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Dedicated to Professor A. Kufner on the occasion of his 65th birthday 

Abstract. The Hardy inequality Ju \u(x)\pd(x)'p dx <. c Jn\Vu(x)\p dx with d(x) = 
dist(x,Oil) holds for u 6 Co°(0) if SI C Un is an open set with a sufficiently smooth 
boundary and if 1 < p < oo. P. Hajlasz proved the pointwise counterpart to this inequality 
involving a maximal function of Hardy-Littiewood type on the right hand side and, as a 
consequence, obtained the integral Hardy inequality. We extend these results for gradients 
of higher order and also for p = 1. 
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l . INTRODUCTION 

Let 0 be a proper subdomain of Rn and let d(x) = dist(a;,<9fi), x 6 0, be the 

corresponding distance function. 

It is well known that the Hardy inequality 

(1.1) / \u(x)\pd(xypdx í c í \Vu(x)\"dx, 
Jí! Jfí 

holds for u 6 C§°(Cl) if 1 < p < oo and the boundary of fi satisfies the Lipschitz 

condition or similar regularity conditions. For these results and further references 

we refer to [8], [10], [12]. 
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Different authors introduced the notions of capacity and of thick sets in various 
ways (see, e.g. [1], [4]-[9], etc.) in order to find weaker sufficient conditions for 
inequalities of Hardy, Poincare .and other types. We shall concentrate mainly on [4] 
and [6]. 

Let K be a compact subset of fi and let 1 <.p < oo. The variational (l,p)-capacity 
C!,P(K,n) of the condenser (K,U) is defined to be 

chP(K,n) = infj f \Vu(x^)\pdx: u e cg=(n),u(x) > i for x e K\. 

By B(x,r) we denote the open ball in Rn of radius r, 0 < r < oo, centered at 
a; e R". 

Definition 1. A closed set K C R" is locally uniformly (l,p)-thick, if there 
exist numbers b > 0 and r0, 0 < r0 sg oo such that 

(1.2) CUp(B(x,r)nK,B(x,2r)) >- bChp(B(x,r),B(x,2r)) 

for all x e K and 0 < r < ?-0. If r0 = oo, then the set K is called uniformly 
(1, p) -thick. 

Note that a scaling argument yields 

(1.3) CltP(B(x,r),B(x,2r)) = c(n,p)rn-p. 

P. Hajlasz [4] used the Hardy-Littlewood maximal operator M and showed that for 
a domain fi with a locally uniformly (l,p)-thick complement there exists q e (l,p) 
such that every function u e Cf5 (fi) satisfies the pointwise analogue of the Hardy 
inequality, which in a slightly simplified formulation reads 

\u(x)\Hcd(x)[M(\Vu\a)(x)fq. 

As a corollary he obtained the integral Hardy inequality 

/ \u(x)\pd(x)a-pdx <_c f \Vu(x)\pd(x)adx, 
Jn Jn 

for small positive numbers a. Similar results were obtained also by J. Kinnunen and 
O. Martio [6]. 

Our aim is to extend these results for derivatives of higher order. 
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If a = (ai,...,an) is an n-tuple of non-negative integers, |a| = 53 a»i a<- — 

a i ! . . . a„\, and for x = (x\,..., xn) € Rn we set xa = xai ... x"u. The corresponding-

partial derivative operators will be denoted by 

Da = Daì ... Da" = 
дxaì ... дxa" 

and the gradient of a real-valued function of order k, k e N, will be the vector 

Vku = {Dau}^=k. For k = 1, Vxu = Vu is the usual gradient. 

Given a measurable set E C Un, we denote its Lebesgue n-measure by \E\ and 

the characteristic function of E by XB- Constants c in estimates may vary during 

calculations but they always remain independent of all non-fixed entities. 

2. T H E POINTWISE HARDY INEQUALITY 

The fractional maximal function MltRU, 0 <: 7 <; n, 0 < R <; 00, is defined for 

every u 6 L}0C(Rn) by 

MyMu(x)= sup I B ^ r J p / " - 1 / Ny) |dj/, z 6 Rn. 
0<r<R JB{X,T) 

Note that Mo.ooU = M« is the classical Hardy-Littlewood maximal function. 

T h e o r e m 1. Let 1 <; p < 00, let k be a positive integer and 0 ^ 7 < k. Let U 

be an open subset of Rn such that R" \ fi is locally uniformly (l,p)-thick and let 6 

be the constant from Definition 1. Then there exists a constant c = c(k,p,n,b) > 0 

such that every function u 6 Qj°(f!) satisfies the inequality 

(2.1) \u(x)\ < cd(x)k->'i> [MlMix)(\VkufxB(^dM))('x)]1/p, 

where x e fl, d(x) < r0, and x € dil is such that \x - x\ = d(x). 

This is the main result of this section which extends Theorem 2 of [4]. To prove 
it we shall need several auxiliary assertions. The first one is a generalization of [3, 
Lemma 7.16]. 

Lemma 1. Let k be a natural number. There exists a constant c = c(k,n) > 0 

such that for every ball 5 c 8 * and for every function u € Ck(B) the inequality 

\u(x) - I B r 1 [ P(x, y) d j /U c / r ^ ~ 4 % *J> * e B> 
I JB \ JB\X- y\n'k 



holds, where P is the polynomial of order <. k - 1 given by 

(2.2) P(x,y)= J2 {-Z^Dau(y)(y-xr, x,y e B. 

Lemma 1 can be proved in a way similar to the proof of Lemma 7.16 in [3] using the 

Taylor expansion of the function v(r) = u(x + rd), where r = \x — y\, 0 = (y — x)/r, 

x, y € fi. Note that assertions of this type can be found for instance in [1, §8.1] and 

[8, §1.1.10]. 

The next assertion is a variation of a well-known result of L. I. Hedberg. 

Lemma 2. Let 0 <. 7 < K and let B C Rn be a ball of radius R. Then there 

exists a constant c = c(n,-y,K) > 0 such that every function g e Lloc(B) satisfies the 

inequality 

j M^L^cR^MyMg){x), X€B. 
JB \X - y\n K 

P r o o f . Fix z € B and for i € N set A; = {B(x,21-iR)\B(x,2~iR))nB. Then 

JB \X - y\n-K £-J JAi \x - y\n-K 

< max(l, 2"-") £ ( 2 - ' / . ) " - " / \g(y)\ Ay 

< |B(0,1)|-3 max( l ,2"- n )2 n -^ J R K -^2- i (" -^Af 7 , 2 H( 5 ) (a - ) . 

We shall also need the following inequality of Poincare type which follows from 

the considerations in [8, Sections 9.3 and 10.1.2]. 

Lemma 3. Let 1 <. p < 00. Let B = B(x,R) be a ball in En and Jet K be a 

closed subset of B. Then every function u e C^fB) such that dist(suppu,.R') > 0 

satisfies the inequality 

Jв 
xWůx^c--~^R:,or}^ í\Vu(x)\"dx, 

CltV(K,B(x,2R)) JB 

where c is a positive constant independent of B, K and u. 
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P r o o f of T h e o r e m 1. Let x e U be such that d(x) < ro, where )-0 is the 
number from Definition 1. Let x G dfl satisfy \x — x\ = d(x) = R and let u G Cg°(U). 
Set B = B(x, 2R). Then x e B and 

(2.3) \u(x)\ s£ \u(x) - PB(x)\ + \PB(X)\, 

where PB(X) = \B\~~1 JB P(x,y) dy and P is the polynomial from Lemma 1. Using 
Lemma 1, Lemma 2 and the Holder inequality we obtain 

(2.4) \u(x) - PB(x)\ < c [ , | V " { ^ dy < cRk^M-,AR(\Vku\XB)(x) 
JB \X ~ y\ 

^cRk^lp[M,,iR(\Vku\"XB)(x)flv. 

From (2.2) we have 

/• k~l r 
|PB(.-)K IBI"1 / ^(x^dy^c^R'm-1 / |V'«(y)|dy 

JB ^~Q •'B 

^cf^&^Br'JjVMyWdy) . 

Repeated application of Lemma 3 and of (1.2) and (1.3) yields 

L |viu(*)|Pd* ^CU^\ZB,B(X,,R))IB VW^Pdx 

<.cR" [ \Vi+1u(x)\p dx 
JB 

<, cR{k~i)p [ |Vku(x)\pdx, i = 0,..,,k-l. 

(2.5) \PB(x)\^cRk(\B\-1 J \->ku(x)\'dx) 

^cRk^"[MjAR(\VkufxB)(x)}1/p. 

The inequality (2.1) follows from (2.3)-(2.5). 



3. INTEGRAL INEQUALITIES 

In this section we shall use Theorem 1 to obtain higher-order analogues of the 
classical Hardy inequality. As in [4] and [6], in further considerations we shall essen
tially use the openness of the (l,p)-thickness with respect to p. This deep property 
was originally proved by J.L.Lewis [7, Theorem 1] and later on in another way by 
P. Mikkonen [9, Theorem 8.2]. The following lemma can be obtained as a particular 
case of Lewis' and Mikkonen's results. It is not important for our purpose that Lewis 
dealt with another type of capacity. 

Lemma 4. Let 1 < p < oo and Jet K C R™ be a dosed locally uniformly (k,p)-
thick set. Then there exists q, 1 < q < p, depending only on n, k, p and b, such that 
K is locally uniformly (k, q)-thick with the same value ofr0 as for p. 

For r > 0 we set 

fi,. = {xe U: d(X) <r}. 

Theorem 2, Let 1 < p < oo and Jet k be a positive integer. Let fl be an open 
subset of R" such that R™ \ fi is locally uniformly (l,p)~thick. Then there exists a 
positive constant c = c(k,p,n,b) such that the inequality 

(2.6) J(^dx^JjVku(xW,X 

holds for every function u 6 Co°(fi) and for every r e (0,ro), wiiere rg is the 

parameter given in Definition 1. 

P r o o f . Let p > 1 and let q e (l,p) be from Lemma 4, and suppose that 
r € (0,r0). It follows from (2.1) that for all u £ Co°°(fi), 

(2.7) \u(x)\d(x)-k <.c[M(\Vku\"Xn,.)(x)]l/", xeflT. 

We use the boundedness of M: Lp/q -*• Lvlq and the Holder inequality to obtain 

(2.8) J n^ijdx^cj^ [M(\Vku\"Xn,.)(x)]p/qdx4cJ^ \Vku(xWdx. 

Note that the norm of the maximal operator M and, consequently, also the constant 

c depend on the value of p/q. • 



If p = 1, we cannot use Lemma 4. Instead we use the fact that for n with \tt\ < oo 

the maximal operator M is a bounded mapping of LlogL(fi) in Lr(tt) (see [2], 

p. 74). Recall that LlogL(n) is the Zygmund space which consists of all measurable 

functions u with j a |w(a;)|log+ |u(.t)|da; < oo, endowed with the norm 

r\fí\ 

l i t log i 
nUi mi 

ma)= «*(t) log---<«, 
JO >' 

where u* is the non-increasing rearrangement of u. 

Theorem 3. Let p = 1 and Jet k be a positive integer. Let tt be a bounded open 

subset of R" such that R™ \ tt is locally uniformly (1,1)-thick. Then there exists a 
positive constant c = c(k, n, b) such that the inequality 

(2-9) ^ ^dx^c\\Vku\\Llo,mr) 

holds for every function u € C0
=o(n) and for every r € (0,r0), wiere r0 is the 

parameter given in Definition 1. 

P r o o f . From the estimate (2.1) we have 

\u(x)\d(xyk =g cM(\Vku\Xsi,.)(x), x 6 ttT. 

Integrating both sides of the inequality over n r and using the boundedness of 

M: LlogL(n) ->• Lx(n) we arrive at the inequality (2.9). • 

Corollary 1. Let 1 < p < oo and Jet k be a positive integer. Let tt be an opeji 

subset of Rn such that R" \ fi is locally uniformly (l,p)-thick. Then there exists a 
number e0 > 0 sucJi that the inequality 

(2-10) JjM)Pd{XrPáX^CJjVkUÍXWd{ x)єp dx 

holds for all u e C^(tt), r 6 (0,r0) and 0 ^ e < e0- T i e constant c > 0 depends on 

n, p, k, b and on the number q from Lemma 4. 

P r o o f . Fix e > 0 and let u € Co°(fi) be such that the integral on the right 

hand side of (2.10) is finite. 

lik — 1, we set v(x) = \u(x)\d(x)s. Then 

(2.11) \Vv(x)\ ^ \Vu(x)\d(xy + e\u(x)\d(x)e-1 for a.e. x e tt, 



and (2.10) implies that v belongs to the Sobolev space W0'
P(Q). Applying Theorem 2 

to functions from CQ°(CI) which approximate v in W0'
p(tt) and passing to the limit 

we obtain 

i(w)'*>-"*- Lmy^'L^'*' 
for 0 <. e < eQ. By (2.11), we have 

LmY*r* 
Kc(f \Vu(x)\pd(xypdx + ep J (fj^J d(xYpte\ . 

Thus, the inequality (2.10) holds for 0 <. e < e0 = cr1^. 
Let k > 1 and suppose that the inequality (2.10) holds for j = 1,2,..., k - 1 and 

0 <. e < e0. Let s be the regularized distance function equivalent to d and satisfying 
the estimate 

\V3Q(X)\ <. Cjd(x)l-j, i G f i , j = l , 2 , . . . , 

(see, e.g., [11, p. 171]). Set v(x) = \u(x)\g(x)e. Then 

ft 

\Vv(x)\ $ \Vku(x)\e(^y+eY^QM\^k"i<xMxy~j, 
j=l 

where Qj are polynomials of degree j . Thus, we have 

i ($$)'«•"*<« im'" 
<_cf \Vku(x)\p

e(xypdx + cepf2\Qj(S)\
pf (^Jt^lJ e{xyr dx 

zf \Vku(x)\pe(xYPdx + cspJ (j^fj s(xY~pdx 

zf \Vku(x)\pd(xYPdx + cspf ( § § r ) ' ' d ( x Y ~ p dx, 

and the inequality (2.10) holds for 0 <. e < c~1/p. O 

Corollary 2. Let il be such that Un \fl is locally uniformly (l,p)-thick with 
ro > \ diam(ft), Then the inequality (2.1) JioJds for every x £ ft and the assertions 
of Theorem 2, Theorem 3 and Corollary 1 JioJd with ft in place of flr and for aJJ 
functions u from-the corresponding Sobolev spaces W0'

p on ft. 

P r o o f . It suffices to observe that fir = 0 for r > \ diam(ft) and that the 
constant c does not depend on the parameter r0. • 

<_c 

< e 



N o t e t h a t t h e a s s u m p t i o n of Corol lary 2 holds , in pa r t i cu la r , if R*1 \ f i is uniformly 

( l , p ) - t h i c k (i.e., r n = co) . 

A n o p e n p r o b l e m . Addi t iona l weights could be in t roduced in to t h e inequal

ity (2.6) by app ly ing a weighted inequal i ty for t h e max ima l function. Following the 

proof of T h e o r e m 2 we can mul t ip ly b o t h sides of inequal i ty (2.7) (or, m o r e precisely, 

of inequal i ty (2.1)) by d(x)e a n d in tegra te over flr. However, t o m a k e t h e final s t ep 

in (2.8) we have to know t h a t t h e max ima l function satisfies t he weighted inequal i ty 

L [M{\Vku\iXar){x)]P,qd(xY"dx ^ c / \Vku(x)\pd(x)ej>dx. 
a,. Ja,. 

Note t h a t we a r e deal ing wi th t h e global max ima l function ( the balls in t h e cons t ruc 

t ion of M^i^nx) from inequal i ty (2.1) cross t he complemen t of ft) a n d so t o use t he 

known weighted inequal i t ies for M we would have t o consider d(x) ex t ended p roper ly 

ou t s ide ft. T h e ques t ion is, if t h e sufficient condi t ions for such weighted e s t i m a t e 

would n o t overr ide t h e condi t ion of ( l , p ) - th i ckness of R n \ ft. 
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