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Abstract. “We generalize a well-known separation condition of Everitt and Giertz.to a
class of weighted symmetric partial differential operators defined on domains in R™. Also,
for symmetric second-order ordinary differential operators. we show that limsup(pq’)'/¢® =

t-tc

6 .<.2 where ¢ is a singular point. guarantees separation of —(py")’ + ¢y on its minimal
domain and extend this criterion to the partial differential setting. ‘As a particular example
it is -shown that. —Ay + gy is separated on its minimal domain if ¢ is superharmonic.: For
n = 1 the criterion is used to give examples of a separation inequality holding on the domain
of the minimal operator in the limit-circle case.

Keywords:: separation, ordinary or-partial differential operator,limit-point, essentially
self-adjoint
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1. INTRODUCTION

In this paper we investigate separation properties of unbounded operators deter-
mined by the ordinary or partial differential expressions

(5] Myly] = w =(py") +ay),

(1.2) Mynlyl = w""[— div(PVy).+ gyl

For (1.1) we assume that p, g, and w satisfy the so-called minimal-conditions of
Naimark [24]; that is, they are real valued functions defined on an interval 7 =
(a,b), =00 < a < b < oo such that w >0 ae and p~'; ¢, and w > 0 are locally
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integrable functions. In(1.2) Vy denotes the gradient of y where the differentiation
is understood in the sense of distributions. w, ¢ are real-valued functions defined
on a domain (open set) Q-C R™; w remains positive, but w, g are C?() ‘and Pis a
n.x n real matrix valued function such that P is positive semi-definite (and hence
symmetric). in the sense that [P(z)v,v], 2 0 for z € © where [-,:]» denotes the
euclidean inner product on C™ and the components {p;;} are C*(Q).

Suppose Dy and D.denote the domains of the minimal and maximal operators Lg
and L determined by (1.1) or:(1.2).on I or ). (Precise definitions of these concepts
will be given below.). Then M, or-M,, » is said to be separated on Dy or D.if for
J=1orf

(1.3) y € Dy or D= wlqy € L¥w;J),

where L?(w;J) signifies the usual Hilbert space of equivalence classes of all complex
Lebesgue square integrable functions f with norm || f].,s. and inner product [f, g]w,/
given by

[l = (/Jw]f)’ dx:)ln,
st = [ wheds.

A ‘property equivalent to separation is the following.

Definition 1.. L or Ly satisfies a separation inequality.on D or Dy if whenever
Yy €D ory € Dy then there are constants A, C, K >0, B >0, and a constant L, all
independent of y, such that

Al (py')' 1 + Bllw ™ /pay' 5,1 + Cllw™ gl 1

(1.4)
SEKNMolylls + Ll ;
or
L8) Allw= div(PYy)l3.0 + Blw™ (alPVy, Vyl) 250 + Clo ™ ayllao
S Kl M nlullls 0 + Lyl o
hold.

Clearly (1.4), or (1.5) implies (1.3). But if (1.3) holds then a closed graph theorem
argument shows that Lo or L satisfies. either (1.4) or (1.5) with 4 = C =1, B =0,
and K '= L. See [3, Proposition 1} for a proof in the ordinary case. The proof in R™,
n>-1, is similar.
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If w.= 1 several criteria for separation in the ordinary case-have been given by
Everitt and Giertz in a series of pioneering:papers [12-16], also see Everitt, Giertz,
and Weidmann [17], and. Atkinson[1]. More recent results (that include weighted
cases) may be found in Brown and Hinton [3]. Some extensions of these criteria to
the partial differential case may-be found in Everitt and Giertz {16] and Evans and
Zett] [9]

One of the principal results of this paper for-the ordinary case is that under various
conditions on p, ¢, and w, then the condition

(S1) ~o0 < limsupaw(p(w™9)) /¢* =0 < 2,
e

where ¢ is a singular endpoint of T implies separation at least on Dy. We will show
that the same is-true for-the partial differential expression (1:2) under the basic
conditions assumed above on w, g and P if (S,) is replaced by

(Sn) supw div(PV(w™q))/¢® =8.< 2.
tef

One easy consequence of (Sy) and standard theory is that M., will be separated even
on D'if w="p =1 and ¢ is-bounded below, increasing, and concave downward.
Similarly. we can prove that M,, . is separated at least on Dy (and. if essentially
self-adjoint on D also) if w™g is superharmonic on 9.

A second sufficient condition for separation on Dy for n'> 1 involves the condition

(M) [P@)V(wtg), V(o™ gl < bu™tlg@)P% 0<8<2.

This result generalizes a separation result in [3] as well as theorems given by Everitt
and Giertz in the unweighted case when P-= 1. It is also.closely related in form to
a result.of Evans and Zettl [9] but.our proof appears to be simpler and applies to a
larger class of potentials g.

The precise statement of these and other results will be given in Sections 3.and 4.
The background needed to state and prove them is given immediately below.

2. PRELIMINARIES

Since our results are more: comprehensive when n =1 we choose to treat this
theory separately from the ‘multidimensional case, even though (1.1} is formally-a
special case of (1.2). Under the minimal conditions® stated above M., naturally

* Naimark only considers the case w =-1; however the extension to general weights is
routine.
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determines minimal and maximal operators Lo and L in the following way." Ly is
the closure of the “preminimal operator” L{, which is the restriction of M, to the
compact support functions Dy C D where

D= {y € L*(w;1) N ACic(D): py' € ACic({); Muly] € L2 (w, 1)},

Here ACi,c (1) denotes the locally? absolutely continuous functions on I.

The maximal operator:L is then given by M,, acting on D. With these definitions

it can be-shown that:
(i) Lo C'L,

() Lyt =Li=1L,

(iit) L*= Lo =T},

Thus Ly, Lo, and L are densely defined; Lj, Lo are symmetric, and Lo, L are respec-
tively the “smallest” and “largest” closed operatorsin L?(w;I) naturally generated
by M.,,. The density of the domains Dj, Dy, and D.is easy to verify if the coeffi-
cients g, p-are smooth enough that Cg® C Dp; otherwise this is not obvious.and is a
consequence of the adjoint relationships (i) and (iii).

If p~1, ¢ are locally integrable on [a,¢) or (c, b] for a < ¢ < oo we say that'a or b
are regular; otherwise they are singular. In our setting a or b may be either regular
orsingular and we signal the regular case at either or both end-points by writing I as
a semi-closed or closed interval [a, b), (a,b], or {a,b]. We regard an infinite end-point
as singular,

M, is said to be limit-point or LP at the singular end-point @ or b if there is at
most one solution of M,[y] = 0 which is in L?(a,¢) or L?(c,b) for a < ¢ < b. M, is
limit-circle or LC at an end-point if both solutions are in L?(w; J) for a neighborhood
J ‘containing the point. - If .one end-point is regular and the other singular the LP
case can be shown equivalent to. the property that D is exactly a two dimensional
extension of Dy; while if M, is limit-circle, then D is a four dimensional extension of
Dy.Still another characterization of the LP property at a singular point (say b) which
is sometimes taken as the definition is the vanishing of the Lagrange bilinear form
{y,2} at the point. We define this form by the identity (proven by two integration
by parts) .

s
[tttz - [ B = .50 - 0,300,
s
where ¢,5' € I and {y,2}(t) := (ypz' — py'z)(t).  That M, is limit-point at b is
equivalent to the property
lim{y, 2}(0) =0

2 Any local property will be labeled with the subscript “loc; thus lecc(ﬂ) will denote the
the locally square integrable functions on 2.
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for all y,;z € D. A more restrictive condition at b which implies. LP is the “strong
limit-point” (SLP) property which means that

lim(ypz')(t) =0
t=+b.

for all'y, z.€ D. That in our setting M, must be either limit-point or limit-circle is
called the Weyl alternative after the inventor of these concepts.® The SLP property
has been extensively: studied by Everitt; see e.g. {10-11} and [17]. For LP: criteria
see Read [26] and Kauffman, Read, and Zett1{22].

If M., is limit-point at:the singular end-points one can show that separation on Dg
implies separation on D.- Further if L is separated then M, is.SLP at the singular
endpoints.: Proofs of these statements may be:found. in [3, Proposition 2.

A version of minimal conditions that applies to the expression — div(PVy)+qy has
been given by E.B, Davies using quadratic form methods in the book [5]. But most
results of interest to us have been proven using some variant of the basic conditions
give above. In particular appropriate smoothness? is required for P.and it is assumed
that g € L2 (). Under such hypotheses Dh 2 C5°(R2), Ly = L, and L* = Lo =L,
where L as'in the ordinary case is defined by M, .. on

D= {ue L (w;Q): Myaly) € L*(w; )}

where the differentiation in ‘M, ,, is interpreted in the distributional sense. For the
details of this development see [5] or [7]. 'We remark however that, for consistency,
in‘the discussion of operators determined by M, and M, . we shall call Lo the
“minimal ‘operator”, while most other writers use this term to denote Lj in the
partial case. When € = R or R} = R™\ {0}, n > 2, the idea which replaces the
LP conditionis the concept that Lj is-“essentially self-adjoint”.  This means that
Ly= _’(; = L. Thus since.L* = Lo, L is self-adjoint. Equivalently Lo has a unique
self-adjoint extension; for if T is any self-adjoint extension of Lo, then

T=T'CLi=L=LyCT.

Many sufficient conditions have been given for essential self-adjointness. For instance,
Simon [27] showed that the basic Schrodinger operator —Ay -+ gy is essentially self-
adjoint if ¢ = ¢1 + g0, where 0 <'g1 € L?(R?) and go € L. Successively more

2 Likewise the nomenclature “limit-point” or “limit-circle” is due to Weyl and results from
his technique which associates these cases with nested families of circles in the complex
plane which' converge respectively either:to a point or a circle. See e.g. Coddington and
Levinson [4, Chapter 9] for an’account of Weyl’s method.

4 One can usually get by with P.€ C*+%(Q) for some o > 0 Tather than our assumption
that P-e C2(Q).
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powerful -extensions- of ‘this result:were given by Kato[21], Eastham, Evans, and
McLeod [7],-and Evans[8]. Since these results are rather complicated and -are pe-
ripheral to our main interest we will not state them here. Some of these papers allow
considerable oscillation of ¢ at oo, but not potentials which are strongly singular at
0. This gap was covered by Kalf [19] and Kalf et al. {20} who showed that —Ay + qy
is essentially self-adjoint on R if ¢ satisfies a local Stummel condition and

02 (L-{(n = 2)/2P) 72 ~ ol

with 7:22:0. Essential self-adjointness criteria for L{, on a-subdomain 2 C R™ can be
found in Jorgens [18].

Our purpose in_this paper is to improve the following two separation results.ob-
tained in.[3] in the ordinary setting.

Theorem A. Suppose p* € Lioc(I), w is a positive function in Lipc(), pg 2 0,
and g€ "ACi,c(I), where I = [a,b), —c0 < a < b < co.  Then. the separation
inequality (1.4) holds for all y € Do with certain constants A,C <1, B<2, K =
and L =0 under the condition

(Isih lim sup lu,pl/’l(w—lq)'/qsﬂ[ =6<2
b

Theorem B. 'Suppose p and w satisfy the minimal conditions stated above on
I'= [a, 00) and additionally that pq >0, and q, p are differentiable on I, Then the
separation inequality (1.4) holds on Dy with certain constants A,C < 1,"B.<' 2,
K=1,and L=0if

(S:h li?ligp lw(p(w™g)")/a?| = 6.

for some 0.< 0.<2.

Our proof of Theorem A closely followed an argument due to Everitt and Giertz
who considered the case w =-p = 1. Theorem B on the other hand appears to be
new. It was motivated by a claim of Dunford and Schwartz who in {6, Chapter XIII,
9.B5, p.1541] state without giving a proof or reference that M, is separated on D
when I =0, 00) if

limsup |(pg')'|¢® <'1.
t-00.

As noted by Everitt and Giertz in 1974 [14] this condition may be a misprint since
p(z) =1 and g(z) = —x for z € [0, 00) satisfies the condition and yet as is shown
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by them in [12] separation does not. occur. Our.version is'in‘a weighted setting and
proves (but 'on Do only) a result that may have been intended.

Our extensions of the above theorems are given in Sections 3 and 4. In Theorem 1
of Section 3 we prove a version of Theorem B. in the ordinary case which replaces
(11 1) by the condition (S;) which differs from the previous condition in omitting the
absolute value sign.. This allows more freedom in the choice of p,¢ and w. Such a
result parallels a version of Theorem A proven by Atkinson in {1] which allows some
negativity'in |St]. ‘Here it was shown that if w =p =1 then separation occurs on D
if

~4/V15 < ¢'J¢*% < 4/V/T5.

Further we -allow ‘@ and/or b to be singular or finite and (with some. additional
tightening of ‘the assumptions on p,¢ and w) pg to be nonpositive. 'Examples of
Theorem 1 will include limit-circle cases satisfying a separation inequality on" Dy
but: not_on. D and which ‘additionally do not satisfy the Everitt and Giertz-type
criterion of Theorem A. In Section 4 we turn-to the multidimensional -case and
prove separation theorems for weighted ‘Schridinger-type operators. The first result
(Theorem 2) ‘extends Theorem ‘A to this setting. The argument is’ similar to that
given by Everitt. and Giertz [16], but the class of operators we. consider is wider:
Our separation criterion is also of-the ‘same general type as that given by Evans
and - Zett1[9] but because we work on Dy we do not require essential self-adjointness
at the outset and so our assumptions are less ‘complicated and-we permit strongly
singular potentials such as those considered in [19-20]. Theorem 3 is an R™ extension
of the the simplest part of Theorem 1.-A: Corollary will imply -that -the minimal
operator: corresponding to —Ay + qy is separated if Ag <0, in other words if ¢ is
superharmonic (i.e., -Ag 2> 0, where A signifies the Laplacean). "The paper ends
with an example showing that in: Theorems 1-3 the conditions 6 < 2 or f < 2 are
necessary for separation on D.in all dimensions.

3.:A SEPARATION RESULT FOR SECOND ORDER SYMMETRIC:  ORDINARY
DIFFERENTIAL OPERATORS

Let A denote a real parameter. ‘We call ‘A admissible if A:> 1 and for some 6:€
(=00,1);26—8%/A > 6, where 6 is defined by (S1). Also set @ := 2Apgw—p(p'w=1),
and define
Q@) i Qx(x) < 0
0, otherwise,

(3.1) {@&}-(2) = {

‘We consider: the following conditions on p, ¢ and w which may hold for an admissible
Aon' I, =[s,b) or I, =(a,s] for s sufficiently close to a singular point c =a orb.
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()~ pg>0.
©) Q30

©) ([ 1on-de)( [ i) <o
ap ([1@)-0a) ([ wrsae) <1

©) ([ 1@)-de)( [wrtie) <o
s ([ 100-0)([[wer) <1

(C4) There exists a positive continuous function f such that for e >0

s 102 (101 | e az) (lrcor- | O ) <o,

1€ f(2)

timsup /(0 (£ (01 | e i) (ko [ wrtaz) <o

(C5)' g2 0.and —Qx < E(M)p < oo, where E()) is a positive constant depending
on-A.
Given these conditions we can state:

Theorem 1. Suppose p,q and w are twice differentiable on I. Then M, [y} on
Dy is separated and satisfies an inequality of the form (1.4) with A = C->.0, and
B =0 under one of (C0)-(C5) provided also that (S;) holds.

Proof: We begin by choosing s large enough as needed so that the conditions
(C0)~(C5) hold, and so that in (S;)

wiplw™q))' () A - (A-4)?
q(t)? = A

(3.2)
&% &
< —— e,
<28 T < 2 X
for a convenient admissible A.

Let M, »[y] be given by the expression w™ {—(py') + Aqy].- We define the maximal
and minimal operators L and Lo corresponding to M., x as-above, but on I,.  Let
C§°(I5) denote the infinitely differentiable functions with compact support on I,.
Then C§°(I:) C D} relative to I,. Suppose y. € C§°(I,) and and A > 1. Repeated
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integrations by parts and evaluation of ‘M, f, »-show that
(43 Ml = [ whE bl

— el "2 11,12
=l )+ [ [2iauly!

+ (g)ut (1 - M) ('A“’q;x"')’ )Ivl?) da.

Alternatively,

(3.4) 1Man itz g = /[ {(w"p2y”)” = (2Apqu™t = p(p'w™ )"y’
+((09*™ = Aplw™'9)) )y} rde
= [ {we P + om! = plum P
+((AgPw™ = Op(w™0)) )y} de
-1 1o 1NN 2
2 /1 {(%pqw pPw Y)Y
ol am =Lyl
+(Aq)2w—1(“ w(p(;vq2 q)-)xylz}dm,
Tt then follows from (3.2) together with (3.3)-and (C0) or (3.1),(3.4),:and (C1) that
(3.5) IMu il = A= 82w~ gyl .-
However, it is also true that
(3.6) 1Moo A Wllwre < 1 Maufylln,r + O = Dllw™ gylw,z-
‘And therefore
IMulylllu,r, 2 = O)llw™ ayllu,r,.

If the conditions. (C2) or (C3) are satisfied instead of (C1), it follows from (25,
Theorems 1.14 and 6.2] that there is the Hardy-type inequality

[1@uwresc [ vitypas,
where C'< 1. This together with.(3.4) yields that
Mo s[5, 2 (1= C) /I ; {w Py P+ [(0)w= g = Gp(wte)) Ny} de
and the proof is completed as before. m}
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If (C4) is satisfied, it follows from (2, Theorem 2.1] that. there is a sum inequality
of the form

IVAGT=y |7 < e {fw=taull + e~ oI5} -

Again, using (3.4) gives the inequality
Wl 2 (1= 6)/ {7 Py P+ [ = 2w ¢ = Qp(w™ )Y ]Iy} da.
1.

With large enough A and small enough e we obtain that

Mo [yl 2 [V =82 —e]llw™ gyl s

>{(A=8) —vE] qvfw,x,

which combined with (3.6) gives.that
I3Mufulllr: 2 [(1=8) = Vel ™ qullu,s,

with [(1 = d).—/E] >0.
Finally, under (C5) we rearrange (3.4) so that

Pteplill, +E0) [ Pz > [ Qo (1- 220D )

Combining this with the inequalities

/Iﬁ!y’lzdxﬁMw,A[yLy] 2 S GOlIM W, + Gl

(the last. of which being a consequence of Cauchy-Schwartz and.the ‘arithmetic-
geometric mean inequality) gives that

A+ LB Mol + B2 Y,
;1(1 ) )fyﬁdz

and the proof is repeated as before.
Thus under any of these assumptions we have obtained a separation inequality for

Cg° functions on . Now let L] denote the restriction of Lj to C§(I,). We sketch
a'standard argument showing that that Z7 = Lo. It is clear that L C Ly*. If we can
show that Ly* C L, it-will follow that L* = LI = L. Suppose (a, ) belongs to

282




"

the graph of L{* so that [Lgy, olw 1. = [y, Blw .. Making use of the differentiability
of p we write —(py!) = —p'y" — py”
where

- Integration by parts then gives {y, z)uw. 1. =0,

. ol
7= / plads+ / (t = 35)(go = P)ds—pa.

.
The Fundamental Lemma. of ‘the calculus. of variations implies that z is a linear
function. Since 2z’ is absolutely continuous, two-differentiations show that o ¢ D
and 3 = L(a). Thus Li* ='L. Since L* = LT = Lo, we can:approximate y € Dy
and "My, [y by sequences {y }, My a[yn], where the y, € C§2(Z;). From this it
will follow (cf. {9, p. 313] or [3, Lemma 1]) that the inequality is true on Do defined
relative to .

Next we want to extend these results to 1. To this end, define a pair of smooth
compact ‘support functions ;@2 on [s,h) or {a,s] such that ¢;(s) =1, ¥i(s) =0
and @2(s) =0, wh(s) = 1. Then for a given yin Dy (on ), the function § =yx, =4,
where ¥ = y(s)p1 + y'(s)w2 is in. Do on 1. By the previous reasoning there is-an
inequality of the form

Jlo ™ il 1. < KMl 1,

However this together with the triangle inequality implies that
™ qullan, 1, € KMo fullo, s+ 1Mol 1+ o™ bl g,

Since ¥ has compact support the last two norms are finite, so that [Jw™ gyll..;, < 0o.
‘As we pointed out above this fact and a closed graph argument. gives the inequality
for Dy (on.1,)

(3.7) o ayllo 1. KN Mufyllwr, 1l }
S KMo fylll, 1+ yllws}-

However, since the Green’s function G(t, 5) of My, is evidently hounded on {a, 5} x[a, s}
if a is regular or on [s, b] X [s,] if b is regular we can obtain an ineguality of the form

Wllwsfa,s) S Kl Mo lllugos - or Wyllosn < Kl Mululllvsm

for all y € D such that y(a) =y'(a) =0 ory(b) = y'(b) = 0. Since ¢,w™* are also
bounded on [a, 8] it follows that

(38) N gyl fo,o) < K1 KMo [Y)lljas) € K Ko | Mo [y)llw, 1

where K,-is a bound on w™lg. (3.7), (3.8) together followed by application of the
triangle inequality gives that

lhe ™ (py") w1 < (K1 K + KMyl + K lylloor-
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Remark 1. The hypotheses (C1)-(C4).of Theorem 1.can viewed as examples of
conditions which guarantee either that.the spectrum of ‘a certain minimal operator
is'nonnegative or.that a certain ‘quadratic. formis nonnegative. " Let ]Vw,,\(y] =
wT [~ (Py)Y + Qayl, where P = w™'p? Assume that P and Q. satisfy minimal

conditions and let Lo, ; signify the minimal operator determined by Mon'l, We
also define 'the quadratic form @, ; by

.00 = [ [PEF+Qlaf] da.
e

We then consider the conditions
(C6) -For-sufficiently large A,'s Lo,. has nonnegative continuous spectrum.
(C7) If 2= y', where y € C§(I,) then @ s(z).2.0.

It is well known that (C6) == (CT7).

Corollary 1. Let p,q, and w satisfy the hypotheses of Theorem.1. Then M, is
separated and the inequality of Theorem 1:holds under (C6) or (C7) provided (S1)
is satisfied. In (C6) P.and Q) need not satisfy minimal conditions.

Proof.  ‘We repeat the proof of Theorem 1 noting that (C6) and (C7) can
replace (C1)-(C4) in that they guarantee that

/, [ Ry (2Apqw™! = p(pw™ )] du 3 0,
if o € C2(IL). u]

Corollary 2. ‘If I = [a,00), w =1, and pg >0 then M is separated on Dy if
(pg"Y < 0. If p>0 and.g is bounded below then M is also separated on D.

Proof. That M is separated on Dp is immediate from Theorem 1 using (C0).
That M is limit-point if p > 0 and g is bounded below is well known (see e.g. (6,
XI11.6.14, p. 1405); consequently M is separated on D. a

Examples. Tn all the cases that follow w™ g is unbounded since otherwise
separation holds trivially.

1. Let p(t) = 1%, w(t) = ¢, q(t) = C1?, and I = [a,00), a > 0, where C is.a positive
constant. Then (C0) is satisfied for all A > 0 and (S;) holds if (¢~ 6+8—1)(5—-8) £ 0,
B>a-2 orfi=a—2and 2a~6—-3)(a~2~4)<2C. Thusif p(t) = t* and
a < 2 wecan let g(t) = t® for 8 > 0. In both cases the operator is limit-point at 0o
s0-that separation will also hold on D.

284




2 Let I p(t) w dﬂd C’ be as abeve but ta,ke q( ) = --wC tﬁ (Cl) holds 1f a(a 5 -—
1) < 0 and ﬁ <; r}g 2 (Sl) h{:a dS 1f (0: 5 + ,(3 e 1)(5 é) 0 We note that n the
f._j";_fjfﬁ'-_::"f_::f?_uﬁweighted {:a,sc We ca,nmt {Jbtam fmm (CI) ally nont; mal Gxample of beparatmﬁ
F{)r 5 0 1mphes that cr E (G 1) a,:ad tllelefme ;3 <: 1 sa t;hat q 13 bc}unded

5 Let = 0,000, pl0) = e, w(t) = %, and g(t) = C®, where C > 0. (00)_?ﬁi'{i—ffff-';iff:}'{:iij.-‘i
(i:f Theorem 1 lmldq aﬂd (S 1) 13 Satlsﬁed 1f ( ﬁ_._fw i) ) ( ;3 + a - (5) :> 0 zmd ;3' :> a 01
fi?_'-i'{'.f.f‘.'f_:'j;f?;(/3 5)(5 + af 5) U or 0 ~=< ( o )(2{1 - 5) < 2 If ,6 =a. o

4 L(,t everytlnng be dS 111 _Jxample 3 but take q( ) -—Ceﬁ 3 F{)i‘ (Cl) tO b? S&tISflﬂdl:;';j';f_:';'i'_.'j.if_'-;f-?f..
we need fhaf O <a< 3 and /3 <a. (2 1) lmphes tlmt ( -—-— é‘(ﬁ +a -—.'}._. ) < 0 d,nd__
)3 > c:t 01‘ (5 5)(5 *i“ ﬂl’ ""“:"-.-. )-" 0 UI‘ U > ({1 **3_._ )(2(1 .._;_-_.'g,) > 2 If ﬁ = a SRR

5 If w = 1 p (q ) - q g {) and I_ = [a, eo) sepal a,tmn 011 D{} isa {'{JHSLQHGHC(’_
:':'_‘_5f—}}tf_?_'fff;:lf Tht;()l em A Uﬁder the same dssumptmns {m w dnd qj If p.—- (q ) 8 for T :> 1 fmd__'{i';'_.'{f:}_}_f_.5_;:.f_['

= 5_-6 Ifw= - - =1, Xl ---‘? 2 /8 and 1 = (o m) we find that .
S - q _ -

5;3.'_5'_:_'5':fjfﬁ_f_}.':':;'.';Consequently )\ = 1 15 adnnsmble 1f (5 >~ 6 A Cdlﬂ.ﬁl&tiﬁ}ﬂ slmws tha,t the qemnd
é'g;_::f-:j_'-_:;'f:}::_-'_-:cendmon ef ((33) dpplzes mth 5 = O Eqmvaient]}, the (:lasslcal Hardy mequ&hty;{:ﬁ;f_f:':f-'@i_:'_f_{
- __~~_______ .

sa tha,t (C?’ ) lmlds W@ COHCIWJP that separahon c}caﬁfs {m Dg and by (3 5) (3 6
thel' e 15 the mequahty |

ha,ve a,n example ef sepamtmn lmldmg {JII D{} but nm f:}n ’D "\I{::te alse that sm{:e

The&rem A does 1101; apply

7 Let I = (0 1] P -*-?.-_.#—ctlf’ 2. w = 1 q = ct“3/ 2 £3 where c :> 0 15 a mmtam



(PQ ) t""’3 <: 0 ThlS example dc)es not satzsfy a versmn of iS*I fermulated__':3-f_i_-'j_'-j'_?_'g"_:'_"_f_-f:{-
~for the smgular pomt O since 4 is found to be 83f’ 2(16)2f 3;_- 7.413. ‘Moreover M is
lmut carcle at 0 since 1t is a perturbatlan ef an Euler operatﬂr w1th twp L"2 mteg,rable_'_i_'j-';_-'_';'f;"}_:-'j;::-_'-:f;
Cosolmiomsat0. ot

We Wrzte o

i ff T('y) .

SN (pij (:{;) '.Jy) = diV(va)

m that Mw ﬂ{ ] : _' [WT(y) + qy] Our gOal Wﬂ] be to pmve SEparﬂ,t}{)ﬂ 1116quallt1e5_:_.;_:._i::-';';_:.';f}f{i‘iﬁéj
gn Dy = (Q) Gf the form (1. 5) by genemhzmg The{}rem A and. Theorem 1.
G Since: L* = L[] = L" a clc}sure argument lzke that gwen in [16 Lemma 2] will show

5:_5:'-.1_:;_'f_;‘_:‘_:-'_:_i'_:'that tlze mequahty holds on. ng anally} zf LD is es:pentmlly Self-adjf}lnt (S(} t,ha,t E

Lemma 1 Suppose T; 0 15 essentiaﬂy se!f—ad Jomt and that; L zs Sepamfed Then
Lﬂ 15 ESS@HH&HJ’ SE'If &dJﬂmt

P ro af We need show on y that L is. seif-adjoiﬁt Let (u v) E Graph (L*)
5:E'.E:_ff;'3:'j'-:i"i"f':ﬁ'Graph (La) Then [Ly, ]w o= y} Ju, g Smce Lis %parated ‘the Cauchy-Schwa,rtz
f3_:-3.;?':-'2fif;f_f':zmequalmy 1mphes that [ 1T(y) ulw and ['w qy, ]w Q are. ﬁmte ‘Hence by the
5:5'_5;3_._1;_";"'-:'E_f.'-f.essentlal self—adjmntness af T{U o anci self~ad30mtness s:}f multiplzcatmn opera,tors f-."f;_:{'f.-_':';f-:;’_-f_{}




} do = :ﬁ

where v E (0 1) Apphcatzon ot the arzthmetzc géometrm mean mequahty te the the
tﬁ’rm ’7’(’*1} ﬂ{n w)('w 1 T[ ]) Hl ( 4 1) gwes fGI’ 5 > 0 th !’3 L q tli“ﬁ&t E’ -

--<4-2> : / <wM n 1%[ D (w* T[ D ar| <} {5nMﬁ v m otd lw 'y g}

N ex,t; __mtegratzon b}’ Darts the rondztmn (]S* D dﬁd fhe d,r:thmem C*“wmﬁtl‘ H? m Lfi»li
; f Qj-_'_-'-:'_-'_.:tnequalzty a,pphed to w- —4 T[ }qy ylelds sucv;:esmvel} ﬂldt _.

ey ﬁfif; - g w! HP <x> w v y] : qn - (by (IS* !)
<] uP annwm (o dm) _ (

e s



We I}DW substxtute (4 2) and ( 4 3) mta (4 1) tc) obtam

(1 + 76/2)11Mﬂ w[ ]n '(1 ..__'_._"f__,, » ”wwiﬂ ]”m o

+ Hw"lqy!l

+ (2 7)(1 - -iﬁ)lfﬁf”%{PV% V§]1/2q1|
[(1 - (2 7)(19)] Ilﬂi“iqv}l

<2 v)( : 6) <ley>2-1 ff;-i s‘i fij- .

Thearem 3 Under C()Ildi tmn (Sﬂ) aﬂd 1f q > 0 tlzen M w,n’ S-EitJSﬁES the separa--:ﬂ'ﬁ};i:f:Z;{{-?i_?_
t;oﬂ mequa}:ty (1 5) 011 Dg wn;b A C K -_........1 and B L O
P I‘{} (}f Leb y e C’g"‘* (Q) and set Mw n, A | m "’“}*[“-T(y) + Aqy] By a, dzreat
51f"{fff_'f-.':.f.f.compnta,tmn L e

e o + [ w )t (AQ) 2 {3’ lz d:r:

- re=){lw (P, Yyl q) e
S - anw'*l ( [pvy, sz}nqr)l/ 21 w9 uw' qyuw 2 }

':r._}__i-_Tlns 15 the mequ ah ty (1 5) 1f We {:h aose 'y < 1 such th at ';f Gl

. ;-i_;.i;j.-_‘ {{P vy, Vy } n ;;;,;--f 1 Aq + [Pv;q, v (u} -1 ,\q)]n y} dm . 5_;'._';{;;.'; '




o PV(? {-;h-} . V ([JI )

The prmf ___:;s then (‘oznpleted db 111 th{, (CD) {,a,,se <3f Tlxem {1111 (N{:}te that i:l:e_:.;:_-_-_:;;'.;'_:-..-_::'-_'-_'?j

f;".f.f._"__-"{_:j':"'::';-_';:'gbasz(, a&sumptmns on the 111&13111 P a,nd hi; 11011119&,@1:11311:1 {}i q gu&l aﬂtee Lhdt_
fs) P vyzvy]nw de e S e T b :

j:'; T he next res ult pax allels Cm 011 az y 2 f{}r n > 1 : | 33 3.j

| Cﬂr 0].131' y 3 If ﬁ} s ]_ ﬂﬂd P — I n th E}H Eh 61 e 1 ‘5 d "3’ F’pa.t a tIOﬂ mequa 11 fy {:} f f{j} H}.
R 9 m au r k 2 ’W e f:an ShOW thdt 6 2 in Tlleorﬂm ‘2 and 8 <: 2 in- Theﬁrems 1
ar;d 3 18 a 11‘3'*3‘»‘3‘53@»13’ wndltzon {m sepaz atmn on D f{}z cxll dznwnsmﬂs n. To see thlb,_’.-_'i-_'-:t_f;_f_?f--f_-f_-'-_'f_-'

ff_;:.-_}_[:.-:'.-'{‘:fj;_f;_’-_iet S‘Z be R'”‘ \ B(O 1) (D 1) is the umt baﬂ a:entei ed at the (}I'lgiﬂ) and set

e g

5"55fiff?ﬁff_?'_r"f-':"--'Z_W.hfé?-@;'f:-_‘?*-.';-:_JF?-&P.??S.@.P‘-%S. :ﬂ;‘%h_e_:f_a.ngulax m .e.a_s_mef{i.n._":fpﬁi_arfcoﬂrdi.na.tesé 'f-‘f.Als.o?

@4y ?:ff_:'f:’-"" | 'w ™ ' fzy 12 dﬂ» — 00 & 2@ 5 25

In Themem th@ condltmn (}5‘*’ I) gzves

ff.-':.'-'_':-_;;:-:'_'i:f'f:'-f_:"_Supp{}se in. (4 6) that 5 = 2 —i~ E. We wﬂ,l show that we {:an ch{}ose. o ;3 5 ciﬂd. !-L

;Eﬁif_;:-_i:;?_ﬁ_";.f-;'-_j.;'such tha,t (4 4). and (4 5) are satlsﬁed Fzrst we. sui.j.pﬂse that Ly =0 Thzs lmpllefs
:;;.'-:3;_?_}_:'-':_{:';.'..}:'.;_thdt K 0= y(a: + u — ’3’ -1~ n) T\Text take {.1’ = 2 — T S0 that I{ 0= ,u, NOW (4 4)
e ;--2u > 6 + n and (4 5) & 2# 5 + n. In ﬂther wordsﬁ %Stimlﬂg that <~ —n,



f; 1:':'_: Next 1{ )(3 — c:r: | 3 = m n then (4 6) 15 equwalent to = '. ” .i_ :.::.jf_:'.;'-; {_: .{:.';. :':' 3_;

;mn*ﬂ ]n+ﬂ

But the Sltuatlon when 9 E [2 4 / \/. ) wa,s Ieft Open ThlS pmblem seems stﬂl t{} be_'f}_;'_ﬁ'}:_'::‘;f_'j-_:'f-_"

f{'_}.fff_ff:fi_'}..'_:;f;}_Gpen hewever our example shows that if neﬂtrwial p} w ‘are all{)wed A c.a,nnot exceed_};:-ﬁ_?_f..f'ff.f-f-}f;
i 2 111 Thecrem A zf Sep clI‘EtthI} 15 to occur 011 ’D : _-J_-_}:.-;:}_';_i_i-: ';_-'j_.}';_';'-_-:'_-.5;i;

A sh ghtly m(}dzﬁ ed an al ys1s works fGI‘ The{:; rems 1 and 3 Here

E_idnd thus (S ) b ecc)xri e.s '_

(47) e Isug i K ‘(ﬁ 6) (ﬁ 5+a) i:r: i -t 2 -
~thmuwbﬁffﬁpf§,mg,-,w,w,_,“_ﬁéyﬂﬁ; :}£f1:;c9;

SUPDUSE‘ 9 2 The Lhﬂlce ﬁ .,...,—-»n ne e 2 n a,nd ,u suﬂh that Ly 0 gweﬂ 111 (4 7)

:; '5;}_‘f_.ijg_f_-_f';'._;i_'-;-}._fzf 5 <-n then (4 4) mn h@ld M{)re{}ver ’},f{ e

@,m;alngQiff 2 ﬁﬁawdm+ﬂ) m+ﬂ) "ffff[ﬁ?7 75;3

ff %@f j{[FF73f?!f€[E  ﬁ5FRQUGF?EEMLEJ:JULJQL

W' _:J@?Eiwum,,mtqﬁxwrwrrwxzs
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