , > p i * i r ' 2 * i ( * 3 - < i ) 

holds for any ti ,*a £ Rn , t\ ^ t2 and for any p > 1. Note that inequality (2.15) is 

just a restating of the strict convexity of the mapping t M- \t\p and can be proved 

independently of (2.13) and (2.14). 

3. HOMOGENEOUS EIGENVALUE PROBLEM 

3 .1 . Weak formulation. Let us suppose that w is the weight function satisfying 

(2.1) and (2.6). Let a(x), b(x) be measurable functions satisfying 

(3.1) ^ l - sC a(x) < c8w(x), 
C8 

(3.2) 0 ^ b(x) 

for a.e. x £ U with some constant c8 > 1, and b(x) £ L«*-i'(fi) for p < q* < q, 

b(x) £ L°°(fi) for q* = p (see Subsection 2.2 for q). Moreover, let 

(3.3) meas{x £ fi; b(x) > 0} > 0. 

Further we will assume that p < q* < q. The proofs in the forthcoming subsections 

can be performed in the same way also in the case q* = p. 

Let us consider homogeneous eigenvalue 

- div(o(a;)| V u | p - 2 V u) = A6(a;)|u|p-2u in fi, 
(3.4) 

u = 0 on 9fi. 

We will say that A e R is an eigenvalue and u e Wg'p(w,Q), u ^ 0, is the 

corresponding eigenfunction of the eigenvalue problem (3.4) if 

(3.5) / a(x)\ V u | p _ 2 V u V v d a : = A / b(x)\u\p-2u<fidx 
JQ Jn 

holds for any f 6 W0
1,p(u>, fi). 

3 .2. Lemma. There exists the least (the first) eigenvalue Ai > 0 and at Jeast 

one corresponding eigenfunction ui ^ 0 a.e. in fi(ui ^ 0) of the eigenvalue problem 

(3.4). 
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P r o o f . Set 

Aj = inf | f a(x)\Vv\pdx; f b{x)\v\pdx = l | . 

Obviously Ai >- 0. Let (vn) be the minimizing sequence for Ai, i.e. 

(3.6) / b(x)\vn\
pdx = 1 and a(x)\Vvn\

pdx = \i + 5n, 

Jn Jn 

with 5n -» 0 + for n -» oo. It follows from (3.6) that \\vn\\a ^ c9, with c9 > 0 

independent of n. The reflexivity of W0
1,p(w, U) (see Subsection 2.4) yields the weak 

convergence vn —» ui in W0'
p(w,Q) for some ui (at least for some subsequence of 

(«„)). The compact imbedding WQ,P(W,Q) ^+^+ Lq'(fl) implies the strong conver­

gence vn -> ux in L , *(n ) . It follows from (3.2),(3.6), from the Minkowski and the 

Holder inequality that 

1 = lim f / b(x)\vn\
pdx 

Jn 

^ lim ( / b(x)\vn - Ul\
p dxY H / b{x)\Ul\

pdx 

^Im^fJWx^^dx) "" • ( Í \Vn~utf' dxY + (f b(x)\U!\pdxy 

= (Jj{x)\u1\
pdXy, 

and analogously 

f f b(x)\Ul\
pdx\ " =£ Um ( / (b{x))^dx) "" • ( f \Ul - vnf dx) " 

+ lim f / b{x)\vn\
pdx)" = 1 . 

Hence 

f b(x)\Ul\ 
Jn 

*dж = l . 

In particular, ui ^ 0. The property of the weakly convergent sequence (vn) in 

Wo,P(w,il) yields 

A i ^ / a{x)\\7ui\pdx = \\u1\\p

a ^ liminf \\vn\\p

a 

Jn n-»°° 

= liminf / a ( i ) | V t ) n r d a ; = l iminf(A1+ó„) = Ai, 
n-too Jn n-»oo 
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(3.7) A j = / a(x)\Vu1 

Jíl 
í"dx. 

It follows from (3.7) that Ai > 0 and it is easy to see that Ai is the least eigenvalue 

of (3.4) with the corresponding eigenfunction m . Moreover, if u is an eigenfunction 

corresponding to Ai then |u| is also an eigenfunction corresponding to Ai- Hence we 

can suppose that ui > 0 a.e. in fi. D 

3.3. R e m a r k . It follows from the proof of Lemma 3.2 that vn - - ui in 

W0'
p(w,U) and \\vn\\a -+ ||wi||B. The uniform convexity of W0'

p(w,il) (see Subsec­

tion 2.4) then implies the strong convergence vn -+ u\ in W0'
p(w,U). 

3 .4 . Lemma. Let u e W0'
p(w,U), u > 0 a.e. in n , be the eigenfunction cor­

responding to the first eigenvalue Ai > 0 oi the eigenvalue problem (3.4). Then 

u £ Lr(Q.) ior any 1 ^ r < oo. 

P r o o f . The assertion of lemma is fulfilled automatically if ps > n(s + 1) (see 

Subsection 2.2). Let us suppose that ps < n(s + 1). For M > 0 define 

vM(x) = inf{«(x) ,M} e W0
1'p(w,Q) nL°°(Q) . 

Let us choose f = V^+1(K > 0) in 

(3.8) [ a(x)\Vu\p-2VuV<fdx = \ 1 [ b(x)\u\p-2u<pdx. 
Jn Jn 

Obviously <? e W0'
p(w, U) n L°°(f2). It follows from (3.8) that 

(3.9) ( « p + 1) f a(x)vKp\VvM\pdx = Aj f b(x)up~lvKp+l dx. 
Jn Jn 

Due to (3.1) and the imbedding W0
1,p(tt>,n) <-> L"(il) we have 

( « p + l ) J a(x)vKp\VvM\pdx 
Ja 

(3.10) >-^±± I w(x)vKp\VvM\pdx 
cs JQ 
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Hence it follows from (3.2), (3.8), (3.9), (3.10) and the Holder inequality that 

( f vM
+lh dx) ' * £ d o / b(x)u^v^ dx 

(3.H) W n . ^ 

^c10( f b(x)^dx) " -(fu^+^i'dx 

Since u 6 Lr(ft) for any 1 < r ^ q (see Subsection 2.2), we can choose K in (3.11) in 

the following way: 

(3.12) (K + l)q" = q. 

Then substituting (3.12) into (3.11) we obtain 

(3-13) ( f vM
+1* dx) q ^ c j f u" dx\ ' ^ c12, 

i.e. vu € Lq (ft),<?' = (K+ l)q, for any M > 0. We have u(x) = lim VM(X),X e ft. 
M->00 

Then the Fatou lemma and (3.13) yield 

uq dx ) ^ liminf ( / vM dx ) ^ c12, 

i.e. u 6 L? ' (ft), where 

< - > 
Repeating the same argument we can choose K in (3.11) as (K + 1)?* = q' and get 

« G Lq" (U),q" = q(fi)2, etc. Since g > g*, the bootstrap argument implies the 

assertion of lemma. • 

3.5. Lemma. Let u e W0
p(w, ft), it > 0 a.e. in ft be the eigenfunction cor­

responding to the first eigenvalue Ai > 0 of the eigenvalue problem (3.4). Then 

« e L ° ° ( f t ) . 

P r o o f . Let k ^ 0 be a real number. Set 

f(x) = sup {u(x),k} - k 

in (3.8). We obtain 

/ a(x)\Vv\vdx = At / b(x)(<p + k)v~1>fdx, 
Jn(u>k) Jn(u>k) 
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(3.14) i w(x)\\7íp\pdx ^ Aic8 / b(x)(<p + k)p 1<pdx. 
Jn(u>k) Jn(u>k) 

Let us choose 
' (p-l)qq* r > max 

)qq* 1 

?Г4 p(q-' 

Due to the homogeneity of (3.8) and Lemma 3.4 we can assume without loss of 
generality that 

NU-(o) =R>o. 

The imbedding W0

1,p(uj,n) <-» L9(n) implies 

!£«((.)• (3.15) / io(a:)| V<^|pdx ^ ci3[| 
./n(«>*) 

Since r > q, the Holder inequality yields 

f b(x)(ip + k)p-1<fidx 

Jn(u>k) 

niu>k) b(X)^dX) ' ( i . ( ^ + *)**>* ^ * 
(3-i6) ^(O^^^U^^-i -

< C14 I / uTdx) (measn(u > fc)) ^ d - i l ) 

/ <pqdx) (measn(u > jj,))$r(i-£] 

It follows from (3.14)-(3.16) that 

(3'17) IMI£(0) ^ci5(f i)(measn(u>fc)) I?1 ( 1-^H_V ( i_^ ) 

On the other hand, for ft > fc we obtain 

IMI£(n) = ( / \u-k\<dx) * 
(3.18) W°<»>*> ' _ , 

> / |u-fc| 'dx > (f t - few, ___ 
yn(">h) ' (measn(u>/1)) " . 



Set C(t) = measft(« > t). Then C(') is a nonnegative and nonincreasing function 

and it follows from (3.17), (3.18) that 

««*<яfflŞЫ«») ^ - ( C í * ) ) ^ - * ^ - ^ , 

C ( * ) ^ г i б ( Л ) ( л - * ) - , ( C ( * ) ) í , 

where 

- «--Ыtr(-f)+-.-(-í)]-
Due to the choice of r we have S > 1. It follows from Lemma 2.5 that there exists 

d = d(r, q, R, meas ft) > 0 such that C(d) = 0. Hence u(x) sC d for a.e. i 6 ft. D 

3 .6 . Proposi t ion. There exists precisely one nonnegative eigenfunction u\_, 

Ilu'llz,'*(f2) = -J corresponding to the Grst eigenvalue Ai > 0 of the eigenvalue 

problem (3.4). 

P r o o f . Due to the variational characterization of Ai the function u £ 

wo'^uj, ft) is an eigenfunction corresponding to Ai if and only if 

f a(x)\Vu\pdx-\x f b(x)\u\ 
Jn Jn 

pàx = Q 

inf ( f a(x)\Vv\pdx~\i f b(x)\v\pdx 
vewi-"(w,n) [ Jn Jn 

This imlies that if u\,u2 6 WQ'P(W,£1) are two eigenfunctions corresponding to Ai 

then also 

vi(x) = max{ui(x),u2(x)}, v2(x) = min{ui(x),u2(x)} 

are eigenfunctions corresponding to Ai provided that v2 ^ 0. Indeed, we have Vi,v2 £ 

Wo'p(w,n) and 

/ a ( a : ) | V t ) 1 | ' ' d a ; - A i / b(x)\Vl\
p dx + f a(x)\Vv2\

pdx - \x f b(x)\v2\
p dx 

Jn Jn Jn Jn 

= f a(x)\Vu1\
pAx-\i f b(x)\ui\pdx+ f a(x)\Vu2\

p dx - \,_ f b(x)\u2\" 
Jn Jn Jn Jn 

_\pdx. 
Jn Jn Jn 

Hence 

:0. 
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Let Ui >. 0 and u2 3= 0 be two eigenfunctions corresponding to Ai such that 

ui ^ u2,min{ui(j;),U2(a;)} ^ 0 and 

II«IIIL«*(O) = II«2IIL«*(O) = !• 

:(x) = hv2(x) = 

way that 

Denote v3(x) = kiv2(x) = fci min{ui(a;),u2(x)}, where fci > 0 is chosen in such a 

IWlL«*(n) =1-
Then v3 6 WQ'P(W,SI) is again an eigenfunction corresponding to Ai such that v3 ^ 

u i . Moreover, 

{x € n ; ui(x) = 0 } C { i E O ; V3(X) = 0}. 

Set v*,(x) = k2v4(x) = fc2 max{ui(:r),u3(:r)}, where fc2 > 0 is chosen such that 

IMlL«*(n) =1-

Then u5 6 WQ'P(W, Q) is an eigenfunction corresponding to Ai such that u5 ^ ui and 

( i £ f l ; v5(x) = 0} = {x 6 H; ui(x) = 0}. 

Let, now, ui ^ 0 and u2 ^ 0 be two eigenfunctions corresponding to Ai such that 

ui ^ u2 , | | « I | |L«*(Q) = II«2||L«"(Q) = 1 a n d 

min{ui(a;),u2(a;)} = 0. 

Denote Ui = fc3 max{ui(a;),u2(2;)}, where 0 < fc3 < 1 is chosen such that 

II«IIIL«*(O) = 1. 

and u2 = fc4 m a x { u i ( i ) , u i ( i ) } , where 0 < fc4 < 1 is such that 

ll«2||L«*(n) = -• 

Then ui and u2 are eigenfunctions corresponding to Ai such that ui ^ u2 and 

{x e n; ui = o} = {x e n; s2 = o}. 

We will prove the assertion of proposition via contradiction. Due to the argument 

presented above we assume that u ^ 0 and v ^ 0 are eigenfunctions corresponding 

to Ai such that 

(3.19) ll«llL«*(n) = IMlL«*(n) ~ 1 ' u ^ v ' 
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and vanishing in fi on the same set (almost everywhere in the sense of the Lebesgue 
measure). Then 

(3.20) [ a(x)\Vu\p-2Vu\7<pdx = Xi I b(x)\u\p~2wpdx 
Jn •!« 

for any ip e w0

1,p(u;,ft), and 

(3.21) /a(x)|Vu|p-2V^V^di = A1 / b(x)\v\p-2vi>dx 
Ju Ja 

for аny ф є W0

1'p 
(w ,Ü). For є > 0 set 

uє = u + є аnd vє = v + є. 

Substitute 
uP-vP 

V- p-i uє 

into (3.20) аnd 

into (3.21). Since »«•, *£ 6 L°°(ft) and 

V ^ = [ l + ( P - I ) ( j ) ] v u - P ( j ) V», 

v v = f i + (p-i)f—J V u - p ( ^ ) V«, 

we have <p,ip e Wg'p(w,U). Adding (3.20) and (3.21) (with <p and ip chosen above) 
we obtain 

£ a W { [ l + ( p - l ) ( j ) P ] | V u | p + [ l + (p- l ) ( j ) P ] |Vu | p }dx 

- I a{x)\p(— J |Vu|p""2 VuVf+p( —) | Vv|p_2 VuVuldi 

-"/.Msr-enw-**-
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Since | V log ue \ = - 2 i l , the last equality is equivalent to 

f a(x) (up - vp) [| V log ue \
p - | V log v£ \

p] dx 
Jn 

- / a(x)pv~\ Vlogu £ | p ~ 2 Vlogu £ (Vlogu £ - V l o g u £ ) d z 

(3.22) Ja 

- / a(x)puP\ Vlogu£ |p~2 Vlogt)£(Vlogu£ - Vlogu £ )dx 

Let p ̂  2. We use (2.13) in order to estimate the left hand side of (3.22) (we first 

set ti = Vlogu £ , t2 = Vlogu£ and then tt = Vlogu£ , t2 = Vlogu £ ) . We obtain 

(3.23) >. } f a(x)\->\ogus- Vlogve\
p(uP+ vp)dx 

2p — 1 Jn 

= ^ ^ j Q a ( x ) { ^ + ^)\vsVu-ueVv\pdx^O. 

Let 1 < p < 2. We use (2.14) in order to estimate the left hand side of (3.22) 

(similarly as above) obtaining 

*jM(sr-(..r]«-** (3.24) 
З p ( p - 1 í / \( - , M lv« V « - u £ Vu|2 . . . 

/ a(s) —= + -= 7 : : ^7, d l ^ 0. 
j n

 v ; W ^ ^ f e l V u l + U e l V u l ) 2 - " 
16 

We have u,v e L~°(Q) (see Lemma 3.5) and 

(3.25) — - » 1 , — - > 1 ( e - > 0 + ) 
u £ ti£ 

a.e. in Q where u > 0 and v > 0, respectively; 

(3.26) — = 0, — = 0 (for any e > 0) 

elsewhere (since u and u vanish on the same set in S7). Hence it follows from (3.25), 

(3.26) and the Lebesgue theorem that for any p, 1 < p < oo, 

fмa (u~ - vp) dx -» 0 (e -> 0+) 
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This together with (3.23), (3.24) and the Fatou lemma implies 

\vV« — « V v \ = 0 a.e. in SI 

for any 1 < p < oo. Hence there exists a constant k > 0 such that u = kv a.e. in SI. 

But (3.19) yields k = 1, i.e. u = t) a.e. in fi, which is a contradiction. D 

The proof of Proposition 3.6 follows the lines of the proof of Lemma 3.1 in Lindqvist 

[12] for the nondegenerate case (a(x) = 1 in SI). 

3.7. L e m m a . Let J : W0'
p(w,SI) —> [W0'

p(w,SI)]* be an operator defined by 

( J ( « ) , V ) = / a(x)\ V u | p - 2 V u W d a ; 
Jn 

for any u,<fi 6 W0'
p(w,SI) (here (•,•) denotes the duality between \W0'

p(w,SI)]* 

and W0'
p(w,Sl)). Then J is surjective and J " 1 : \W0'

p(w,Sl)]* —> W0'
p(w,St) is 

bounded and continuous. 

P r o o f . The operator J is bounded, strictly monotone, continuous and coercive. 

Then it follows from the Browder theorem (see e.g. Fucik, Kufner [8]) that J is 

surjective. It follows from the Holder inequality that 

(3.27) (j(V) - J(U),V -u)> (Mir1 - IMir'KIMI. - ll«ll.) 

for any u,v e W0
1,p(ui, SI). The boundedness of J - 1 follows immediately from (3.27). 

Let us suppose to the contrary that J - 1 is not continuous. Then there exists a 

sequence (/„) such that / „ -> / in \W0'
p(w,Sl)]* and | | J _ 1 ( / „ ) - J _ 1 ( / ) I L ^ S for 

some <5 > 0. Denote u„ = J-l(}n),u = J _ 1 ( / ) . It follows from (3.27) that 

l l / . l l . • K l l . > ( /n ,«„) = (J(Un),Un) > ||U„||P, 

i.e. 

ii«„nr1 ^ HAH. 
(|| • ||* denotes the norm in the dual space [W0

1,p(u>,fi)]*). Then (u„) is bounded in 

W0'
p(w,Sl) and we can assume that there exists u e W0'

p(w,Sl) such that u„ - 1 u 

in W0'
p(w,SX). Hence we have 

(J(u„) — J(u),un — u) = 
(3.28) 

= (J(un) - J(u),un-u) + (J(u) - J(u),un-u) —>0 

since J(un) -> J(u) in [W0'
p(w,Sl)]*. It follows from (3.27) (where we set v = 

un,u = u) and (3.28) that | |u„| |0 -> | |« | | a . The uniform convexity of W0'
p(w,SI) 

equipped with the norm || • ||0 (see Subsection 2.4) implies u„ -> u in W0'
p(w,Sl). 

This convergence together with the convergence J(un) -> J(u) in [w0
1,p(u>,n)]* 

implies u = u which is a contradiction. The continuity of J - 1 is proved. • 
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4 . NONHOMOGENEOUS EIGENVALUE PROBLEM 

4 . 1 . Weak formulation. In this section we will consider the nonhomogeneous 

eigenvalue problem 

-d iv (o (x ,« ) | V U | P ~ 2 V M ) = \b(x,u)\u\p-2u in ft, 
(4.1) 

u = o on an. 

Let g: [0, co) -» [l,oo) be a nondecreasing function, a(x) 6 Li*-,• (ft) for o > 

o* > p , a ( x ) £ £°°(ft) for q* = p (for 9,9* see Subsection 3.1), /? > 0 a constant. 

We assume that a(x,s),b(x,s) are Caratheodory functions (i.e. continuous in s for 

a.e. x £ ft and measurable in x for all s £ R) and 

(4.2) ^-^a(x,s)^c8g(\s\)w(x), 

(4.3) O^b(x,s)^a(x)+0\s\g'-p 

hold for a.e. a; £ ft and for all s £ R. 

Moreover, assume that 

(4.4) meas {x £ ft; b(x,v(x)) > 0} > 0 

for any v £ Lq'(ft), 1; ^ 0. (Note that the condition (4.4) is fulfilled e.g. if b(x, s) > 0 

for a.e. x £ ft and for all s ^ 0.) 

We will say that A £ R is an eigenvalue and u £ W0'
p(w,ft),u ^ 0, is the 

corresponding eigenfunction of the eigenvalue problem (4.1) if 

(4.5) / a(x,u(x))\Vu\p~2\?uVipdx = A / 6(x,u(a:))|u|p-2u¥> d.r 

holds for any ip £ W0
1,p(u;, ft). 

4.2. Propos i t ion (apriori es t imate) . Let u € L°°(ft), ||«|IL«*(S.) — R > 0, 

u>-0 be any eigenfunction of (4.1) corresponding to the eigenvalue A. Then there 

exists d(-R) > 0 (independent of g) such that | |u| | i~(n) ^ d(.R). 

P r o o f . Choose p = uKp+1 in (4.5) with K >- 0. We obtain 

( « p + l ) / a(x,u(x))uKp\\7u\pdx = \ f b(x, U(X))U{K+1)" dx, i.e. 
Ja Jn 
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(4.6) 7 ~ r - [ o.(x,u(x))\\7(uK+1)\"dx = X [ b(x,u(x))u(K+1)p dx. 
(a + 1)P Ja Jn 

It follows from (4.2) and the imbedding w0
1,p(iu, 0) *-+ L«(f.) that 

/ a(x, u(x))| V(w" + 1 ) r dx>— [ w(x)\ V ( u " + 1 ) r dx 
Jn cs i n 

/ "u ( , t + 1 ) »dx)? 
i n 

(4.7) 
> c i 6 ( 

with Ci6 > 0 independent of K, /? and g. 

Applying the Holder inequality, (4.3) and the Minkowski inequality we obtain 

f b(x,u(x))u{K+x^ dx 
Ja 

(4.8) < ( j [ (b(x,u(x) 

a(x)^7 dx) " +P( I u«* dx 

(-+i)f* d í 

u ^ 1 ) * ' dx 

It follows from (4.6), (4.7) and (4.8) that 

i n 
(4.9) 

< f t т ( * + 1 ) « [ l M I ^ + / З Ä 9 ' - p ] 
( к p + l ) i - L LЇ"*=F(..) J 

U ( к + 1 ><' dx 

with C17 > 0 independent of K, R and 3. Let j be a nonnegative integer. Substitute 

« = ^ ^ into (4.9): 

(4.10) 

Since 

/ . * * • 

i n 
dx ^ C17-

\(q-)> 

x [Hall + 0R"'-p]U / u ^ - V ^ d x 

lim -—-г = 00, 
j-*oo (q*)i 

there exists the least j 0 such that 

(q'У 

í (p - - J W 1 
І VГ^Г'4 > max -̂  ^7Г>9Ì 

r - g * ) 
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It follows from (4.9), (4.10) (setting j = jo, jo - 1,•• -,1) that 

iTdxV <R{R), 

where R > 0 is independent of g. 

Now we set a{x) := a{x,u{x)) and b{x) := b{x,u{x)) in the proof of Lemma 3.5. 

Following the lines of this proof we obtain 

||u|U~(o)<d(«), 

where d = d{R) is independent of g. This completes the proof of Proposition 4.2. 

• 

4.3. Trunca t ion in t h e principal par t . Let R > 0 and d = d{R) > 0 be as 

above. We define 

{
a{x,s) forxeCl,\s\<d{R), 

a{x,d{R)) iorxeU,s>d{R), 

a{x,-d{R)) for xe CI, s<-d{R). 
Let us consider the nonhomogeneous eigenvalue problem 

- d i v ( o ( x , u ) | V u | p - 2 V u ) = \b{x,u)\u\p~2u in ft, 
u = o on an. 

Then it follows from Proposition 4.2 that u e W0
1'p{w,Q.), | |u| |L , ' (r .) = R, u >- 0 is 

an eigenfunction of (4.12) if and only if it is an eigenfunction of (4.1). 

4.4. Appl icat ion of the fixed point theorem. For a given v e Lq {SI) set 

av{x) = a{x,v{x)),bv{x) = b{x,v{x)). It follows from (4.2), (4.3), (4.4) and (4.11) 

that av{x) and bv{x) fulfil (3.1), (3.2), (3.3) for any fixed v e Lq' (n) . Let us consider 

the homogeneous eigenvalue problem 

-div(a„(x)| V « r - 2 V«) = \bv{x)\u\"-2u in n, 

u = 0 on dfl 

for any fixed v E Lq' (n) . Due to the results of Section 3 there exists the least 

eigenvalue A„ > 0 of (4.13) and precisely one corresponding eigenfunction uv such 
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that u„ ^ 0 a.e. in fl,uv e L°°(fi) and ||u»||x,f*((.) = R. Hence we can define the 

operator 

S: L«* (Q) -4 L«* (fi) 

which associates with u e L ,*(n) the first nonnegative eigenfunction u„ of (4.13) 

such that | |u„ | |L , . ( n ) = R-

Let us assume for a moment that S is a compact operator. Since it maps the ball 

BR = {u S L'7*(n),| |u| |L,>(n) ^ i?} into itself it follows from the Schauder fixed 

point theorem (see e.g. Fucik, Kufner [8]) that S has a fixed point u e BR. Hence 

there exists Au > 0 such that 

-d iv (a„ (a : ) |Vu |* , - 2 Vu) = A„6 u (x) |u | p - 2 uinf i , 

u = 0 on dQ, 

and it follows from the considerations in Subsection 4.3 that Au > 0 is the least 

eigenvalue of (4.1) and u e L°°(fl), u >. 0 a.e. in fi, is the corresponding eigenfunction 

satisfying | |u | | L , . ( n ) = R. 

The main result of this paper follows from the considerations presented above. 

4 .5 . T h e o r e m . Let the assumptions from Subsection 4.1 be fulfilled. Then for a 

given real number R > 0 there exists the ieast eigenvalue A > 0 and the corresponding 

eigenfunction u e W0'
p(w, H) n L°°(Q) of the nonhomogeneous eigenvalue problem 

(4.1) such that u ^ 0 a.e. in f! and ||u||L,>(n) = R. 

In the forthcoming subsections it remains to prove the compactness of the operator 

S in order to justify our assumption in Subsection 4.4. 

4 .6 . T h e Nemytsk i i o p e r a t o r s . Let us define the Nemytskii operators 

G\ : u i-4 |u |p"2u, G2 : u >-* \u\p, Gs: u i-4 b(x,u(x)). 

Then G; is a bounded and continuous operator from L«* (Q) into L ^ (fi) for i = 1, 

from L '" (n) into L^(Cl) for i = 2, and from Lq' (U) into L^(U) for i = 3 (see 

e.g. Vajnberg [15], Fucik, Kufner [8]). The Nemytskii operator 

G 4 : (u,zu ...,zn)^> a(x,u(x))(zi(x) + ... + z2
n(x))^ 

is bounded and continuous from Lq'(Q) x Lp(u;,fi) x . . . x Lp(w,il) into 

L^(w~^T,n) (see e.g. Drabek, Kufner, Nicolosi [7], Kufner, Sandig [11]). 

187 



4.7. Lemma. Let z,zn 6 W^'p(w,Ct) and 

I av(x)\ Vz\p-2VzV<pdx= f f(x)<p(x)dx, 
Ja Ja 

[ aVn(x)\V zn\
p~2 V znV ip dx = f fn(x)ip(x)dx 

Ja Ja 
for any <P,^ € Wl'p(w,Sl) and let vn -> v in Li'(Sl),fn -> / in [WQ'"(W,SI)]'. Then 
zn-^zinW^'p(w,U). 

Proof . Define operators J, Jn: W^'p(w, SI) -> [W0
1,P(K;, ft)]* by 

{J(u),<p)= / o„(a:)| Vu | p _ 2 V«Vvdx , 
in 

{Jn(u),tp)= aVn(x)\Vu\p~2VuVil>dx 
Ja 

for any <P,ip,u e W^'p(w,Sl). Hence J(*) = / and Jn(z„) = /„. 
Let n e W b e fixed. Consider the equation 

Jn(u) = h. 

It follows that 
J aVn(x)\Vu\pdx= f h(x)u(x)dx, 

Ja Ja 

HtC <-tsllAIUIMI., 

(4-14) IIJ^WIL < ^ IW i r 1 

for any h e \WQP(W,SI)]* , where ci8 > 0 is independent of n and A. Analogously 

(4-15) I I J - ^ W I I . < cullABr1 

(cf. Lemma 3.7). Applying Lemma 3.7 for a(x) := av(x) we obtain continuity of J~l 

(with J defined in this subsection). 
Assume that (un) is a sequence satisfying un -> 2 in WQ,p(ti>,ft). It follows from 

the continuity of the Nemytskii operator G4 that 

||Jn(un) - J(un)\\t = sup \(Jn(un)-J(un),<p)\ 
IMI-<i 

= sup / (aVn(x) - av(x))\ V un\
p 2VunV<pdx\ 

IMU<i I Ja 
(4.16) , , . 

^ sup / [aVn(x)\V un\
p~2 V un - av(x)\V z\p-2 V z] V >pdx\ 

IM.<i I -ln I 

+ sup / [al,(x)|Vzr_2V2-o„(a;)|Vun|''-
2Vií„l Vvdx 

ll»>ll„<i|Jn 



ÍC sup ( í w(x)--h~\aVrXx)\Vun\p~2Vun-av(x)\Vz\p-2Vz\^Tdx 
IMI„<i VJn 

u>(i)| W | p ) d o ; 

^ ( x ) - ^ |a„(x)| V 2 | p " 2 V z - av(x)\ V u „ | p " 2 V u n | ^~ dx 

u > ( x ) | V v | p d a ; j ' -4 0 

sup 
¥>II»<i VJn 

for n -+ oo. 

Set u n = J~l(fn)- Then the assumptions of lemma and the continuity of J - 1 

imply 

(4.17) u n - s -2 inw 0
1 , p (u> , f i ) . 

The relations (4.14)-(4.17) and the continuity of J - 1 now yield 

11*. " z\\w <k \\J~\U) - J~-Un)U + \\J~Hfn) ~ J-\f)\U 
$ \\J-l(Jn - J)J-\fn)\U + \\J--V«) ~ J_1(/)|U 

< C18|| Jn(un) - J(un)\\f" + \\J~Hfn) - J^COIU -> 0 

for n -> co, which completes the proof. • 

4.8. Propos i t ion . The operator S: L«*(fi) -> Li'(Q) defined in Subsection 4.4 

is compact. 

P r o o f . We prove that S is a continuous operator from Lq' (fi) into W0
1'p(w, Cl). 

The assertion then follows from the compact imbedding WQ'P(W, fi) •->•-> Lq" (U) (see 

Subsection 2.2). Let u„n = S(vn),uv = S(v). Suppose to the contrary that un -* v 

in Li' (fi) and 

(4.18) ||u„„ - u „ | U ^5 

for some <5 > 0. We have 

(4.19) / a„(x) | Vu l , |
p " 2 Vu„V</>dx = A„ / &„(x)|u„|p-2u„</>da;, 

Jn Jn 

(4.20) / a „ n ( x ) | V u „ | p " 2 V u „ VV>dx = A„ / bv (x)\uv \p~2uv ipdx 
Jn Jn 
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for any <fi,i> e WQ'P(W,SI). It follows from Lemma 3.7 that for any vn e Lq'(Q) 

there exists zn € Wg'p(w,il) such that 

(4.21) / avJx)\Vzn\
p-2VznV<pdx = \ v f bv(x)\uv\

p~\vVdx 
Jn Jn 

for any <p £ W0'
p(w,i}). Lemma 4.7 yields zn -> u„ in WQ'P(W,Q) (and hence also 

in Lq~ (H)). Applying the Holder inequality, (4.3) and the Minkowski inequality, we 

obtain 

b(x,v(x))\uv\
p 2uv(zn-uv)dx 

íí ( / (Hx^íx)))^^^3^1 dx ^„-'u^do: 

(4.22) 

SÍ / (b(x,v(x)))-'-dx 

\uv\« dx \zn-uv\
q dx 

a(x)^dx) ' +p( í |t,(x)|«* dx^ 

x / \uv\" dx \zn - uv\
q'dx \ ->0 

for n -> oo. Applying the Holder inequality, (4.3), the Minkowski inequality and the 

continuity of the Nemytskii operators G2, G3 we obtain 

I / \b(x,vn(x))\zn\
p-b(x,v(x))\uv\

p]dx\ 
\JQ1 J I 

si I / b(x,vn(x))[\zn\
p-\uv\

p]dx\ 
\JQ I 

+ | / [b(x,vn(x))-b(x,v(x))]\uv\
pdx\ 

\J(l 
(4.23) 

a(x)ttdx) +P[ |f„(x)|« dx 

\\zn\" - \uv\
p\ * dx 

/ 

+ ( / \b(x,vn(x)) - b(x,v(x))\^ dx) \uv\
ч dx 
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for n -¥ oo. It follows from the variational characterization of A„„, (4.19)-(4.23) that 

<JnaVn(x)\Vzn\
pdx 

" * " JnbVr,(x)\zn\Pdx 

_ A. JnM»)|u»•'- '«.*.<-* Lb^U^dx = 

fnbVn(X)\zn\Pdx ^ vJQbv(x)\uv\"dx -

Hence 

(4.24) limsupA„„ < A„. 

Applying the Holder inequality, the Minkowski inequality and the assumptions (4.2), 
(4.3) we obtain from (4.20) (with </> = u„„): 

— | K ||S,< f av (i)|Vti« | p d i = A„„ f bVn(x)\uvJ
pdx 

cs Ja Ja 

(4.25) <A„n[fjf | a ( s ) | ^ d x ) * +/j[jf \vn(x)\"' dx) * 

\uvJ"-dx' 

It follows from the assumption |K„||i,«*(R) = R, from vn -> v in L5*(n) and 
from(4.25) that 

(4.26) I K J U ^ c o n s t 

for any n € N . Due to (4.26) we have 

(4.27) u„„ - u i n < > , f ! ) 

(at least for some subsequence) for some u e W0'
p(w,U) and hence un -i> u in 

L**(fi). 
The Holder inequality, the Minkowski inequality, (4.3) and the continuity of the 

Nemytskii operators G\ and G3 imply 

(4.28) I f [b(x,vn(x))\uvJ
p-2uVn -b(x,v(x))\u\p-2u]<pdx\ 

\Ja I 
^ / [b(x,vn(x))-b(x,v(x))]\uvjr-2uv„<pdx\ 

l!« I 
+ / b(x,v(x))[\uvJ

p~2uVn - \u\p-2u]<pdx\ H 
\Jn 



( í \b(x,vn(x)) - b(x,v(x))\1^ dx \uvJ"' dx 

M< dx] 

a{x)\^dx) + /?( [ \v(x)\^=ídx 

«„„lp~ V „ - |u|p-2«| ̂  dx ] / \<ff dx 0 

for any <p e Wg'p(w,fl). Passing to suitable subsequences we can assume that 

(4.29) A„„ -> A € [0, A„] 

(see (4.24)). 

Let û~ 6 WQ'P(W, U) be the unique solution of 

(4.30) f av(x)\Vû\p-2VùV<pdx = A f bv(x)\u[ 
JQ Jn 

2u<pdx 

for any <p e WQ'P(W,O) (Lemma 3.7 guarantees the existence of u). It follows from 

(4.28)-(4.30) and from Lemma 4.7 that 

(4.31) uVn ^uinWo'p(w,n). 

Now, (4.27), (4.31) imply u = u and uVn —> u in wQ,p(ii), O). Hence we have 

> _ J n a . , ( i ) | V « | ' ' d a ; > / 0 a„(a) | Vfi|"da: 

/n6„(a;) |u| i 'd :- " «*> / 06w(*) |u |»d« 
sew0

l!'(™,«) 
J n o v ( a ) | V M „ | p d g 

/n6u( i) | í .„ | i>d~ 
= A„ 

This implies that A = A„ and u = uv (see the uniqueness of uv ^ 0, ||«„||£,«'(n) = R 

in Section 3). 

In particular, this means that 

u„„ - » u „ in ^ ' " ( t o . n ) , 

which contradicts (4.18). This completes the proof of Proposition 4.8. • 
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4.9. R e m a r k . The proofs in Section 4 can be performed in the same way 

working with L°°(n) instead of Lr~f (n) in the case q* = p. Hence we obtain the 

following special version of Theorem 4.5. 

4.10. Theorem. Let (4.2)-(4.4) be fulfilled with a(x) e L°°(Cl) and q* = p. 

Then for a given real number R > 0 there exists the ieast eigenvalue A > 0 and the 

corresponding eigenfunction u £ W^'p(w, U) UL°°(n) of (4.1) such that u >. 0 a.e. in 

n and ||u||i>(«) =R-

4.11. R e m a r k . Since the eigenvalue problem (4.13) is homogeneous, we can 

define the operator S: Lq' (Q) —> Lq' (Q) which associates with v ' Lq' (n) the first 

nonpositive eigenfunction — uv of (4.13) such that || -u„ | l i« ' (o) = R- It is clear from 

the above considerations that S has the same properties as S defined in Subsection 

4.4. Hence repeating the same arguments as in Subsections 4.2-4.4, 4.6-4.8 we prove 

the following dual version of Theorem 4.5. 

4.12. Theorem. Let the assumptions of Theorem 4.5 be fulfilled. Then for a 

given real number R > 0 there exists the least eigenvalue A > 0 and the corresponding 

eigenfunction u £ WQ'P(W,Q) n L°°(n) of the nonhomogeneous eigenvalue problem 

(4.1) such that u ^ 0 a.e. in Q. and ||u||L,«(o) = R-

4.13. R e m a r k . Let A and A be the least eigenvalues guaranteed by Theorem 

4.5 and 4.12, respectively, for a given fixed R > 0. Then A ^ A may hold due to the 

fact that the eigenvalue problem (4.1) is not homogeneous in general. 

5. EXAMPLES 

5.1. E x a m p l e . Let n be a bounded domain in Rn , p > 1, w(x) be positive 

and measurable in n satisfying w(x) £ L,1
oc(n), ^ j e L s ( n ) for s > max{^ , ^ r r } . 

Consider the eigenvalue problem 

- div(w(x)eu2 \V u\p~2 V u) = X\u\p~2u inn, 
(5.1) 

u = o on an. 

In this case we have 

a(x,s) = w(x)es ,b(x,s)sl 

for a.e. x £ Q and for all s 6 R. 

It follows from Theorem 4.10 that for any given real number R > 0 there exists the 

least eigenvalue A > 0 and the corresponding eigenfunction u e WQ'P(W,£1) n L ° ° ( n ) 

of (5.1) such that u >. 0 a.e. in n and ||u||z,>-(0) = R-
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5.2. E x a m p l e . Let us consider for fi the plane domain ft = (—1,1) x ( -1 ,1 ) 

(i.e. f! C R2). For x = (xltx2) € H set 

f l, x^O, 

x^(l - xi)1, xi > 0, x2 > 0, 

|*3|"(1 - aJi)"", xi > 0 , x2 < 0 
with v, fi, 7 real numbers. Consider the eigenvalue problem 

-div(u)(a:)(l + u 4 ) | V u ) | 2 V u ) = Au9 in O, 
(5.2) 

u = o on an. 
In this case we have p = 4, 

a(x,s) = w(x)(l+s4),b(x,s) = s6 

for a.e. x G Q and for all s £ R. Thus the principal part of the differential operator 

has a degeneration (or singularity) which is concentrated on a part Ti of the boundary 

an, 
r , ={a ; = (xi,a;2);a;i = l,a:2 G ( - 1 , 1 ) } , 

as well as on a segment V2 in the interior of n , 

r 2 = {a; = (x i , a ; 2 ) ;x i e (0,l) ,a;2 = 0}. 

Condition (2.1) indicates that we have to choose v and n from the interval ( -1 ,3 ) 

with no condition on 7. Let us assume that 

(5.3) " .^( - - . l ) . 7 6 (-00,J). 

It follows from (5.3) that ^ E L*(U) and q = 12 (see Subsection 2.2). Hence the 

growth condition (4.3) is fulfilled e.g. with q* = 10. Applying Theorem 4.5 we have 

the following assertion. 

Let us assume (5.3). Then for a given real number R > 0 there exists the least 

eigenvalue A > 0 and the corresponding eigenfunction u 6 W0
1,4(u),n) n L°°(n) of 

(5.2) such that u >- 0 a.e. in f! and ||u||/,io(n) = R. 

Note that for v, /j, and 7 positive we have a degeneration of the same extent at Ti 

and I V On the other hand, the singularity can occur in a limited extent at T2 (for 

v or fi negative, but bigger than —1), but big enough at Ti (for any 7 < 0). 
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