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THE STRUCTURE OF w-LIMIT SETS FOR CONTINUOUS MAPS 
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Summary. We prove that every infinite nowhere dense compact subset of the interval I 
is an u;-limit set of homoclinic type for a continuous function from I to I. 
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Let / be a continuous map of the interval I = [0,1] to itself. For any x £ I> let 
Uf(x) be the u;-limit set of x, i.e., the limit set of the sequence {fn(x)}%LQi where fn 

denotes the n-th iterate of / . There is a natural problem to describe the sets Uf(x) 
for all / . 

If / has zero topological entropy, i.e., if every periodic point has period 2n for some 
n, then every u-limit set Uf(x) is either finite or uncountable. In the latter case, 
utf(x) = _4Ufl, where A ^ 0 is a nowhere dense perfect set and B is either empty or 
an infinite countable set of isolated points such that each interval J contiguous to A 
contains at most two points from B (cf. [4] for more details). 

If there is no restriction on periods of the periodic points, the situation is more 
complicated (cf. also [3]): An u-limit set w/(x) can have a non-empty interior. In 
theis case u>/(x) has the form 

(1) J 0 U . . . U J „ - i 

where J,- are compact periodic intervals of period n, satisfying f*(J%) = «/j+j(modn) 
for every i,J ^ 0, cf. [2]. Thus every u>f(x) either is nowhere dense, or has the form 
(1) (and, of course, must be compact). These conditions characterize the <v-limit sets. 
It is easy to see that any set of the form (1) is an u;-limit set for some continuous 
/ , and in [1] it is proved that any compact nowhere dense set A ^ 0 is an u>-limit 
set for a continuous map (note that this result seems to be surprising, compare lines 
3-4 on p. 270 in [2]). 
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The main aim of the present note is to prove the result from [1] in a much simpler 
way. It turns out that we prove a slight variant of the result in [1]. First we introduce 
our basic notion. 

Definition. Let M be a nowhere dense compact set, A = {ao , . . . . a*_i} / 0 a 
set of limit points of M. Assume there is a system {Mn}^^y t = 0, . . . , Jb — 1, of 
non-empty pairwise disjoint compact subsets of M such that M \ (J Mn = A and 

lim Mn = a,- for any i. Let / : M —• M be a continuous map and let A be a Jb-cycle 
n—*oo 

of / such that / (a t ) = at_i for s > 0 and f(a0) = a*_i. If f(Mn) = Mn"1 for 
• > 0 and any n, / (M°) = M*Z\ for n > 0, and f(M§) = a*_i, then M is called a 
homoclinic set (of order Jb) u;t<A respect to / . 

R e m a r k . I fMis homoclinic of order Jb with respect to / , then for each *, the set 
oo 

M1 = {a,} U (J Mn is homoclinic of order 1 with respect to g = /*; more precisely, 
n=0 

we have g(Mn) = Mn_i for n > 0 and g(M&) = gfa) = a,-. 

Theorem 1. Every infinite nowhere dense compact set M C I is an u-limit set 
of homoclinic type for a continuous map I —• I. 

This result is a simple consequense of Theorems 2 and 3 stated below; their proofs 
are based on a sequence of lemmas. 

Theorem 2. Let M C I be a nowhere dense compact set, let f: M —+ M be con
tinuous and suppose M is homoclinic with respect to / . Then there is a continuous 
extension F: I —* I of f such that M = up(x) for some x £ I. 

The assumptions in the next two lemmas are the same as in Theorem 2. 

Lemma 1. There is a continuous extension F: I —> I of f such that for any 
u € M and any neighborhood U of u (in the relative topology with respect to I), 
the set F(U) is a neighboorhood of F(u) = f(u). 

P r o o f . Let {Jn}™^ be open intervals such that diarri Jn < 1/n and JnDM ^ 0 
for any n, and such that every open set intersecting M contains some Jn. Define 
by induction continuous extensions {.Fn}n

<Lo of f to I ss follows: Let Fo be linear 
on every interval contiguous to M, and put Ko = 0. If Fm and Km are defined, let 
Km+i be a compact subinterval of Jm\{M\JK0\J.. .UKm}. Let Fm+i(x) = Fm(x) if 
x i Km+X and let F ^ ^ X m + i ) be the neighborhood of Fm(Jm fl M) = f(Jm H M) 
such that diamF m +i(# m +i) < 6m = 2diam/(Jm n M). Then \\Fm+k - Fm\\ < 
max{6 m +i , . . . , 6m+k} and by the continuity of / , lim 6n = 0. Thus lim Fn = F 

n—>oo n—>oo 

uniformly. Clearly, F has the required properties. u 
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Lemma 2. Let F be as in Lemma 1. Then for any ti, t; € Af, any neighborhood 
U ofu, and any 6>0 there is a compact set K CU and an n > 0 such that Fn(K) 
is a neighborhood ofv, and F*(K) is in the 6-neighborhood S(M, 6) of M whenever 
0 ^ i < n. 

P r o o f . For some *, r we have F'(u) = /* (u) = a r , where a r is as in Definition. 
Let L C U be a compact neighborhood of u such that diamF*(L) < 6 for 0 ^ t ^ 
s. By Lemma 1, FB(L) is a neighborhood of a r , hence it contains sets Mj with 
arbitrarily large j since lim AfJ = ar. Since t; € Afm or v = at for some m and 

i—>oo 

t, there are u; € Af H F ' (L) and p > 0 such that Fp(w) = v. Let T C -^ (L) 
be a compact neighborhood of w such that d iamF'(T) < £ for 0 -£ t < p. Take 
K = F - ' ( T ) fl L and n = * + p. D 

P r o o f of Theorem 2. Let {V<}^0 be open intervals such that any open set 
intersecting M contains some Vi, and let 6,- G Vi H M £ 0 for any i. Using Lemma 
2 we can define by induction a decreasing sequence of compact sets { K | } ^ 0 and an 
increasing sequeuce {n(f)}£2.0 of positive integers such that for every t, Fn^(Ki) C Vi 
is a neighborhood of 6»-, and F*(Ki) C S(M, l / i ) whenever n(i) ^ j K: n(i + 1). Let 

x € f| Ki # •• S i n c e F*(*) $ siM> VO for i ^ n(*)> we have uF(x) C M. On 
i=0 

the other hand, since the trajectory {-F ; ( -^} = 0 visits infinitely many times every 
VJ, and hence every open set intersecting M, we have W F ( I ) D M. • 

In the sequel, for any two subsets A, B of 7, A y B means that there is a continuous 
map of A onto B. 

Lemma 3. Let A>B C I be nowhere dense compact setsf A uncountable and 
B # 0. Then Ay B. 

P r o o f . Let P C Abe a non-empty perfect set. Since P y I there is a compact 
subset Q C P such that Q y B. It suffices to show that Ay Q. Let {Jn}£Lo ke a 

system of compact intervals such that for any m ^ n , J n f l Q = {gn}, J m n J n C Q , 
oo 

Jn fl (A \ Q) ^- 0, and (A \ Q) C \J Jn. Now let <p be the identity map on Q, and 
n=0 

let <p be constant on every Jn fl A. Clearly <p is continuous and <p(A) = Q. D 

L e m m a 4. Every uncountable nowhere dense compact subset M of I is homo-
clinic with respect to a continuous map f. 

P r o o f . Let {/n}^ro ^ e a sequence of pairwise disjoint compact intervals such 
~ oo 

that InC\M = Mn is uncountable for every n, M \ \J In = {a} and lim In = a. 
n=0 n->°° 

By Lemma 3 there is a continuous function / : M —• Af such that / (x ) = a if x = a 
or a: € Afo, and /(Afn+i) = Mn for every n ^ 0. • 
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Before stating the next lemmas we need some notation. Let Ac I be a countable 
compact set. Define a transfinite sequence {-4a}a €o of subsets of .A as follows: 
AQ = Ay Ay = p| Aa if 7 is a limit ordinal, and Ay is the derivative (i.e., the set of 

limit points) of Ay-\ otherwise. Clearly, for any such A there is an ordinal 0 < Q 
such that Ap is non-empty and finite, and Ap+\ £ 0. Denote such 0 by T(A). 

Lemma 5. Let D be a non-empty countable compact set and let T(D) = 7. 
Assume D 7 = {d}. Then there is a sequence {Dn}n

<Ll ofpairwise disjoint compact 
00 

subsets of D such that D \ (J D n = {d} and lim D n = d. Moreover, for each n, 
n-=l n - 0 0 

7 > 6(n + 1) ^ 6(n) where 6(n) = T(Dn) and (Dn)s(n) = {dn}. 

P r o o f . Assume d £ (0,1); for d = 0 or d = 1 the proof is similar. Let 
{ I n } ^ ! be a strictly decreasing sequence of compact intervals with end-points in 

"" oo 

I \ D and such that f) In = {d}. Take n(l) such that D \ Jn(i) ^ 0. Since 
n = l 

lim T(D \ In) is 7 if 7 is a limit ordinal, and is 7 — 1 otherwise, there exists 
n—>oo 

n(2) > n(l) such that 7 > T(Dn(I n ( i ) \ I n ( 2 ) ) ) ^ r ( D \ Jn(i)), etc. By induction we 
get an increasing sequence { ^ ( 4 ) } ^ of positive integers such that, for any Jb > 0, 
7 > T(D H (In(k) \ /n(ik+i))) > T[D (1 (/n(ib-i) \ Jn(*))), where Jn(0) = / . Put 
Dfc = Dn(/n( ib»i) \ /n( it)) . 

If for some fc, (D*)^*) has more than one element, replace Dk in the sequence by 
a string Dki . . . , Dk \ where Dk are portions of Dk such that T(Dk) = £(Jb) and 
(Di)5(jb) = {b[} for each t. • 

The following lemma should be known but we are not able to give a reference. 

Lemma 6. Let A,B C I be non-empty countable compact sets with a = T(A) ^ 
T(B) = /?, and let Bp = {6}. Then A y B. 

P r o o f . We use transfinite induction. The result is true for a = 0. Assume it 
is true for any a < a(0), and let T(A) = a(0). First consider the case Aa(o) = {a } . 
Apply Lemma 5 to D = B\ let {Bn}^! be the corresponding sequence of subsets 
of B. For each n denote T(Bn) = P(n). Then apply Lemma 5 to D = A and 
let {Dn}n

<Ll be the corresponding sequence of compact subsets of A. For each Jb, 
lim T(Dn) ^ /?(*), hence there is n(k) such that T(Dn(fc)) ^ /?(*). We may assume 

n—•oo 

that {^(Jb)}^ is an increasing sequence and put Ak = Dn(*_i)+i U . . . U Dn(k)-
Then a(0) > T(An) ^ /?(n) for each n, hence by the hypothesis, An y Bn (note 
that by Lemma 5, (Bn)p^n) = {6n} for each n); let <pn be the corresponding map. 
Define <p by <p(x) = (pn(x) if « 6 -4n, and <p(a) = 6. Since A = (J An U {a} and 
-B = U^n U {6}, y> is a map from A onto B, and since limAn = a and \imBn = 6, 
^ is continuous. 
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Finally, if Aa(0) = {a0i..., a * ^ } with Jb > 1, divide Aa(o) into compact portions 
A0, . . . , Ak~l such that .Af

a(0) -= {a t} for each t\ Since A D A{ y B for any t, we 
have Ay B. • 

Theorem 3 . Every infinite nowhere dense compact set M is homoclinic with 
respect to a continuous map f. 

P r o o f . If M is uncountable, the result follows from Lemma 4. So assume that 
M is countable. Let T(M) = a, M a = {an, . . . , a * - i } . Let 7°, . . . , J*""1 be pairwise 
disjoint compact intervals covering M and such that P is a neighborhood of at for 
any t. Denote M* = M fl J \ Then T(M' ) = a ajid Ma = {a,}. Apply Lemma 5 to 
every M1 . Let {I?n}n-=:i ^ e the corresponding compact subsets of M* for any t. We 
may assume that Dn ^ 0 for any t and n. To finish the proof it suffices to define 
sets Mn with properties described in Definition. Towards this, every Mn will have 
the form 

(2) K = ^ i ( i , n - l ) + l U . . . U P i ( | > ) 

where i( t , — 1) = 0 and Jb(t,n — 1) < fc(t,n) for any t and n. Put Mfj = -Of; 
then clearly MQ >- {a*- i} . Next assume by induction that Mn is defined. Let 
( j , m) = (t + 1, n) if t ^ Jb — 1, and let ( j , rn). = (0, n + 1) otherwise. We need M ^ 
such that M.4 >- M£ (cf. Definition). By Lemma 5 there is 8 > k(j, m — 1) such 
that T(DJ) ^ -F(-D*(tjn))> and hence (cf. Lemma 6), D{ y £>* for any t ^ s and any 
r < *(•, n). Then by (2), D{ U . . . U -Qj + 4 ( , t n ) . f c ( < | f l . 1 ) yMn so if we take *( j , m) = 
s + *(t, n) - *(t, n - 1), we get M„\ = -0j ty | m . 1 ) + 1 U . . . U Dj

k(jm) y Mn as required. 
Since all M£ are pairwise disjoint and compact and cover M \ { a i , . . . , afc-i}, and 
since lim Ml = at for each t, we see that there is a continuous map / such that M 

n—»>oo 

is homoclinic. • 

R e m a r k . It would be interesting to know which sets can be u;-lirnit sets for 
smooth maps. If, for example, M in Theorem 1 is countable then there is a map / 
even in Cl(I>1) with u>f(x) = M for some x £ I. But if M = PUQ, where P , Q are 
disjoint non-empty perfect sets such that every portion of P has a positive Lebesgue 
measure, while the measure of Q is zero, then / cannot satisfy Luzin's condition (N) 
and hence cannot be differentiable. To see this, note that if M = w/(x), there must 
be a portion P0 of P such that f'x(Po) n M C Q. 
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S o u h r n 

STRUKTURA w-LIMITNÍCH MNOŽIN SPOJITÝCH ZOBRAZENÍ 

INTERVALU 

ANDREW M. BRUCKNER, JAROSLAV SMÍTAL 

Dokazujeme, že každá nekonečná řídká kompaktí podmnožina intervalu I je u>-limitní 
množinou homoklinického typu pro vhodnou spojitou funkci / z I do I. 
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