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Dedicated to Professor Alois Kufner on the occasion of his 65th birthday 

Abstract. Including t h e previously untreated borderline cases, the trace spaces (in the 
distributional sense) of the Besov-Lizorkin-Triebel spaces are determined for the anisotropic 
(or quasi-homogeneous) version of these classes. T h e ranges of t h e traces are in all cases 
shown t o be approximation spaces, and these are shown to be different from t h e usual 
spaces precisely in t h e cases previously untreated. To analyse t h e new spaces, we carry over 
some real interpolation results as well as t h e refined Sobolev embeddings of J . Franke and 
B. Jawer th t o t h e anisotropic scales. 

Keywords: Anisotropic Besov and Lizorkm-Triebel spaces, approximation spaces, trace 
operators, boundary problems, interpolation, atomic decompositions, refined Sobolev em-
beddings 

MS0 1991: 46E35 

1. INTRODUCTION 

In this paper we present a complete solution of the trace problem for the 
anisotropic (or rather quasi-homogeneous) Besov and Lizorkin-Triebel spaces, de
noted by Bp^ and F££, respectively. The definitions are recalled in Appendix B 
below. 

* Par t ly suppor ted by the Graduiertenkolleg "Analytic and Stochastic Structures and Sys
tems" a t FSU Jena, part ly by the DFG-project J a 522/7-1. 



Here the trace is the operator 70, 

(1) / ( - l , -2, • • • , _n_l > -n) ^ / ( - l , _2, • • • , _n_l, 0), 

which restricts functions on Rn to the hyperplane T — {_„ = 0} in Rn (n ~£ 2)—in 
general this is defined in the obvious way on the subspace C(R, 3'(Rn_1)) of _. '(R"). 
For the B*'^(Rn) and F££(Rn) under consideration, this coincides with the extension 
by continuity from the Schwartz space 5(Rn), except for p = oo and q — oo in which 
cases S is not dense; however, because of embeddings, the latter exception is only 
felt for F^^, where s — an is the lowest possible value, an being the modulus of 
anisotropy associated to xn. (For simplicity, Rn is often suppressed in Bs

p'^ and F*£ 
etc. when confusion is unlikely to result.) 

The trace problem consists in finding spaces X and Y', as subspaces of _.'(Rn) 
and _-'(R"-"1), respectively, such that 70 yields a continuous, linear surjection 

(2) 7 o : X - . F . 

In this paper we determine those _?*;* and F°£ which allow such a Y to be found, 
and we moreover determine the optimal Y for these choices of X. (The existence of 
a right inverse of 70 is also discussed.) 

One effect of allowing anisotropic spaces is that 70 is studied on larger domains. 
However, the main motivation for the anisotropic spaces is that they are indispens
able for the fine theory of parabolic boundary problems. For example it is well known 
that in a treatment of dt — A it is necessary to use _?£;£ and F*'£ for a — ( 1 , . . . , 1,2) 
(gathering the moduli of anisotropy to form a vector in the (a;, t)-space) and that 
F°$ (locally) equals the intersection of LV{U,Hs

v(U
n~1)) and JH"|/2(R,Lp(Rn-1)). 

We refer the reader to works of G. Grubb [15, 16] for a recent treatment, based 
on L. Boutet de Monvel's pseudo-differential calculus, of parabolic initial boundary 
problems in anisotropic Besov and Bessel potential spaces. 

If desired, the reader may specialise to the isotropic case, which is given by a = 
(1... . .1). 

In the following review of results, comparison with other works is often postponed 
(for simplicity's sake) to later sections. 

For the continuity of 70 from _?*;£ or Fs'„ to _-'(Rn_1) two different conditions 
are necessary for p > 1 and p < 1. Introducing \a\ :— a% + ... + an and similarly 
|o'| = _i+. . ,+an_i for the spaces over Rn~i (so that in the isotropic case \a\ = n and 
\a'\ — n - 1), these may be expressed in the following way by letting t+ := max(Q, t): 

(3) . > m a x ( - ^ , - - _ | a ' | \ s S _ 2 + |a'|(i-l) ; K ' ' \p p 7 p ' ' Vp /+ ' 



in other words the correction \a'\(~ — 1) appears for 0 < p < 1. In the case of 
equality it is moreover necessary that q <. 1 in the B-case and p <. 1 in the F-case; 
cf. Figure 1. 

r=-lül. 

the trace does not exist 

in ^ ( R " - 1 ) 

Ы 
Figure 1 

This has earlier been known to specialists (we carry over explicit isotropic counter
examples of the second author [21, Rem. 2.9]). The case s = -- for p 5- 1 was 
investigated by V. I. Burenkov and M.L. Gol'dman [5], however only for q = 1; in 
the isotropic case 0 < q <. 1 and, for p < 1, the borderline case s = ~ — (n — 1) 
was treated by J. Johnsen [22], but surjectivity was left open for p < 1. The present 
article may therefore be seen as a continuation of [5] and [22]. Emphasis will be on 
the borderline cases mentioned, since it is known (and comparatively easy) that 70 
is a bounded, right invertible surjection 

(4) 7 o : B ^ ( R n ) ^ S r 9 ^ , a ' ( R n - 1 ) , l0:F;>°(nn)->B;;P^'a'(Un-1) 

in any of the generic cases (i.e. those with strict inequality in (3)). This is, of course, 
the well-known loss of - in the isotropic case. 

For s = ^ — \a'\ with p < 1 the optimal F's are determined below, and it turns 
out that whenever p, q <. 1 they are neither Besov nor Lizorkin-Triebel spaces. So in 
order to complete the range characterisation, we introduce another scale Ay%, which 
previously has been investigated mainly by Russian specialists in function spaces. 

In fact, 70 still lowers s by -*?• and it is a bounded surjection 

(5) 70: 
H - I . V , 

(6) 7o:EŽ И -».4£ l (*-1)lв'l 

R"-1) for p ,g€]0 , l ] , 

ljn-i\ for o < p < 1, 0 < q < 00. 



To have instead e.g. a Besov space as the co-domain, one can use an embedding of 
ApJ

iv~1),a (R71-1) into Bla'J£r~T)'a' (n*-1) for r = max(p,q) (which is optimal). 
An investigation of the borderline cases is given in Section 3.2 below. 

However, because of the various identifications between the Avfq and the Lebesgue, 
Besov and Lizorkin-Triebel spaces etc., it is possible to formulate all trace results in 
a concise way in terms of the AJ'S: 

Main Theorem. For a given anisofcropy a = (ai,..., an), the following assertions 
are equivalent: 
(a) the operator 7a is a continuous mapping from Bp^(Rn) into ^'(R"""1); 

(b) the operator 70 maps Bp^(Un) continuously onto APA
 v ' (R""1); 

(c) the triple (s,p,q) satisfies s ^ -|- + K | ( | - l ) + and, in case of equality, also 
0 < g < _ l . 

For the Lizorkin-Triebel spaces F*>® the analogous result holds if one replaces 

Ap,q " ' by Ap>p '' ' in (h) and replaces 'q ^ 1' by p ^ 1' in (c). 

It should be noted that the formal introduction of Ap>® in Definition 1 below allows 
us to give a short, self-contained proof of the main theorem in the Bp'?-case (thus 
a unified proof of all underlying borderline cases); the Lizorkin-Triebel case is then 
deduced from the Besov case by establishing a certain g-independence. This partly 
follows the work of M.Frazier and B. Jawerth [12], but we point out and correct a 
flaw in the proof of [12, Th. 11.1], see Remark 3.3 below. 

In order to deduce the relations between Ap,q
 v (R"_1), which enter in (5)-(6) 

above, and the usual spaces, we need anisotropic versions of the optimal mixed So-
bolev embeddings between the two scales B°^ and F^. 

For this purpose we carry over these embeddings (due to B. Jawerth and J. Franke), 
hence also some necessary real interpolation results for F*£, to the anisotropic set
ting. See Appendix C below for these results. 

In Section 2 below we introduce a working definition (based on a limit) of 70 
and then present results for the generic cases. The borderline cases are treated in 
Section 3, in particular the range spaces are presented for the cases with s — -^ — \a'\ 
in terms of the approximation spaces Av>®, which are formally introduced there for 
this purpose. The relations between Ap® and the Besov and Lizorkin-Triebel spaces 
are elucidated in Section 4, and the proofs of the assertions are to be found in 
Section 5. The appendices collect, the notation and the necessary facts about Besov 
and Lizorkin-Triebel spaces, in particular the extension to the anisotropic case of 
some well-known facts. 



R e m a r k 1.1. We should emphasise that, fox p < 1, also a different operator has 
been studied under the label 'trace'. Indeed, when 70 is restricted to the Schwartz 
space S(Rn), there are extensions by continuity T: B*'* —>• Y at least if a > -; while 
this is effectively weaker than (3), it may only be obtained by taking Y outside of 
_?', and it was shown in [22] that T is different from 70 since 

(7) 7o(v(a:') ® S0(xn)) = <p, T(<p(x') ® <50(~„)) = 0 

for all 9 6 S(Rn_1). 
Moreover, using the sharp result for elliptic boundary operators in Besov and 

Ljzorkin-Triebel spaces obtained in [21], it was also shown in [22] that T is unsuitable 
for the study of elliptic boundary problems. We shall therefore not consider this other 
possibility here; it was discussed at length by M.Frazier and B. Jawerth [11,12] and 
H.Triebel [40,41]. 

R e m a r k 1.2. It is noted once and for all that we consider arbitrary s £ R andp, 
q € ]0,00], although p < 00 is to be understood throughout for the F££ spaces; and 
all such admissible parameters are considered unless further restrictions are stated. 

2. GENERIC PROPERTIES OF THE TRACE 

To set the scene properly, we introduce the trace in a formal way. The reader 
should consult Appendices A-B first for the anisotropic spaces and for the corre
sponding anisotropic distance |_|„ and dilation tax = (tai%i,,,. ,tanxn), both de
fined on R"; here and throughout o = (_i,... ,an-i,an) = (a',an) will be a given 
anisotropy. 

In addition, 3$ denotes the Fourier transform and S^"1 the inverse, extended 
from the Schwartz space <S(Kn) to its dual S'(Un). In different dimensions, say i n - 1 

and R, Fourier transformation will be indicated by 3?n-i and #1 , respectively. Let 
ip € C§°(Rn) be a function such that 

(8) ip(x) = 1 if |x|a s? 1 and ip(x) = 0 if \x\* > 2. 

For such ip, we may define a smooth, anisotropic dyadic partition of unity (w)jeN0 

by letting <po(z) — 4>(x) and 

(9) <pj(x) = V>0(2~jax)~M'2(~'+1)av) if i e N -



Indeed, since *ip(2Na£) = £ ?,(£), it is clear that 
i=o 

(10) _Zvj(») = l for xeRn. 
3=0 

2 .1. The working definition. Using a fixed 4> of the above type, we have for 
all / € ,S'(Rn) 

(11) f = J2^-1[<Pi^f} (convergence in S'). 
i=o 

Since, by the Paley-Wiener-Schwartz Theorem, &~l\if>j&'/] is continuous, the trace 
has an immediate meaning for this function. As a temporary working definition we 
therefore let 

N 

(12) 70/ = ^J£lo{^l[V3^f]) 
^°° 3=0 

whenever this limit exists in 5'(Rn_1). However, we should make the following 
remarks to this definition. 

On the one hand, it is possible to show the next result (which summarises the 
most well-known facts on 70) by relatively simple arguments: 

Theorem 1. Tie operator 70 maps B^ (Rn) (or F££) continuously into S' (Rn~x) 
only if (s,p, q) satisfies either 

(13) a ><b. + | 0 ' | ( l _ i ) + 

or, alternatively 

(14) s = £ -̂ + | o ' | ( i - l ) + and 0 < g < 1 (respectively p <. I). 

When (13) holds, then 70 is actually a continuous map B|;°(Rn) -¥ BPtq
 v ' (Rn_1) 

and Ep
s;,a(Rn) -* 5 ^ ' ° ' (R""1). 

On the other hand, by the same line of thought as in [22], one may, as we show 
in this paper, deduce from the proof of Theorem 1 that the just defined operator 70 
coincides with (a restriction of) the map 

(15) r 0 / : - / ( 0 ) for/(t)inC(R,®'(Rn-1)). 



To conclude this relation between 70 and r0, we apply the next result where Cb(R, X) 
stands for the (supremum normed) space of uniformly continuous, bounded functions 
valued in the Banach space X: 

Proposition 1. When Bp>
a(Rn) and Fp'

a(Un) have parameters s, p and q satis
fying (13), or the pertinent version of (14), then 

(16) B;fq(U
n), F ; ; a (R n )^C b (R,L w (R n - 1 ) ) 

hold with pi = max(p, 1). 

Given this result (see Section 5.1.2 for the proof), it follows from the fact that 
uniform convergence implies pointwise convergence (hence that r0 is continuous from 
C b( i , LPl (Rn-1))) that, for any / in one of the spaces on the left hand side of (16), 

JV 00 

(17) r0f= lirn^ r0 VJ &~i (Vj&f) = £ JT"1 (VjJPf) (., 0) = 7 o / . 
~*°° j=0 3=0 

Indeed, for q < 00 the decomposition in (11) converges in the topology of the Bs
p<

a 

or F*'a space that contains / , hence there is also convergence in Cb(R,£p l(Rn - 1)); 
with one exception it is always possible to reduce to the case with q < 00 by means of 
embeddings, e.g. a space with p C 1 is a subspace of F^'a for some q < 00 according 
to (14). 

The just mentioned exception is the space Fa'^(Un) for which (17) requires a 
sharper argument: for arbitrary / e Cb(R,Li(R'1"1)) one can take any r\ e 5(Rn) 
with fRn rjdx = 1, let r)k(x) := k^a<rj(kax) and then show that 

(18) T)h*f(x',0)-+f(x',0) ini^R"""1) for fc H-00. 

This is sufficient because it applies to any / 6 f j ^ ' by Proposition 1, and while 

r0f = /(•, 0) by definition, £ J^"1 (tpj&f)(x) =-qk* f(x) holds for r) = &~H and 
3=0 

k = 2N, so that altogether the first equality sign of (17) is justified. 
However, (18) may be verified by the usual convolution techniques, for if trans

lation by y' in Rn""1 is denoted by Ty> and || • |£i(R'"~1)|| is replaced by || • ||i, the 
translation invariance gives that 

(19) ||% * f(-,xn) - f(.,xn)\x s£ J^ \r,(z)\ • \\f(-,Xn - k~a"zn) - /(-.arnJllj dz 

+ J \r,(z)\.\\(Tk-^,-I)f(.,xn)\\1Az. 
JK" 



Setting xn — 0', one may for any e > 0 take c > 0 such that (TV> - /)/(-, 0) has 
Li-norm less than e when \y'\ai < c (since | • | and | • \a> define the same topology in 
R"1^1). In the second integral it thus remains to control the region where |;z'|0i >- ck, 
but a majorisation by 2||/(-,0) | Li\\ shows that this contribution is less than e for 
all k eventually; by the continuity with respect to xn, and a similar splitting, the 
first integral is also < s eventually. 

Hence (18) holds (the real achievement is the less elementary proof of Proposi
tion 1), and thus (17) is proved for all spaces treated in the present paper. In partic
ular, this means that j0"U is independent of the choice oiip (and of the anisotropy a). 

Summing up the above discussion, we have proved 

Corollary 1. When the operators ro and 70 are defined as in (15) and (12) above, 
then 

(20) r 0 / = 70/ 

iioJds for all functions / in the spaces B^ and F*£ MGlling (13) or (14). 

R e m a r k 2.1. Our working definition of 70/ has been used since the late 1970's; 
cf. [18, 39, 40]. Nevertheless, the consistency with the trace on C (U, ®'(U"-1)) was, 
to our knowledge, first proved for the Besov spaces in [22]. By Proposition 1 and (17) 
above this consistency holds for all the considered spaces; the consistency extends to 
the trace defined on the entire Colombeau algebra W(Kn), which contains ^ ' ( i n ) , 
see [29, Prop. 11.1]. 

2.2. Linear extension. Taking, as we may, TJQ and»? € S(R) such that supp?7o C 
]—1,1[ and suppr? C ]1,2[ and normalised so that 

(21) (^f1%)(o) = (^T1»?)(o) = i. 

we set 

(22) rii(t)-vC2~ia'"t) for any t e R if J > l-

For any v € <S'(Rm~J) such that the following series converges, one can now define 
an extension to R» by means of the partition of unity (<Pj)jmi, in (9): 

(23) Kv(x't Xn) = £ 2-*» (^r'%)(Xn) &~li [w0»0) &n-xv] (x1). 
3=0 



Using a homogeneity argument, we have 2~ia" (# j 1,iy)(0) = 1 for any j € No, so 
the termwise restriction to xn = 0 gives, with weak convergence in S'(Un~ ), 
(24) 

N OQ 

^2-^(^ 1 - 1 f7 , - ) (0)^-2 1 [^(- ,0)^B_xr; ] ^ ^ ^ i M - . 0 ) / . - i « ] - « . 

By the working definition of 70, this means that foKv is defined for such v, hence 
7o.fi; = /; i.e. K is a linear extension. 

When it is understood that the convergence of the series (23) is part of the asser
tion, one has 

Theorem 2. (i) The operator K maps Bp~q
v'a (^n~1) continuously into B^ (Rn), 

(ii) For 0 < p < oo t ie operator K maps B^^'* (Rn~l) continuously into 

F^(Un). 

Here there are no restrictions in s, that is, the assertions in Theorem 2 hold for 
all s € R (which is to be expected since K is a Poisson operator). 

Since the relation 7o-K" = I was found above, one has as a consequence the next 
result. 

Theorem 3. Let s > ^ + |a' |(i - l) . Then the operator 70 maps BPig(Kn) 

continuously onto Bp,q '' ' (Rn _ 1), and for 0 < p < 00 it maps F^(Rn) onto 

BPlV '' ' (R™-1); K is in both cases a linear right inverse of 70. 

Although Theorems 2-3 above are unsurprising (indeed, well-known in the iso
tropic case), they deserve to be compared with the borderline results in the next 
section. 

R e m a r k 2.2. The contents of the above theorems are known to a wide extent for 
the classical parameters 1 ^ p, q ^ co; cf.the works of O.V Besov, V. P.Hyin and 
S. M. Nikol'skij [4], S. M. Nikol'skij [28], V.I.Burenkov and M.L.Gol'dman [5] and 
G.A. Kalyabin [23]. For the isotropic case we also refer to the works of J. Bergh 
and J.Lofstrom [3], M.Frazier and B. Jawerth [11, 12] and H.Triebel [39, 40, 41] 
as well as to the remarks in [22] and in the present paper. The study of the trace 
problem for 0 < p < 1 was initiated by B. Jawerth [18, 19], but the first to find the 
borderline s = j - (n - 1) for 0 < p < 1 seems to be either B. Jawerth or J. Peetre 
[31, Rem. 2.3]. (Peetre [31, Note 1] actually gives credit to [19] for this, and vice 
versa in [19, Rem. 2.2].) 



R e m a r k 2.3. The borderline s = - itself was found by S.M.Nikol'skij in 
1951 when he proved the continuity of 70: B^R"-) -» _£j r + ( n" l > ("~*'(Rn~1) 
for s > i and any r > p (the result was actually anisotropic and valid for the restric
tion to linear submanifolds of codimension m ^ 1); cf. [27] and also [28, 6.5]. Traces 
of Sobolev spaces W£ were studied first by N. Aronszajn [2] around 1954. Later, 
around 1957, E. Gagliardo [13] considered the trace of W1, which constitutes an 'ex
tremal' case; cf. the vertex in Figure 1. However, the first explicit counterexamples 
for the borderline s = | seem to be put forward by G. Grubb [14] (who stated they 
were due to L.Hormander); these necessary conditions were then expanded in [21], 
and in Lemma 1 ff. below these are supplemented to a set of necessary conditions 
for the anisotropic Besov and Lizorkin-Triebel spaces; in view of this paper the con
ditions are also sufficient for a solution of the distributional trace problem for .the 
spaces considered. 

3. THE BORDERLINE CASES 

In all remaining cases where 70 is a continuous operator into <5'(Rn~1) it turns 
out that 70 has properties different from the generic ones in Theorem 1. Recall that 
it remains to investigate 

( an — if 1 < p 4 00, 
(25) «=_ \ P 

— - | a ' | if 0 < p < 1; 
I P 

this amounts to the following five cases, see Figure 1, of which only the subcase q = 1 
of the first two has been completely covered in the literature hitherto (whilst only 
the first case and the subcase q < 00 of the fourth have been settled isotropically): 

• Bp%'a(Rn) with 1 < p < 00 and 0 < q < 1; 

• -B°£,(Rn) for 0 < q 4 1; 

• Bp';q ' (Rn) for 0 < p < 1 and 0 < q < 1; 

• F^ ' a (R n ) with 0 < q s$ 00; 
- i - l o ' l o 

• Fp*q (Rn) for 0 < p < 1 and 0 < q 4. 00. 
However, as a preparation for these cases, some preliminaries are dealt with in the 
next subsection. 

10 



3.1. Approximation spaces and nonlinear extension. To describe the trace 
classes in the limit situations we introduce another class of spaces, actually a half-
scale, related to the approximation by entire analytic functions of exponential type. 

Definition 1. Let p,q 6 ]0, oo] and let (s,p,q) fulfill one of the following two 
conditions: 

(26) a > | o | ( i - l ) + , 

(27) * = M ( j - - ) + and 0 < q < 1. 

Then we define the anisotropic approximation space Ap'>q to be the set 
(28) 

As'a(Un) = ( / e S'(Un); Vj e N0, 3hj e Lp(R
n) nS'(Rn), 

supp^-cft; .* . .^} , / = f > , (E^'H^lL^R-)!!') *<oo 
S j=0 ^J=0 ' 

this is equipped with the quasi-norm 

(29) | |/ | A;;«(R")||=inf( V V " ||fc, | I , 

where the infimum is taken over all admissible representations / = YL hj- (If 9 = oo, 
the lq-norm should be replaced by the supremum over j in both instances above.) 

S. M.Nikol'skij and O.V. Besov have (in connection with Besov spaces for 1 ^ 
p < oo) defined such spaces A$

p'
a. For a comprehensive treatment and additional 

references, see the monograph of S. M. Nikol'skij [28, 3.3 and 5.6]; cf. also H. Triebel 
[40, 2.5.3]. 

The restrictions on s make the Ap*(Un) continuously embedded into <S'(Rn), 
cf. the following proposition and its corollary on the identifications between the Ap'® 
and other classes of functions. Here and throughout Cb(Rn) denotes the set of all 
uniformly continuous, bounded, complex-valued functions on R" equipped with the 
supremum norm. 

Proposition 2. (i) As
pfq(R

n) = B°%(Rn) if, and only if, s > |o| ( i - l ) + . 

(ii) Let 1 < p < oo and 0 < q < 1. Then A°'°(Mn) = Lp(R
n). 

(iii) Let 0 < q < 1. Then A°^a
q(U

n) = C*b(R"). 

In the affirmative cases the quasi-norms are equivalent. 



R e m a r k 3.1. Parts (ii) and (iii) are contained in Burenkov and Gol'dman's work 
[5], at least implicitly. An isotropic counterpart is stated in Oswald [30], albeit with 
the spaces based on approximation by splines. Furthermore, the "if'-part in (i) has 
been known before, cf.Nikol'skij [28, 3.3 and 5.6], Triebel [40, 2.5]; recently also 
Netrusov [26] considered this issue. 

In virtue of Proposition 2 the continuity of As
v>° <-> S' is clear for p ^ 1; when 

0 < p < 1 the anisotropic Nikol'skij-Plancherel-Polya inequality (cf. [43, 2.13]) and 
the restrictions (26)-(27) immediately give an embedding into L\, so one has 

Corollary 2. The classes As
p'^(Un) are continuously embedded into £max(i,P)(Rn) 

(which for any p G ]0, co] is a subspace of S'). 

For a more detailed comparison of the classes Ap'^R") in the remaining limit 
situations with spaces of Besov-Lizorkin-Triebel type we refer to Section 4. 

To make extensions to Rn of suitable / in S' (Rn_1), we consider any / such that 

/ = E hj holds in 5'(Rn-x) with supp J^-i / i j C {£'; |f'|a' «= V). Analogously 
3=0 

to K, the extension Ef is defined (whenever the following series converges in 5') as 

(30) Ef(x', xn) = £ 2~^^l{m](xn) hj(X'). 
3=0 

Observe that this is not a mapping—despite the notation—since each / equals many 
sums like J2 hj-

By the homogeneity properties of the Fourier transform, 

N co 

(31) lim J2 -~Jo"-Vfoi](°) W*) = E Ai(*') = /(*') • 
iV-*oo *—' ^—f 

j=0 3=0 

Hence 70 Ef = / is valid for such / , in particular when / belongs to some 
Ap'^'(Un~1)- For simplicity's sake, a particular extension Ef is said to depend 
houndedly on f (although Ef is not a map) when (32) or (33) below holds: 

Theorem 4. TJiere exists a constant c such that the inequalities 

(32) \\Ef I 2%J(Rn)|| < c\\f I ,C^,<,'(R»-1)||, 

(33) \\Eg I F;%(Rn)\\ $c\\g\ A^''1'(«^l)\\ 

hold for all f € A^'" (Rn~i) and aJJ g e Ap~p
!*~'a'(Rn-1), respectively. 
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R e m a r k 3.2. Approximation spaces like Ap'q have been used for the trace 
problem earlier, e.g. directly by P. Oswald [30] and in the proofs of V. I. Burenkov 
and M.L. Gol'dman [5]. Traces of the approximation spaces themselves have been 
investigated by Yu. V. Netrusov [26]. 

3.2. Consequences for the trace. Using the tools from the previous subsection, 
one can now prove 

Theorem 5. The assertions of the introduction's main theorem are valid, and for 
anyv(x') in As

Plg
ir'a (U71"1) orAs

p<p''
 , a(Rn - 1) there is an extension Ev in B^(Un) 

or F*£(Un), respectively, depending boundedly on such v; in the generic cases Ev 
may be dehned by means of a bounded operator Kv. 

It may be beneficial to list the consequences for the various borderline cases, so 
w& will formulate separate results with detailed references. For brevity it is in the 
following understood that the extensions Ef depend boundedly on / , when / is 
viewed as an element of the pertinent range space for y0. 

Corollary 3. Let 1 ^ p < oo and 0 < q <. 1. TJien the trace operator 70 maps 
Bpl'q' (Un) continuously onto Lp(R

n~~l) with extensions Ef € Bp*q' (Un) depending 
boundedly on f. 

The first contribution to this was made by S. Agmon and L.Hormander [1], who 
dealt with p = 2, q ~ 1 and a = ( 1 , . . . , 1). For 1 < p < co, q= 1 and o = ( 1 , . , . , 1), 
the first part of the the result was stated'by J.Peetre [31]. The anisotropic variant 
was proved by V. I. Burenkov and M. L. Gol'dman [5] for q ~ 1. Later M. Frazier and 
B. Jawerth [11] and J. Johnsen [22] gave proofs (except for the extensions) by other 
methods for all q ^ 1 in the isotropic situation. 

Corollary 4. When 0 < q < 1, then the trace 70 maps Bj^?(R") continuousJy 
onto Cb(R

n""1) with extensions Ef £ B^q(U
n) depending boundedly on f. 

For q = 1 the first proof of this result was given by V. I. Burenkov and M. L. Gol'd
man [5], 

l i d _ | 0 ' | a 

Corollary 5. When p, q € ]0,1], then 70 maps Bp% ' continuously onto the 

space Ap
a'q'*~1)'a'(Rn~l) with extensions E f e B~\~ " '°(Rn) depending boundedly 

on f. 
Corollary 5 should be a novelty; the determination of the trace space as an ap

proximation space does not, to our knowledge, have any forerunners. 



Corollary 6. The trace operator 70 maps Fa'q '
a (Rn) continuously onto _ 1 (Rn ) , 

and there are extensions Ef e Fa'q'
a(Rn) depending boundedly on f. 

In [13], Gagliardo proved 7Q(W1(RT1)) = _ l (R n " 1 ) , which is closely related to 
Corollary 6 because of the embedding F1

1
2(R'*) ^ W}(Rn) <-+ _j i00(Rn). M. Erazier 

and B. Jawerth [12] were the first to attempt a proof of the corollary, but their 
argument seems rather flawed; cf. Remark 3.3 below; H. Triebel obtained the first 
part of Corollary 6 by another approach based on atomic decompositions [41, 4.4.3], 
but without making it clear that Fa^a(Kn) is a subspace of C(U, ^ ' (R n _ 1 ) ) . 

The next result is an analogue of Corollary 5. 

_ l - | a ' | , a 
Corollary 7. Wiien 0 < p < 1, then 70 maps FPl'q (Rn) continuously onto 

the space APtP " ' ( i n _ 1 ) with extensions Ef € Fp't'q ' (Un) depending bound
edly on f. 

A final remark to the existence of a linear right inverse of 70: J.Peetre [31] 
(a = ( 1 , . . . , 1)) and V. I. Burenkov and M. L. GoPdman [5] (general anisotropic case) 
have shown that if 1 ^ p < 00 and s = an/p, then there exists no linear extension 
operator mapping LP(U"~1) boundedly to Bpl' (R"); whether this remains true in 
other borderline cases seems to be unknown. 

R e m a r k 3.3. Directly below [12, Th. 11.1] the authors write (in our nota
tion): "We will show directly that 70(Fp„) is independent of q. Given this, we 
have 7o(Fpj9) = 7o(Fp>p) and all conclusions follow from the [Besov space] results in 
[11, Sect.5], since Bpp = FptJ>." However, it is evident from their proof that they 
tacitly assume 70 to be defined on F*t<j for two arbitrary sum-exponents (q and r 
in ]0,00]), and not just for q = p, but they never support this implicit claim by 
arguments. 

Although it is true (and trivial to verify for the generic cases as well as for 

s — SM. _ |a'[ when p < 1, in view of the Sobolev embedding into Ba'].'a(Rn)), 
it does require a proof that 70 is well defined on Fa'q'

a(U"), since if 1 < q ^ 00 
this space is strictly larger than any Besov space on which 70 is defined; cf. the 
vertex in Figure 1. The authors claim to have covered such F-spaces as a nov
elty, but in view of the described flaw it should be appropriate that we prove that 
Fa;^a(Rn) <->• Cb (R, Iq (R"-1)) and that lo(Fa'q

a) is independent of q e ]0,00]; see 
Proposition 1 ff. and Proposition 8 below. 



4. A SHARPER COMPARISON OF THE B E S O V - L I Z O R K I N - T R I E B E L CLASSES AND 

THE APPROXIMATION SPACES 

In Proposition 2 we have identified Aij't with standard function spaces in the 
generic cases. We now investigate the remaining borderline case s = | a | ( | — l) for 
p < 1; the analysis involves the continuity properties of 7Q proved in Theorem 5 
above. 

Concerning the borderline with s = |o| (~ — l), it is noteworthy that the two cases 
q <. p < 1 and p < q <. 1 give quite different results: 

Theorem 6. Let 0 < p < 1 and 0 < g < 1. Then 

(34) A{;}g
i'-'1)'a(Rn) ^ Bli{i~1)'a(Rn) 

holds if, and only if, 

(35) max(p, q) <. r <. oo and u = oo, 

and whenever 0 < r < oo and 0 < u ^ oo, then 

(36) 4^~'1>'a'(Rn) £ E]fi(^1)'°(Rn). 

Conversely, 

(37) Bi°i(*~1),0(Rn) <-• 41 ( i ~ 1 } ' a (R n ) 

holds if 

(38) 0 < r < _ p and 0 < « < . g , 

while 

(39) FJfi (^1 ) , t l(tn) <-*• Ap^('_1)'a(Kn) 

holds if one of the following conditions does so; 

(40) (0 < r < p and r <. q) or (r = p <. q and 0 < u <. g). 

The necessity of the conditions (38) and (40) has been obtained for the parts 
concerning r and p, but not for the sum-exponents; cf. Remark 5.1 below. 



By application of the above results, it is clear that, for p < 1, one hag embeddings 

(41) 4?« ( '_1) '°(Kn) <-> 4 tF~ 1 ) , 0 (R n ) <-+ BlS-~1)'a(Rn), r = max(p,q). 

The latter is optimal in the sense that any space B^ or F^1* (with s — \a\(- — 1)), 
which Ayt is embedded into, actually also has the Besov space on the right hand side 
as an embedded subspace. This follows from (35)-(36) and the usual embeddings. 

However, a somewhat sharper argument yields the following result: 

Proposition 3. For 0 < p < 1 and 0 < q <. 1 the space Avq
 T'~ ( i n ) is neither 

a Besov space BB
p,'°q, (R") not a Lizorkin-Triebel space Fp,'^, (Rn) for any admissible 

(s',p',q'). 

From this proposition, from Theorem 5, and the fact that also L\ is neither a 
Besov nor a Lizorkin-Triebel space, we obtain 

Corollary 8. For 0 < p <. 1 the ranges of the trace operator 70, 

7o(^MH o ' ' 0(R n)) , 0 < g < . l , and 7 o (FI,,'^
i°''l'a(Rn)), 0 < q <. 00, 

do not belong to the scales of anisotropic Besov-Lizorkin-Triebel spaces on U11"1. 

The embedding of the trace spaces 70 (BJq (Rn)) into BI^"^'"'(R71-1) for 
r = max(p, q), cf, (34), was first proved by Johnsen [22] (isotropic situation). By the 
above discussion, the present results are sharper and optimal. 

A final remark on the borderline cases. For fixed p one may ask for the largest 
spaces on which the trace exists. One should clearly minimise s and maximise q 
(which is done throughout this paper), but the dependence on the anisotropy o may 
also be considered. For the isotropic spaces (indicated without the a) the following 
embeddings hold, for p < 00: 

(42) B l ; ( n " K " 1 ) + ( R ' 1 ) - B , t + | a ' l ( " 1 ) + ' ° ( i " ) , 
J + ( T , - 1 ) ( i _ 1 ) + * M - | a ' | ( l - l ) + , a 

P.« (K ) «-> fflq ( 

i.e. the anisotropic spaces are larger than the corresponding isotropic ones. Further-
5n. + J a ' j ( I„X) + 1 a 

more, if p < 1, then the Besov spaces Bp'tl "' ' (Rn) and the Lizorkin-Triebel 
22L + ja'j(I™.l) + J a 

spaces Fv% '' (R") are the largest possible, however, all of them are con-

(43) j % T V A " '+(R") «-> F£ ' , v ~ ;+,0(R"); 

in the correspon 
5n. + J a ' j ( I„X) + 1 a 

more, if p < 1, then the Besov spaces Bp'tl *' ' (Rn) and the Lizorkin-Triebel 
-,^+|a'|(|-l) + >a 
V.00 I 

tained in F\^(Un) which is the largest possible for p—l. If 1 < p < 00, the only 

candidate is the Besov space BJ~'"(Un)- Returning to the anisotropic classes with 
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different anisotropics, it is not hard to see that the spaces depend increasingly on each 
component Oj of a. So, although an is bounded by an ^ s • p, within the anisotropic 
spaces there are no maximal spaces on which the trace makes sense. For p — oo there 
is a largest space having a continuous trace, namely Cb(Rn). But, as mentioned in 
the introduction, all these anisotropic spaces are subclasses of C(R, _?'(Rn_x)) with 
its natural notion of a trace. 

5. REMAINING PROOFS 

Some proofs below are essentially just anisotropic variants of known techniques 
(scattered in the journals and main references like [35, 40, 41]), but even so the 
most important ones are presented (or sketched) here for the reader's convenience. 
It would lead too far to do this consistently, so in the remaining cases we shall have 
to make do with indications of the necessary changes, however. 

5.1. The assertions in Section. 2. 
5.1.1. Proof of Theorem 1. By means of elementary embeddings (cf. around 

(115) below), the 'only if part is, for p < oo, a consequence of the following lemma, 
which is carried over from [21, Lem. 2.8]. 

Lemma 1. Let 0 < p < oo. For any u e ^(R"""1) there exists Uk € S(Rn) such 
that 

(44) ~?oUk(x') = u(x') for any k £ N, 

(45) lim uk = 0 in f?^'°(Rn) if 1 < q <. oo, 

(46) lim Uk = 0 in F^'a(Bn) if 1 < » < co. 
fc—>oo 

If 0 < p < 1, there exists vk e <S(Rn) such that lim j0vk = S0 in S^U71"1) while 

J - l _ i 0 ' ] 0 

(47) lim vk = 0 in Bv''q (Rn) for 1 < q <_ oo; 

here SQ stands for the Dir&c measure at x' = 0. 

To prove Lemma 1 one can set Uk(x) = u(x')wk(xn) with 

^W-ït^2'""1") 



where w G <S(R) with suppw C {£„ 6 R; | «= |f„| l/a„ ^ 1} and w(0) = 1. Moreover, 

2 * 

(49) vk(x',xn) = i VJ 2'l- I / ( 2 ' « V ) 9{2'a"Xn) 
k i=k+i 

has the claimed properties at least when / £ ^ ( i " - ! ) and g 6 <S(R) satisfy 

(50) s u p p # n - i / C {C € R"- 1 ; | f |«< ^ §} and / f(~')Ax' = 1, 
JK"-1 

(51) s u p p ^ S c { e n 6 R ; |?„ | 1 / a" < § } and 9(0) = 1. 

Indeed, it is not hard to check that the norms are ff(k7'"1), respectively &(k7~l+£) 

for the fp^-norm, see [21, Lem. 2.8], for one may use the fact that if s > 0 (it is here 

the restriction p < oo is needed), then there exists a constant c > 0 such that 

(52) | | / ® ff | B»;J(R")|| ^ c | | / | ^ ' ( R " - 1 ) ! ! \\g | B # " ( R ) | | , 

(53) | | / ® 9 | F»£(R»)| | < c | | / | F^'(Kn-l)\\ \\g | F ' !" - (R) | | . 

The isotropic version of (52)-(53) is due to J, Franke, see [10, Lem. 1]. For the 

anisotropic version one may use a paramultiplicative decomposition (in Yamazaki's 

sense [43, 44]) of the direct product f®g and apply the estimates in [43] (cf. the case 

f -So treated in [21]). 

For the space B°£q(R
n) with 1 < q <. oo, one can modify the proof of the lemma 

by taking u € S to have a sufficiently small (non-empty) spectrum such as the 

ball {£'; |f'|a' ^ §}• Then the norm of uk is seen to be ^ ( f c i - 1 ) if, instead of 

(52), one calculates directly by means of an anisotropic Lizorkin representation (in 

the language of [40, 2.6]) with a smooth partition of unity. (This means that the 

ipj entering the norm of B p ; a should be replaced by some r]jk, with k in a finite 

^'-independent set, such that (Jsupprjjk equals a 'corridor' (the complement of an 

n-dimensional rectangle inside a dilation by 2a of itself) and such that each rjjk is a 

product dk(2ja £') a) t(23"a"fIl); this is well known to give an equivalent quasi-norm 

for Bp'£ by Lemma 3; an isotropic version may be found in [22].) 

It remains to prove the stated continuity of 70. For the Lizorkin-Triebel case one 

may show that the operator 70 is defined on F p
, a for every (s,p, q) considered in the 

theorem, see Proposition 1, and that 7o(Fp;a) is independent of q; this last fact is 

obtained in Appendix C.4 below. Then the identification B*£ = F* , a reduces the 

question to the Besov case; for the boundedness of 70 one may use the inequality 

(134) in Appendix C.4 below. 



For the treatment of Bp,a, we use the short argument of [22, Sect. 3]; the idea is to 
combine the NikoPskij-Plancherel-Polya inequality with the Paley-Wiener-Schwartz 
Theorem to deduce the crucial mixed-norm estimate (57). 

First we remark that if h e S'(Rn) satisfies supp&h C {f 6 Rn; |£|a < A} for 
some A > 0, then the restriction h(x', •), obtained by freezing x', fulfils 

(54) supp J^en/i(a:',<e„) C {{„ € R; |£„| < A°"}. 

This is a consequence of (91) below and the Paley-Wiener-Schwartz Theorem 
(cf. [17, 7.3.1]), for these give that g := h(x', •) is analytic and satisfies 

(55) g(xn + iyn) < C(x')(l + |x„ |)^e^" ̂ "L 

Now, let / e B^^(Rn). Applying (54) with A = V to &-1[ipj&
,f](x',-), the 

Nikol'skij-Plancherel-Polya inequality, see for example [40, 1.3.2], yields 

(56) sup \&-l[Vj&f](x',xn)\ s= c2ja"/p( f \&-1[<pi&f](x',xn)\
pd%n

S) 
x„m \Jm J 

where the constant c does not depend on x', f and j ; hence ^'-integration gives 

(57) l l s u p ^ - ^ j r / K - , ^ ) I i^R"- 1 ) ! ! ^ c 2 ^ ' / P | | ^ - 1 [ w , ^ / ] | L P ( R « ) | | . 

Estimating the supremum from below by the value for xn = 0 and arguing as for 
(54), we obtain 

(58) s u p P ^ r t e {&~l[Vi,?f\(x',$j) C {? e R™-1; W\a, ^ V). 

So under the restriction s > £lL + | a ' | ( - - l ) + , Lemma 4 of Appendix D below 

yields the convergence of the series ]T) ̂ -l[ipjJPf}(-,Q) in 5'(Kn- I) ias well as the 
i=o 

boundedness of 7 o : B^(Un) -+ Bp~q"^'a (Un~l). 

5.1.2. Proof of Proposition 1. The particular value xn = 0 is unimportant 
in (58), so when the application of the Nikol'skij-Plancherel-Polya inequality above 
is repeated, a slightly stronger conclusion is reached: for p% := max(l,p) and fj := 

(59) rapR ||/,-(.,sB) I ^ ( R " - 1 ) ! ! < C 2 i ( ^ + | a ' l ^ - 1 ) + ) I/,- | LP\\. 
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If Cb temporarily stands for bounded, continuous functions, the left hand side is the 
norm of /,• in Cb(R,iPj(Rn~1)), and this is in £i(N0) with respect to j because the 
right hand side is so. Consequently, the series Yl fi converges in 2?'(Rn) to / and in 
Cb(U,Lpl(U

n~1)), and because the latter space is continuously embedded into the 
former (a reference to this folklore could be Prop. 3.5 and (5.4) in [22]), this shows 
that / 6 Cb(R,LPl(K

n~1)). Moreover, the triangle inequality applied to / = J2 fj 
yields continuity of 

(60) B ^ ( R n ) - > C b ( R , i w ( R ^ 1 ) ) whenever 0 ^ + | a ' | ( i - l ) + , 
provided q <•! in case of equality. 

Finally, the uniform continuity with respect to xn should be verified. However, 
if translation by ft 6 R is denoted by T/,, that is Tkf(x) = f(x',xn — h), then* the 
boundedness above yields the following, say with s = '•— + \a'\ ( i — l) for simplicity: 
(61) 

sup \\f(;xn)-f(-,xn-h) \LPl(U
n~1)\\ < c ( f ) 2 ^ | | ( l - ^ ) / i \ LPl\\

q)'. 

Indeed, this is clear since 1 — rh commutes with 3r~%fy9;, and so it remains to note 
that the right hand side tends to 0 for ft -» 0 by majorised convergence. 

Since F££ <-* Bp^ may be used for the generic Lizorkin-Triebel cases, it suffices 
to consider Fp'

a in the borderline cases with s = -^ — |o'| and p ^ 1; however, by 
the Sobolev embeddings it is enough to treat p = 1, hence to show that 

(62) F ^ f B " ) <->• Cb(M,L1(U
n~1)). 

To do so, we replace the above use of the Nikol'skij-Plancherel-Polya inequality 
by an application of the Jawerth embedding F1

1
]0O(R) <-•> BJ^4(R). As above, for 

/ e ^ n 

(63) /(*) = £/,•(*)• 
3=0 

Note, as a preparation, that this series converges pointwise for x $ N, where N is a 
Borel set in Rn with meas(iV) = 0; indeed, this follows since 53 ll/i I •i'lll < oo must 
hold for any / in Ffea {«"•). 

By Fubini's theorem, there is also a null set M C St"^1 such that x' £ M implies 

(64) / svp\2ja" f,(x',xn)\dxn < oo. 

20 



Invoking Lemma 4 of Appendix D one therefore obtains a function xn t-> g(x',xn) 
in Fi'^,(U) for which g(x',•) = £}/•; (#',•); u s m g an > 1 to apply the Jawerth 
embedding, we have 

(65) \g(x',xn)\^\\g(x',-)\B°CGil(K)\\ 

< c | V / , ( a ; ' , 0 |E r^(R) | | s j c ' / sup|2ia»/i(a,',a:n)|dir„ <oo. 
II--' • II JR j-

The ^'-dependence of p is not arbitrary as it seems to be, for there is another null 
set M' C Rn_1 such that M C Af and when x' $ M', then 

(66) g(x',xn) = f(x',xn) for xn a.e. in R. 

Indeed, the section Nx< = {xn; (x',xn) e N} is a Borel set and the relation 0 = 
meas(iV) = /R,._i. mea,s(Nx>) dx' gives that meas(Nx>) = 0 for x' outside a null set 
Af, which may be assumed to contain M. So by (63), f(x',-) — Ylfi(x',') holds 
outside Nx> whenever x' £ M'. But, since the norm series J] \\fj(x',-) | £i(R)|| is 
estimated by the integral in (64), hence is finite, the series J2 fj(x'>') converges to • 
g(x', •) in Li(U). So, by the fact that a pointwise limit coincides a.e. with a limit in 
mean, (66) is obtained. 

It is thus justified to integrate both skies of (65) with respect to x', and therefore 

(67) arp | | /(. ,S n) | ^(R^W < c \\f | Fa ' -°| | . 

Now the uniform continuity in xn of any / in Fi'^ may be shown by an argument 
analogous to the Besov case above. This proves (62) and thus the proposition. 

5.1.3. Proof of Theorem 2. For part (i), the streamlined method of [22, Sect. 3] 
may be adopted as follows. Writing 

(68) Kv(X',Xn) = YJUj(x',Xn), 
3=0 

where for any j e M0 

(69) Ui(x',xn) = 2~io» (^f1*? ,)^)^™-1! [^(•,0)^„_1t;](;-'), 

it is straightforward to see that UJ has a compact spectrum: using the triangle 
inequality one can see that |fU ~ |f'|a< + |^„|1/a" and then find a constant A > 0 
such that 

(70) supp^uj C {£; 2ia» 4 |Cn| <C 2<i+1)o", |£'|a< < cV) C {£; | - < |CU < A2j}. 
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For any / € No we have, when r) := 3?x
 lr\ and v := ^n-\v, 

(71) 2«'||_i | _P(R")|| = 2J'<S-TH||») J _,„(R)|| • WKlx^A-.m | -ptR" -1)!! 

where the right hand side is in £q provided v € Bp,q
 r ' (R"~ :). By Lemma 3, this 

implies 

(72) \\Kv | S^(R n ) | | < c(f^^'q\\us | _P(RB)||4Y «= c'\\v | B'p-^
,a'\\ 

Vi=o J 

and the proof of (i) is complete. 
When v 6 Bp'

a (Rn_1) one can modify the corresponding proof of [40, 2.7.2] in 
the following way: by the Fp<q-psxt of Lemma 3, the series for Kv converges tp an 
element of F M " ' (Rn) if we can show a certain estimate; this is done as in [40]. 
The main thing is to get the correct auxiliary inequality which is 

(73) \2-ia^r%(xn)\ €. c(l + 2^\xn\)-
S 

for a sufficiently large positive 6; in addition it is convenient to split the integration 
there over the subintervals It = ] _2- fa», -2~(i+1)°»] U [2-<'+1)°», 2-'a» [. 

5.2. Assertions in Section 3. 

5.2.1. Proof of Proposition 2. For part (i) the definitions and line (93) below 
yield Bs

p<
a(Rn) ^ As

p<
a(Un). However, if s > |o | ( | - l ) + , then Lemma 4, cf.the 

appendix, implies that the two spaces are equal. 
To prove parts (ii) and (Hi), let / G Lp(U

n) for some p e [l,oo[ (the case / e 
Cb(R*1) for p = oo is treated similarly). Selecting a subsequence jk of N0 such that 
\k :=z 2ik (with Ao = 1) satisfies 

(74) | | ^ 1 [ ^ ( A J - ) ^ / ] - / | L p ( R n ) | | < 2 - ^ 1 | | / | l p ( R " ) | | for k 6 N0 

(which is possible as seen from the usual convolution estimates), one clearly has that 
the series 

(75) /(_) = ,9-\^f\(x) + f ; (&-\^(\l-)& f\(x) - i ^ M A L - i •)-*•/](*)) 
k=i 

converges in ||- I _/P(IRn)||. Setting hj equal to the kth summand in (75) for j _. jk 

and hj = 0 for all other j , it is found by the definition of the Ap<
a that / € Ap;JJ(Rn) 

for all q and 

(76) | | / | 4 ; « ( R n ) | | ^ c | | / | L p ( R " ) | | . 
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The converse inclusion may be shown for 0 < q < 1, for when / ' A®~(~\n) is written 
as / = J2 hj according to the definition, then the embedding lq «-> 1% yields 

. ! / ? 

(77) E \ \ h i I -»(RB)II ^ E -* 0 '* , !^ I L* 
j = 0 ^ 3=0 

so that the completeness of Lp gives | | / | LP(R")|| < ||/ | ,4°;»(Rn)||. The proof is 
complete. 

5.2.2. Proof of Theorem 4. Here one can use the same strategy as for The
orem 2, except that a given v in the approximation space should be written as 
v = ~~hj and hj should then replace £f~li<Pj(-,0)^n-i'v; this works because also 
hj has its spectrum in the ball {£,'; |£'|tt' < 23} and because the representation ~2 hj 
can be chosen such that its relevant norm is less than 2 ID | A P A '' ' (Rn - 1) | . 

5.2.3. Proof of Theorem 5 (and of the main theorem). Obviously (b) 
entails (a) in the main theorem; cf. Corollary 2. The fact that (a) implies (c) is 
proved in connection with Theorem 1, and the extensions depending boundedly on 
v were established in Theorem 4 and, for K, in Theorem 2. So it remains to prove 
(c) =-=> (b). 

When / is in Bp'^ one derives (57) as before; since s > ^ + |o'|(- — l) it is 
straightforward to see from (57) that ~2i^~X\Pi&'/](')0) converges in Lp if p > 1 
or, by the Nikol'skij-Plancherel-Polya inequality, in L\ if p < 1. So we may write 
7o/ = X ^ ^ b j ^ / K ' ' 0 ) ' a n c l (57)> (58) alJd the definition of the approximation 
spaces thereafter show the boundedness of 70 from B*'* into APt9 '' ' . The Lizorkin-
Triebel case follows from the Besov case as before; cf. Propositions 1 and 8 below. 

5.3. The assertions in Section 4. 

Proof of Theorem 6. Step 1. To deduce all the embeddings, note that when 
s — |o| (- - l) and r = max(p, q), then it is easy to establish that 

(78) B;>«(Un)^A^q(K
n)^BS~l)'a(K"); 

in fact, the first inclusion is obvious from the definitions, and the second follows 
if Lemma 5 below is invoked in addition. Then the sufficiency of (35) and (38) is 
clear in view of the Soboiev embeddings, and from (115) or the anisotropic Jawerth 
embedding in Proposition 7 below it is seen analogously that (40) implies (39). 

Step 8. To show that (34) implies the w-part of (35) in Theorem 6, we shall use 
the already proved boundedness of 70; it is therefore convenient to replace (34) by 
the assumption that ApJ^7~1''a (R"--1) ^ B^u^~^'a'(~\n-1) for some n > 2. 
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It suffices to find Schwartz functions gk such that 

(79) sup \\gk | B^'ia'Ua(Un) || < oo, 
km 

(80) ||7ofl* \ Bii^"^'(Kn^)\\ ^ck1'11 for any & > 2. 

Indeed, it then follows from (34) and the boundedness of 70 from B/,q that 

(81) ckx'u <_ c'|| 705* l4!« l< '"1),°'(Rn~1)|| ^ c"ll 0* l-*j§~|0'U(Rn)||> 

which contradicts (79) unless u = 00. 
To prove the existence of such gk, note first that it is possible to take the partition 

of unity 1 = E Vi such that, say, </>0(f) = 1 for |f \a <, § and <Mf) = 0 for |f | f > § 
(this choice is consistent with the conventions in [20], which will be convenient later). 
Similarly the ?? of Section 2.2 should fulfill supp i] C ] 1, | j [. 

With some fco to be determined, we set 

k 

(82) 9k(x\xn) = ( ^ f ^ ) (2<*+*o>-_n) X)^- i , [^( . ,0)] (_ ' ) . 
i=o 

Then supp^cfe is contained in the set where both |f'|0< < ~§ • 2* and 2^+fc°)a" < 
|f„| < § • 2('s+*°)0» hold, and consequently (since |fn|1/o» < |£|0 <. \£'\a, + |fn|1/a«) 
the number ko may be taken so large that for all k, 

(83) suppJ?5, C {f € R"; 2*+*° <. \(\a <^2k+k°} C {f; <^+fco(f) = 1}. 

By the definition, the B^°-norm of gk is therefore equal to 

2(fe+fc0)(^-N'l) X \\gk I Ip(R»)||, 

so since Yl <Pj = i>(2~ka-), we conclude 
i=o 

(84) ||<?t J 2.-H < c2-*?-||tF{-1
?? I L,(R)|| ^ ' ( ' " ' l - ^ l l ^ - i j . i ^ o ) ] | ^(R"- 1 ) ! ! 

and the claim in (79) follows immediately. 
To prove (80), note that the definition of the Besov norm implies 

(85) IkMHa^^'V"1)!! 

> (E-^^i-^-ifot-.o)) 1 MR"-1)!!")1 " 
Vj=o ; 

> ck1^. 
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If one assumes (34), now in dimension n again, it then follows that Bp,q
 r 'a^-

AP,q '" ' *-* BT^ and this embedding between the Besov spaces implies r >. 
p (as one may show by considering the functions Qk in [20, Lena. 4.1] for —k 6 
H0; cf. Remark 4.6 there). That the embedding (34) implies r > q may be proved 
by a standard technique; it is e.g. easy to adapt the proof of the similar, isotropic 
statement in [22, Prop. 3.2]. 

Step S. If there is an embedding as in (36), then a Sobolev embedding gives for 
some finite t > r that Ap,q ~~ 'a <-» B't''t~

a, and this would contradict the u-paxt 
of (35). 

Proof of Proposition 3. Suppose for s := | a | ( | - 1) that A^(Un) — X, where 
X denotes either a Besov or a Lizorkin-Triebel space with some parameter (r, Q,u>). 

Since _f*'* <-> A^ '-* X it follows from the necessity of the parameter restrictions 
of the usual embeddings in the Besov and Lizorkin-Triebel scales that 

(86) T O , e>P, T - i f U s - H 

Moreover, since X M- Br
a,x~ for r = max(p,q), it follows in the same way, since 

(J-i),» 

(87) 

has differential dimension — \a\, that 

T _ M >_ _ui = , _ M 

Hence r — M. = s _ !_. t and therefore X is a Besov space according to (36). 
Using these conclusions, we obtain from the necessity of (35) that g >. r, and 

because 

(88) Bl<^'a=X^BlS^'a, 

we find that Q — T. Then we see from this and (34)-(35) that w = co. 
Finally we conclude that As

p>* = X = Br
a
tix~~ must hold under the assumption 

made at the beginning of the proof; but this conclusion is absurd since the Dirac 
measure S0 belongs to B^7~ , which then contradicts the inclusion A J'* C In 
that one obtains from Corollary 2. 

R e m a r k 5.1. The necessity of the first inequality in (38) may be obtained 
by means of the special Schwartz functions Qk constructed in [20, Lem.4.1]; these 
may be inserted for —keN into the inequality expressing the boundedness of the 
embeddings Br,u' '-t Ap,q"' <-• _-P. However, the second part of (38) is 

(s-M) 
not so easy to handle, for when one analogously inserts the QN t '" , the Ap>®-norms 
of these functions are troublesome to calculate. 



To prove the necessity of (40), given (39), it may be used for any t < r that 

(RQs R|a|(*-l),a _ „|a|(l-l),a |a|(l-l),a, 
(89) Jattt '-+ rr,u "-• Ap,q ; 

from (the established necessity of) (38) it follows that t < p—hence by taking the 

supremum over such t that r ^ p, which is the r-part of (40). 

Clearly this would give r ^ min(p, q) if (38) could be shown to be necessary in 

its entirety. So, if r < p we would have deduced that r ^ q. Moreover, for r = p 

the conclusion r ^ min(p, q) would reduce to the inequality p =% g, and so it would 

remain to be proved that u ̂  q. Here one could try to calculate the norms of the 

6y of [20, Lem. 4.1], but then the same difficulties would occur as above for (38). 

APPE;NDIX A. NOTATION 

Let 5 (R" ) be the Schwartz space of all complex-valued rapidly decreasing C°°-

functions on R", equipped with the usual topology; <S'(R") denotes the topological 

dual, the space of all tempered distributions on R". If ip £ <S(R") then (p = &ip 

and (f> = &~l<p are respectively the Fourier and the inverse Fourier transform of ip, 

extended in the usual way from <S(R") to 5 ' (R") . 

The space of uniformly continuous, bounded functions on R", valued in a Banach 

space X , is denoted by Cb(R", X); for X = C the Banach space is suppressed. 

For a normed or quasi-normed space X we denote by | |a ; |X| | the norm of the 

vector x. Recall that X is quasi-normed when the triangle inequality is weakened to 

\\x + y | X | | ^ c(||a; | X | | + \\y | X| |) for some c >- 1 independent of x and y. 

All unimportant positive constants are denoted by c, occasionally with additional 

subscripts within the same formulas. The equivalence "ternii ~ t e r n V means that 

there exist two constants c\,ci > 0 independent of the variables in the two terms 

such that c\ termi ^ term2 ^ c2 termi. 

A P P E N D I X B . ANISOTROPIC FUNCTION SPACES 

The conventions we adopt here are, by and large, those of [43, 44]. For each 

coordinate xt in R" a weight a; is given such that min (o i , . . . ,o„) = 1. The vector 

a = ( o i , . . . , o») is called an n-dimensional anisotropy, and |o| := a\ + ... + an. If 

o = ( 1 , . . . , 1) we have the isotropic case. 

For a given o = (a%,..., o„), the action of t € [0, oo) on x e R" is defined by the 

formula 

(90) tax=(t^xl,...,f
1-xn). 
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For t > 0 and s € R we set tsax = (ts)aa;. In particular, t ax = (t x)ax and 
2^'a;r = (2~j)ax. 

For x = (xi,... ,x„) e Rn, x ^ 0, let |a;|a be the unique positive number t such 
that 

(»-> & + - + & = i 

and let |0|o = 0 for x = 0. 
By [43, 1.4], [43, 3.8] the map | • |0 is an anisotropic distance function, which is 

C°° and coincides with | • | in the isotropic case. (Anisotropic distance functions are 
continuous maps u: Rn —> R fulfilling u(x) > 0 if x ^ 0 and u(tax) — tu(x) for all 
t > 0 and all i 6 P ; any two such functions u and u' are equivalent in the sense that 
u(x) ~ u'(x), see [36] and [6, 1.2.3].) Moreover, setting omax = max{a;; 1 ^ i ^ n} 
one has, cf. [43, 1.4], for any i £ P that 

(92) min{|a;|, |a;|1/a""»*} ^ |x|a < max{|a;|, |a;|1/a'»«}. 

If (<Pj)jm0 is the anisotropic partition of unity from Section 2, then for any / e 
<S'(Rn), 

(93) /' = V J ^ - 1 ^ - ^ / ) with convergence in 5'(Rn). 
i=o 

Let 0 < j ) ^ o o , 0 < f < o o , s e R . The anisotropic Besov space i3p;
a(IRn) and, 

provided p < oo, the anisotropic Lizorkin-Triebel space F^;a(Rn) are defined to 
consist of all tempered distributions / € S'(Rn) for which the following quasi-norms 
are finite: 

/ < » ,l/q 

(94) ||/ | B^(Rn)|| = V J ^ H ^ - 1 ^ ^ / ) | LP(R
n)||* 

\ j = 0 ' 

(95) \\f\F;£(®n\\ = \\(Jt2isq\^~1^f)(-)\9) *UP(RB) | , 
II \ j=0 / i ii 

respectively (with the usual modification if q = oo). 
Both Bp'

a(Rn) and F££(Rn) are quasi-Banach spaces (Banach spaces Mp'^X and 
g > 1) which are independent of the choice of (v̂ OjeNo • 

The embeddings 5(Rn)<-+ B*;a(Rn) <-» 5'(Rn) and 5(Rn) M- Ep;
a(R") ^ <S'(Rn) 

hold true for all admissible values of p,q,s. Furthermore, if both p < oo and Q < oo, 
the ranges of these inclusions are all dense; cf. [43, 3.5] and [6, 1.2.10]. The results 
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on embeddings are reviewed (and extended) in Appendix C.3 below; let us conclude 
with a few identifications. 

If 1 < p < oo and s ' U then F££(Rn) = H,^'a(Un) with equivalent quasi-norms; 
hereby 

(96) H.pa(Rn) = { / e <S'(Rn); J (£(l + &)'niak)f) | iP(in) | | < oo 
l I IV f c = 1 / I II 

is the anisotropic Bessel potential space; cf. [37, Rem. 11], [38, 2.5.2], and [43, 3.11]. 
Furthermore, i f l < p < o o , s e R and if Si = ~ e N, • • •, sn = ~ € N then 

F£'£(Un) — W£'a(Rn) (with equivalent quasi-norms), where 

(97) W;'a(Un) = {/ e <S'(Rn); | |/ | Lp(R
n)\\ + ] T I d"f\ 

dxlk L„ 

is the classical anisotropic Sobolev space on Rn. If s > 0 and —- #• ^ for k = 1, . . . , n, 
then ^^^(R'") = Cs,°(Rn) are the anisotropic Holder spaces. 

Anisotropic spaces have been intensively studied by S. M. Nikol'skij [28], and by 
O.V.Besov, V.P.Il'in and S.M. Nikol'skij [4]. See also works of M.Yamazaki [43, 
44], H.-J. Schmeisser and H. Triebel [33, 4.2], A. Seeger [34], P. Dintelmann [6, 7] etc. 

APPENDIX C. PROPERTIES OF THE ANISOTROPIC SPACES 

The point of this section is to sketch how Propositions 7 and 8 may be proved 
in the present anisotropic set-up. Along the way, we also prove some interpolation 
formulas that are of interest in their own right. The main tool will be anisotropic 
versions of the atomic decompositions of [11, 12], see W. Farkas [8]. 

Appendix C I . Atomic decompositions. As a preparation, we recall some 
basic notions of atomic decompositions in an anisotropic setting. 

Consider the lattice Zn as a subset of Rn. If v e Mo and m = (mi,. . . ,mn) e 2n, 
we denote by Qa

m the rectangle in Rn centred at 2~vam — (2~vairrii,... ,2~va"rnn), 
which has sides parallel to the axes and side lengths 2~vai, ..., 2~va", respectively 
(Qom is a cube with side length 1). If Qa

m is such a rectangle in Rn and c > 0, 
then cQa

m denotes the concentric rectangle with side lengths c2~vai, . . . , c2~va". 
If fi = (0i,...,pn) e Nn is a multi-index and if x = (xi,...,x„) 6 R'\ then 
x13 ;= x^1 ...x^, and we write a/3 = a\$\ + • •. + anfin. If E C R" is Lebesgue 
measurable, then |jB| denotes its Lebesgue measure. Now, anisotropic atoms are 
defined as follows. 



Definition 2. Let * e R, 0 < p < co and K, L e R. A function g: Rn -» C for 
which D^g exists when o/3 <_ K (or £ is continuous if K < 0) is called an anisotropic 
(s,p)/-f,£-atom, if 

(98) supp Q C cQ*m for some v 6 M, m 6 Zn and c > 1, 

(99) !l)^(a;)| | a | <. | Q J m p a / 3 _ J ^ if a/3 4 K, 

(100) / X0Q{X) AX = Q if a/3 SC I . 
/R» 

If conditions (98) and (99) are satisfied for v ~ 0, then Q is called an anisotropic 
lif-atom. 

If the atom Q is located at Qa
vrrl (i.e. supp Q C cQvm with »v g M0, rn 6 Za, c > 1) 

we denote it by Qvm. The value of the number c > 1 in (98) is unimportant; it allows, 
at any level v, a controlled overlap of the supports of different Qvm. 

The main advantage of the atomic approach is that one can often reduce a problem 
given in S|jJ or F*£ to some corresponding sequence spaces; these are here denoted 
by 6 M and fpq. If Qvm is a rectangle as above, let %vm be the characteristic function 
of Qvm; then 

(101) 2"|a|/px«-m 

is the £p(R
n)-normalised characteristic function of Qvm whenever 0 < p ^ oo. 

If 0 < p,q <. co, then bp,q is the collection of all A = {Xvm £ C; v e N0,m € ln} 
such that 

(102) . I|A 16M !! = ( £ ( E i v - ' ^ 
^v=0 ^m&" 

is finite (usual modification if p = oo and/or q = oo). Furthermore, / ° ? is the 
collection of all such sequences A for which 

(103) I N / , y = | | ( f ; E i^-"|fl|/,,x™(-)i*) ' | ^ ( R n ) | 

(usual modification if p = oo and/or g = oo) is finite. 
For 0 < p < oo and 0 < g <. oo we will use the abbreviations 

(104) * i > = M ( J - l ) + and <TM = | a | ( 5 S - ^ - - - l ) + . 

Proposition 4. (i) Let 0 < p < oo, 0 < q ^ oo and s G R, and Jet K, L € R 
fulfil] 

(105) IT > amax + s if s > 0, 

(108) L > «-M - a. 
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Then g G <S'(Kn) belongs to F^(kn) if, and only if, for some A = (A„m) in / » , , 

(107) g— S 2D ^ism.etm> with convergence in S'(Mn), 

where eim
 a r e anisotropic l^-atoms (v = 0) or anisotropic (s,p)K,i-atoms (v € N). 

Furthermore, inf || A \f£>q\\ with the inSmum taken over all admissible representa
tions (107) is an equivalent quasi-norm in F££(Un). 

(ii) The analogous statements are vaiid for the Besov spaces Bs
p'^(Rn) for 0 < p ^ 

oo provided av,q and /p>g (together with its norm || • |/£i?||) are replaced by av and 
bv<q, respectively. 

P j o of. The proposition is a slightly different version of the atomic decompo
sition theorem proved in [8]; the modifications needed are immaterial, so we omit 
details. O 

Appendix C,2. Real Interpolation. Our aim is to prove a refined Sobolev 
embedding due to B.Jawerth [18] and J.Franke [10] in the isotropic context. As 
usual (•, •)«,, denotes the real interpolation. 

Lemma 2. Let so ^ Si and s = (1 — t9)so + 9s\, where 0 < 6 < 1. If 0 < p <. oo 
then 

(108) (B;X (R~), %° (R n ) ) , , 9 = ^;,°(Rn), 
(109) (F;X (R»), F;^ (Un))e>q = B ; : J ( R » ) , 

provided 0 < p < oo in the last formula. 

Formulas (108) and (109) can be proved using the same arguments as in [40, 2.4.2], 
and we refrain from doing this here. In the case of constant s, there is another result: 

Proposition 5. Let 0 < 6 < 1 and 0 < p0 < p < Pi < oo. When 5 = ^ + ~> 
then 

(no) (-%?,(•»").-%?«(Rn))^ = W * n ) -
Proof . Replacing (if necessary) | • |0 by an equivalent anisotropic distance 

function we may assume 

(111) {x£«n; \x\a ^ 2} C [-It.Ttf. 

Let / £ , as in (103). By immaterial modifications of the proof of [12, (6.10)] we have 

(112) (f^vf^e^s;, for ? = ^ + & -

Then (110) is a consequence of (112) and the following anisotropic ^-transform. D 
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Proposition 6. Let (Vj)ieMo be a partition of unity as In Section 2, and Jet 
Q € <S(Rn) fuJfiJJ Q(X) = 1 i f Ma < 2 and supp^ C [-TC,K]". TJie operators U9: 
F^(Rn) -4 /p°,g and T,: / n , -» Ep%°(Rn) defined by 

(113) t/^(g) = {(2it)-n/2 2"( - t ) (^g) v (2-" 0 m) | v G N0 ,m G Zn} 

forgeF°£(Rn) and by 

(114) re(A) = f ) ] T A„ro 2—'(—1)^(2"» • -m) 
f=0 m6Z» 

for A = {\„m ; «/ 6 No ,m G Z™ } belonging to f^q, respectively, are bounded. 
Furthermore, (Te o i y ( s ) = 5 for any 9 G Ep^R") and ||J7^(-) | /£ ? | | is an 

equivaJent quasi-norm on F*£(Mn). 
The corresponding results hold for the 23£;a(Rn) spaces with 6P,, in place of /£ , . 

Proof . For p,q < 00 a proof may be found in [7], where density of <S(Rn) 
in Bp'®(Rn) and F^tg(Rn) was used. In the remaining cases one may proceed, for 
example, as in [42, 14.15]. D 

The proposition, due to P. Dintelmann [7, Theorem 1], represents the anisotropic 
version of a theorem originally proved by M. Frazier and B. Jawerth, see [12]. 

Appendix C.3. Embeddings. In addition to elementary embeddings (mono-
tonicity in s and q) we have 

( l lg) K%-„M (Rn) ^ W R n ) ^ -C*( M ) (Rn); 
hence J3*;£ = F££ whenever 0 < p < 00. There are, moreover, the Sobolev embed
dings 

(116) B»;J(R») <-+B#(R») and ^ ( 1 " ) H ^ J ( r ) 

provided that 

(117) p<r and s - M = i ~ H ; 

g and u are independent of each other. These assertions may conveniently be found 
in [43]. There is also an anisotropic version of the Jawerth-Franke embedding (which 
has features in common with both of the above types): 

Proposition 7. Let 0 < po < P < Pi < 00, si < s < So and 0 < q 4. 00. Then 

(us) B;°0i;(u
n) ^ F;;-(Rn) -+ s;j;;(Rn) 

provided s0 - ^ = s - ^ = «i - pf-
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Proof . lj_t 0 < pa < p' < p < p" < oo and let 

(119) s' = s + H _ H and S " _ S + H _ H . 
v ' Po P Vd p 

As a consequence of (116) we obtain 

(120) F;^(R n ) -»• F ^ ( i n ) and Fp'("f(Rn) -+ F# , (R n ) . 

There exists 0 € ]0,1[ such that A = 1=2 + ^ , Then s0 = (1 - 6)s' + 6s". 
Using (109), elementary properties of the interpolation, and (110) we have 

(121) 

B££(Rn) = ( -&; (*" ) ,< i 0 (R n ) ) 9 j ) ^ (-?; , ,a ,(Rn).%(Rn))Sj> - %°(R n) 

and this gives the first embedding in (118). 
To prove the second, let now p' < p < p" < p\ <_ oo and sW) = s —Igy + ^1 

for j = 1,2. Then by (116) and (115) we have F3^ (Rn) <-+ Bpf^0(Rn), and 

Sl = (1 - d)s' + 8s" when ^ + 4r = i , so applying (110) and (108) we conclude 
that 
(122) 
F ^ ( R n ) = (F;;:q(R

n),F;,fJRn))eip ^+ (B^%(»n),B^tr))e>p = B ^ ( R n ) . 

D 

R e m a r k 8.1. The second and first part of (118) was proved by B. Jawerth [18] 
and by J.Pranke [10], respectively, in the isotropic case. The present extension to 
a ^ (1,...,1) would have been beneficial for e.g.the fine continuity properties of 
the pointwise product as investigated in [20], where it was necessary to distinguish 
between the isotropic and anisotropic cases in numerous places. 

Appendix C.4. The ^-independence of the range space 7o(Fpi'^(Rn)). 

Proposition 8. When 70 is defined on both Fg£(Rn) and F;^(Rn), then 

(123) 7o(i^(Rn))=7o(E ; , f(Rn)) . 

Proof . We proceed as in [12, 11.1]. If q < t, the elementary embedding 
Fp

s;,°(Rn) <-» F;; t°(in) implies 7o(F^a(Rn)) C 7o(Fp
s;i°(Rn)). To prove the converse 

inclusion, let K and L fulfill (105)-(106) and let, us write g € Fp
sf (Rn) as 

(124) g — VJ ^2 ^vmQaJm 1 convergence in <S'(i"), 
v=0 mez» 



with \\X\fa
t\\ ^ c\\g\Fp,t(®n)\\; cf. (107). We claim there exísts a ftшction g Є 

Fs-a(Rn) witb 7o(<?) = 7o®- 0QІУ s u c n rectangles Qa

m for which the relevant cQџm 

intersects Г = {x; xn = 0 }, are important. Let 

(125) Л = {(v,m) ЄҖx ln;cQa

џmnTф 0}. 

We define Ã„m = A„m if (v,"~~) Є A and otherwise A„m = 0, and put A = {A„m; 
v Є No ,m Є 2"}. Let now '0 є 5(R) be such that supp?/) C [-§, §] and ł/>(0) = 1 
and, moreover, 

(126) ( zß"ф(z) dz = 0 for all ßn <~ Щ such that anßn < L. 

Using this we define 

(127) FЛ(x',xn) =eavm(x',Q)"Ф(2va-'xn) 

and remark that Qџm is supported in a rectangle cQ a

m where Qџm has sides parallel 
to the axes, is centred at ( 2 - " a i m i , . . . ,2 -" o"- 1mn_i,0) and its side lengths are-
respectively 2 - "" 1 , ... ,2-"a'"->, 2~~va". Furthermore, if ß = (ß',ßn) Є NQ ІS such 
that aß ^ K and if v Є IҸ then 

(128) \Dßвlm(x)\ ^c\Dß'ќІ(x',0)\ • 2va-"ß" < c '2~"( s - ! ғ) 21""3. 

It follows that each ҘJ^, up to an unimportant constant, is ari anisotropic lк-atom 
for v = Ö or an anisotropic (s,p)к,í,-atom (due to its product structure and to 
the assшnptions on the function iþ there are no problems in checking the moment 
condítions). 

Defining 

(129) ł î = £ £ « s £ = £ A « Ж 
ľ=0 mЄІ" M ) Є Л 

we have 7o® = 7o®. For (v,m) Є Л let 

(130) EUш = {(aя,.. .,£,.,) є <Ҙïm; 2-("+1>°'"-1 < xn ťj 2 - "°" - 1 }. 

Obvìously, 

\ĚaJ l - 2 - a -
( ш ) J___Л = _______ > 0 . 
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Then (with the usual modification for g = oo) 

v ! / « l 

(132) 
11/ V / 9 I I 

IM£J~ | ( E \^X{JÍ(-)\") |ip(Rn)| 

where xJm denotes the Lp(S.n)-normalised characteristic function of the rectan
gle E£m. Using an inequality of Fefferman-Stein type, see [9] for the anisotropic 
Hardy-Littlewood maximal function, the proof is a simple anisotropic counterpart 
of [12, 2.7]. 

For (v, m) £ A the sets E®m are pairwise disjoint and so at most one term in the 
sum on the right-hand side is nonzero. Hence q and 1/q cancel in (132) and may 
therefore be replaced by t and 1/t. So, with the usual modification if t = oo,. 

(133) | |A|/,0 . , | |~|( E l^mX&OI') |MRn)|Uc||A|/£.||. 
"V.mJS/l J ' H 

The last relation together with (129) prove the fact that g € F££(Rn) and 

(134) \\g | F£(Kn)\\ <c\\X\ / « J £ c' \\X \ /»4 | | < c" \\g | J&°(R")||. 

This verifies our claim. D 

R e m a r k 8,2. The ^-independence of the traces of Lizorkin-Triebel spaces has 
also been treated by Yu. V. Netrusov [25]. 

APPENDIX C. SERIES OF ENTIRE FUNCTIONS WITH COMPACT SPECTRA 

First a few well-known results on convergence of certain series are recalled: 

Lemma 3. Let 0 < A < oo and Jet {/*}j£=o b e a sequence of functions on Un 

such that 

f su P P ,F / 4 c{£; i2^1£ | .^A2*} , fc = l, . . . , 

lsupp.*7bc{e;|0.*M}. 

TJien one has, for all s e R and 0 < p <_ oo, that 

(136) | £ / J B ' ; J ( R » ) U C ( $ : 2 ' * ' | | A M R " ) 
llfcO I » v*=o 
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More precisely, if the right-hand side is Unite, then £) /* converges in S' to a distri-
k=0 

button satisfying this inequality (where c depends on a, A, p, s, n but not on {fk})-
For p < oo an anaJogous resuJt holds for F££, provided that (on the right hand 

side of (136)) the £q-norm is calculated pointwise at each i € l " before the Lp-norm 
is taken. 

Lemma 4. Let 0 < A < oo and Jet {/*}£10 be a sequence of functions on R" 
suci that 

(137) supp^/ f c C {£; | ^ | a <A2*}, fc = 0, 1, ..., 

and suppose that 

(138) s > | a | ( i - l ) + . 

Then the statements in (136) if. hoJd true. Moreover, for p < oo one has the analo
gous result for the space F££ provided (138) is replaced by the condition 

(139) s > | o | m a x ( i - l , i - l , 0 ) . 

These lemmas are proved in [43], but see also [20], [24] or [32, 2.3.2]. For the 
borderline case with equality in (138) we refer to [22, Th.3.1]; it is straightforward 
to get anisotropic variants of this result, so without proof we state what is needed 
above for the case p < 1: 

Lemma 5. Let {fk}tLo De a sequence of functions such that (137) is satis&ed for 
some A < oo. Let 0 < p < 1, 0 < q ^1 and suppose that s = |o|(l — l) . Then we 
have 

(14°) | |E/*U(Rri) |Uc(E2' ! | a i (^1)9i^i^Rn)ii<') / 
" A=0 ' " ^Je=0 ' 

More pretiseJy, if the right-hand side is finite, then Yl fk converges in L i ( i n ) to a 
k=0 

distribution f satisfying this inequality (where c depends on A, p, s, n but not on 
fk, k = 0,1,...). Moreover, this limit f also satisfies 

(141) | .£/*|-?n«*~1 ) , 0(RB) |Uc(f; 2fc'o|(i-1)«||MXp(R'l)||») 
II k=o I " ^*=o ' 

for r = maxip, q) • 
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It is of course a stronger fact that the sum / belongs to the space A*\*, but the 
lemma is needed for the proof of (41) above. 
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