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Abstract Let H be a bounded C°° domain in R n . The paper deals with inequalities of 
Hardy type related to the function spaces i?p?(fi) and F;f9(S7). 
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l . INTRODUCTION, NOTATION, DEFINITIONS 

Let fl be a bounded C°° domain in R" and let 

(1) d(x) — inf la: — y\ where x € fi 
sean 

be the distance to the boundary dil of fi. Let s 6 N and 1 < p < oo. Then there is 
a constant c > 0 with 

(2) / d(x)-'\f(x)\"dx ^ c VJ / \Daf(x)fdx 
Jsi ,~7Ž,Jfi 

for all (complex-valued) / G D(Q) = Co°(fl). This is a very well known version of 
Hardy's inequality. Let 

0 < s < 1, 1 < p < oo, s ^ - . 

Then there is a constant c > 0 with 

\f(«-\ _ f(,,\\p f 

)\pdx (3) [ d^(x)\f(xWdx<c ( lfiý {^dxdy + c j \f(x)\v 
Jn Jsixa \x ~y\ H Ja 
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for all / 6 D(Q). This is the well known fractional counterpart of (2). If s = -
then there is no c > 0 with (3) for all / 6 D(Q). Both assertions are covered by 
[9], pp. 319-320. Of course, the righthand sides of (2) and (3) are the pth powers of 
the norms in the Sobolev space Hp(Q) and in the Besov space Bpp(fl), respectively. 
By some real and complex interpolation one can extend (2) and (3) to all Sobolev 
spaces H*(Q) and all (special) Besov spaces Bpp(£l) with 

(4) 1 < p< c», s > 0, s - - g No 

(and / € D(il)). If one asks for inequalities of type (2) or (3) with respect to the 
spaces Fpq(U) and Bpq(U), then (avoiding limiting cases) there is a natural restriction 
of the parameters s,p,q given by 

(5) 0 < p < o o , 0 < g < oo, s>(7p = n( l ) . 
\p ) + 

As for FrJ(;(n), we proved in [13] the corresponding Hardy inequalities. Inequalities 
of this type in Bpq(il) with p > 1 and q >- 1 have been discussed in [9], p. 319. It is 
the aim of this paper to complement these results and to prove a theorem which has 
a rather final character (with the exception of the limiting cases). 

We assume that the reader is familiar with the basic notation of the spaces Bp (R") 
and F°q(R

n) on R". We refer to [8, 10,11]. We only mention that H*(Rn) = Fp
s
2(R") 

are the (fractional) Hardy-Sobolev spaces. Recall that fi is a bounded C°° domain 
in R". Then B-pq(fl) and Fs

q(il) have the usual meaning: the restriction of B^q(R
n) 

and Fpq(U
n) to n, respectively. Let Bs

pq(Q.) and Fpq(U) be the completion of D(il) 
in Bpq(U) and F^q(fi), respectively. Finally, let 

(6) ^ ( n ) = {/eB^(R»): supp/cfi} 

with the quasinorm 

(7) 11/1^(0)11 = ll / |B| ,(Rn) | | . 

Similarly, Fpq(U) is defined. We may assume from the very beginning that p, q, s are 
restricted by (5). Then without any ambiguity, one may consider Bpq($l) and Fpq(Q,) 
either as subspaces of S'(Rn) or of D'(Q). We refer to [13] for a discussion of the 
matter. 

If 

(8) 0 < p < o o , 0 < q < co, s>ap, and s g N0, 



(9) F;q(Q) = F;q(ri) and B;q(il) = B;q(il). 

The first assertion coincides with [13], Theorem 2.4.2. As for the B-spaces with 
1 < p < oo, 1 <_ q < ©o we refer to [9], Theorem 4.3.2/1, pp. 317-318, However, the 
extension of the technique used there to all p, q, s with (8) is covered by the F-case 
and the real interpolation formula (27) below. (First one proves this assertion for 
n = 1, then one can reduce the case n > 1 to the onedimensional case by using [10], 
Theorem 2.5.13, p. 115). Hence we take (8), (9) for granted. An extension of (9) to 
values s — - e No is not possible in general. We refer to [9], p. 319, formula (10), for 
the B-case (restricted to 1 < p'< oo, 1 < q < oo) and to [13], 2.4.4, formula (2.74), 
for the F-case (restricted to 1 < p < oo, 0 < q < oo). We will not need (8), (9) in 
the sequel, but it illustrates the well known exceptional role of the parameters s, p 
with s - - e No ™ inequalities of Hardy type. 

Finally, let 

(10) SI* = {x e 11: d(x) < t} where t > 0. 

2. RESULTS AND COMMENTS 

2.1. Theorem. Let p, q, s be given by (5). 
(i) There is a constant c > 0 sucJi that 

( i i ) Jad-'{x)\f(x)\'dx < c||/|i^(n)||" 

foraJJ/ei?J,(fi). 
(ii) TJiere is a constant c > 0 such that 

(12) J" t^ (J \f(xW da:) " f < c\\f\B;q(Q)r 

for all f e B;q(Sl). 

2.2. R e m a r k . Part (i) coincides essentially with [13], Proposition 2.2.5. Part 
(ii), restricted to 1 < p < oo, 1 <. q <. oo, may be found in [9], p. 319. In other 
words, compared with what is known, the theorem extends (12) to the full scale 
of parameters given by (5). Maybe one can do this by following the rather tricky 
arguments in [13] now armed with the characterization of all the spaces B;q(U

n) by 
differences as in [10], Theorem 2.5.12, p. 110. However, our intention is different. We 
prove part (ii) for all parameters admitted by real interpolation of part (i). 
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2.3. S p e c i a l c a s e s . If p = q then (12) coincides with 

(13) j ^ d-»(x) \f(x)f dx < C | | / | / j ;p(fi) |p 

for all / e -Bpp(n). Recall that H* = Fp>2 are the Hardy-Sobolev spaces. If p, q, s 

are given by (8), then we have (9) and, hence, there is a number c > 0 such that 

(14) £ d-*"(x) \f(x)\» dx < c\\f\n;(nw 

and 

(is) £ dr"(x) \f(x)\' dx < c\\f\B;p(nw 

for all / e .D(O). This generalizes (2) and (3). 

2.4. E x c e p t i o n a l c a s e s . It is well known in the theory of function spaces 
that the spaces B p 3 , and F£q, with 

(16) 0 < p < oo, 0 < q < oo, s> ap, s - - € H0, 

play a special role. Restricted to 1 sj p ^ oo, 1 ^ q ^ oo in case of the B-spaces and 
to ffp = F p 2 with 1 < p < oo we refer to [5, 6, 9] and, more recently, [7], In [13] we 
treated F-spaces with (16). Also the boundary behaviour of functions belonging to 
the Bs

pq-spaces or F£q-spaces with (16) is somewhat delicate. Final assertions may 
be found in [8], p. 83, due to J.Franke, [4]; see also [13]. We mention only a rather 
special case which will be useful later on. Let I = (0,1) be the unit interval. Then, 
for 1 < p < oo, 

(17) blP(I) = B}P(I) and H»(I)=Hj(I), 

whereas B£P(I) does not coincide with BPP(I) and H$ (I) does not coincide with 
i 

HP(I). One may ask for substitutes of (14), (15) in these exceptional cases. Let 

AM) be either B;P(I) or H£(I), and let A\(I) be either B^p (I) or H\+*(I). Let 
log be taken with respect to base 2. 

2.5. Proposition. Let 1 < p < oo and 0 < 5 < \. 
(i) If x > 1, then there is a constant q > 0 such that 

(18) / ~T, r ^ L -: dx ^ c\\f\Ap(IW 
V ' jo z|k>ga;|P log"|logxl " ' pV 

126 



and 

for ail f 6 D(I). 
(ii) Let x < 0. There exists a function 

(20) / 0 eB | p ( / )n i j | ( / ) 

such that the letthand side of (18) (with f0 in place of f) is infinite (divergent 
integral) and there exists a function 

(21) hesltHnnH^Hi) 

such that the lefthand side of (19) (with / i in place of f) is infinite (divergent 
integral). 

2.6. R e m a r k . There is a gap between the sufficient condition x > 1 in (i) and 
the necessary condition x >• 0 in (ii). Otherwise a;|loga;p and x1+p|loga;|p is the 
appropriate replacement of ds»(x) in (14), (15) in the exceptional cases s = | and 
s = 1 + yt, respectively. 

2.7. C o m m e n t . Both (11) and (12) are sharp in the following sense. If 

(22) 0 < p < oo. 0 < g < oo, s>n( ; r - 1 | 
\mm(p,q) J + 

then 

(23) \\f\F;q(n)\\p ~ ll/|EP
s
g(n)||p + / d~s»(x) \f(x)\»dx 

Jn 

(equivalent quasinorms), [13], Theorem 2.2.8. If 

(24) 1 < p < oo, 1 <. g < oc, s > 0, 

then 

(25) l|/|B^(n)||»~||/|B^(n)||* + jr00t-^jr(|/(1-)|''dxy f , 

(equivalent quasinorms), [9], p. 319. There is hardly any doubt that (25) holds for 
all p,q,s with (5). 



3.1. P r o o f of T h e o r e m 2.1. As said above, part (i) is covered by [13], 
Proposition 2.2.5. We use this assertion to prove part (ii). Let 0 < 8 < 1 and 

(26) 0 < p < oo, 0 < q < oo, st > s0 > ap, s = (1 - $)s0 + 0si. 

Then we have by real interpolation 

(27) (F«(a),i%(nj)^ = B-„(ti). 

Without ~ this is a well known interpolation formula, [10], 2.4.2, p. 64. Recall 
Fs

p = Bpp. Then (27), restricted to 1 < p < oo, 1 ̂  q ^ oo, is covered by [9], 
Theorem 4.3.2/2, p. 318. Using the techniques developed in [10], one can extend the 
proof in [9] from 1 < p < oo, l < g < _ o o t o O < p < o o , 0 < g < oo. In particular, we 
have (27) with (26). Let 0 < p < oo and let Lp(tt,d~~") be the quasi-Banach space, 
quasinormed by 

(28) (J\f(x)\>d->(x)dx)i. 

Let p,q,si,so, s be given by (26). Then 

(29) (Lp(il,d—),LP(fl,d-%tq 

is a quasi-Banach space with the quasinorm 

(30) f r A* J ( f , \f(x)\p d-sop(x) dx) " 4^ 
L/0 \Jd(x)^^'0—lU- J A 

We refer to [1], p. 127. With t = A<"o-"i»'; the quasinorm (30) is equivalent to 

(31) / r* ( s i -"» '»( 
Uo \Jd(x)^t 

Using the (apparently crude) estimate 

(32) rsop f \f(x)\"dx^ [ \f(x)\pd~-sop(x)dx 
Jd' Jw 

it follows that (31) can be estimated from below by 

(33) f/V'«(f I/Mi* d*y 4-

This observation together with (11), (27) and (29), (30), and the interpolation prop­
erty prove (12). D 



3.2. R e m a r k . As noted above, the estimate (32) seems to be rather crude. But 
this is not the case in the above context. If one discretizes (31) via t = 2~~3, say, 
with j e N0, some calculations prove that (33) is even an equivalent quasinorm in 
the space in (29). By (25) this is not a surprise. 

3.3. P r o o f of P r o p o s i t i o n 2.5. 
S t e p 1. We prove (18). Let 1 < p < q < oo. Based on [12] we proved in [3], 

p. 90, 

(34) (JjfWdxy $cq«-$)\\f\Ap(I)\\, 

where c > 0 is independent of q and, of course, of / € AP(I) (but may depend on p). 
We may assume 6 = 2~J with ./ 6 N large. Then 

f5 J/MI" ,. 
2,-|І0gx|?' lOg^l lOgJІ 

<_Cl fVГҶlogiГ" / . \f(x)ïpdx 
Jì-i-i 

(35) 

< C2 JL-iJ~rQogj)-''(Ji_j_i l/(*)l'<-*) 'r^-V 

< c3 f)i-p(iogi)-"i(1-i)',||/K(/)||'. 
i=J 

(18) follows from (35) and x > 1. 
S t e p 2 . We prove (19). By [2] we have for some c > 0, 

(36) l / M K c M l l o g z l 1 - ? | | / | 4 ( I ) | | for all / € D(I). 

Inserting this estimate in the lefthand side of (19) and using again -A > 1 we arrive 
at (19). 

S t ep 3 . We prove part (ii). Let ap = 1 - x > 1. By [12] or [3], 2.7.1, p. 82, 
and (17) we may choose for /o in (20) the function 

(37) /o(z) = llogxl1-? log- f f |log*|^(x), 0<*<S, 

where ip(x) is a C°° function with support in (—6,6) and ip(0) ^~ 1 j±s for -t m (21) 
we may choose 

(38) h(x)=il>(x)J f0(y)dy ^ cx\\ogx\1-hoS"'\log3.^{x)t 



0 < x < S, again with op = 1 — x > 1. Here c > 0 is a suitable constant. As for 

the last estimate we refer to [2]. Otherwise, }\ 6 Ap(I) is clear in both versions of 

Ap(I). Finally, the boundary value /i(0) = 0 is sufficient for (21). This is covered 

by [4] or [8], p. 83. • 
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