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ON THE EQUATION ip{\xm - ym\) = 2" 

FLORIAN LUCA, Bielefeld 

(Received November 2, 1998) 

Abstract. In this paper we investigate the solutions of the equation in the title, where 
9? is the Euler function. We first show that it suffices to find the solutions of the above 
equation when m = 4 and x and y are coprime positive integers. For this last equation, we 
show that aside from a few small solutions, all the others are in a one-to-one correspondence 
with the Fermat primes. 
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1. INTRODUCTION 

For any positive integer k let <p(k) be the Euler function of k. In this note, we find 

all solutions of the equation 

(1) vQxm-ym\) = 2n, 

where x and y are integers and m and n are positive integers such that m ^ 2. 

Let fc ^ 3 be a positive integer. It is well-known that the regular polygon with 

k sides can be constructed with the ruler and the compass if and only if ip(k) is a 

power of 2. In particular, knowing all solutions of equation (1) enables one to find all 

regular polygons which can be constructed with the ruler and the compass for which 

the number of sides is the difference of equal powers of integers. Some equations 

of a similar flavour as (1) were treated in [2] and [3J. In [2], we found all regular 

polygons which can be constructed with the ruler and the compass whose number 
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of sides is either a Fibonacci or a Lucas number, while in [3] we found all regular 

polygons whose number of sides is a binomial coefficient. 

Concerning equation (1), we first prove 

P r o p o s i t i o n . In order to find all solutions of equation (1), it suffices to find 

only those for which x>y>-\, gcd(a;, y) — 1 and m = 4. 

Then we prove 

T h e o r e m . Assume that (x, y, m, n) is a solution of equation (1) satisfying the 

conditions from Proposition, Then, 

(2) 
f (22 + 1 , 2 2 - 1 ) where I >- 1 and 22 + 1 is a prime number or 

(x.y) = < , 
\ ( 2 2 , 1 ) for 1 = 0,1 ,2 ,3 . 

2. REDUCTION OF THE PROBLEM 

In this section, we supply a proof of Proposition. 

P r o o f . Let C = {k; ip(k) is a power of 2}. It is well-known that a positive 

integer k belongs to C if and only if k — 2ap\,, ,pt for some a ^ 0 and t > 0, where 

Pi = 22 * + 1 are distinct Permat primes. In particular, it follows that the elements 

belonging to the set C satisfy the following two properties; 

1) If a e C and b\a, then b£C. 

2) Assume that a, b e C Then, ab £ C if and only if gcd(a, 6) is a power of 2. 

Assume that (x,y,m) are such that \xm — ym\ e C We may assume that x > 

\y\ >• 0. We first show that it suffices to assume that gcd(x,y) = 1. Indeed, let 

d = gcd(a;,y). Write x = dxi and y = diji. Then, 

\xm - yn\ = dm |a;m - yf\ £ C. 

Since m >- 2, we conclude by 1) and 2) above that \xm — ym\ 6 C and that d is a 

power of 2. Conversely, if (xi,yi,m) are such that \xf-ym\ € C and if d is a power 

of 2, it follows by 2) that 

\xm - ym\ = dm|a;m - ym\ £ C 

as well. Hence, it suffices to find all solutions of equation (1) for which gcd(a;, y) — 1. 
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Assume first that xy = 0. It follows that y = 0. Since gcd(x, y) = 1 and x > 0, 
we conclude that x = 1. 

Assume now that a: = |j / | . Since gcd(s, y) = 1 and v? is not defined at 0, it follows 
that x = l,j/ = — 1 and m is odd. 

From now on, we assume that x > \y\ > 0. We first show that we may assume 
m > 2. Indeed, suppose that m = 2. Since m = 2 is even, we may assume that 
y > 0. Since 

x2 -y2 = (x-y)(x + y) e C, 

it follows by 1) above that i - t / 6 C and x + y € C. Let ci = x - y and c2 = x + y. 
Since a; > y > 0, it follows that c2 > ci > 0. Moreover, since gcd(x,y) = 1, we 
conclude that either both ci and c2 are odd and gcd(ci,e2) = 1, or both c\ and c2 

are even in which case gcd(ci, c2) = 2 and one of the numbers c\ or c2 is a multiple 
of 4. Conversely, let c2 > ci be any two numbers in C satisfying one of the above 
two conditions. Then one can easily see that if we denote 

ci + c2 , C\- c2 

x = — - — and y = —-—, 

then x and y are positive integers, x > y, gcd(x,y) = 1 and x2 — y2 = C\Ci € C. 
These arguments show that equation (1) has an infinity of solutions when m = 2 
and that all such solutions can be parametrized in terms of two parameters ci and 
c2 belonging to C and satisfying certain restrictions. 

From now on, we assume that m > 2. We first show that m is a power of 2. 
Assume that this is not the case and let p be an odd prime such that p\m. Replacing 

x
m/p and ym/p respectively by x and y, we may assume that \xp — yp\ 6 C. From 
1), it follows that 

\xp - vp\ 
u = i- -± 6 C. 

\x - y\ 
Since p is odd and gcd(x,y) = 1, it follows that up is odd. In particular, up is 
square-free. Let P be a prime dividing up. On the one hand, we have xp — yp = 
0(modP). On the other hand, since PJ(xy, it follows, by Fermat's little theorem, 
that a;^-1 - y^1 = 1 - 1 = 0(modP). Hence, 

(3) P\(xp-yp,xp-1-yp-l) = x(p>p~V-y(p>p-l). 

Since P e C, it follows that P - 1 is a power of 2. Since p is odd, this implies that 
(p,P - 1) = 1. From formula (3), we conclude that P\x - y. Hence, x = y(modP). 
It now follows that 

Up = |af ~ yP} = \xp-1 + xp-2y + ...+ tf-l\ s p a ^ m o d P ) . 
\%-y\ 
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Since P\up, it follows that p = P. Since up is square-free, it follows that uv — 1 or ; 
On the qther hand, the sequence 

U * ... o,k\ 

for k > 0 
F ~ І 

is a Lucas sequence of the first kind. Prom [1] we know that uq is divisible by a prime 
Q > q for any prime q > 3. From the above result it follows that p = 3 and that 
U3 = 1 or 3. This leads to the equations 

x2 ±xy + y2 = t or 3. 

The only solution (x, y) of the above equations such that x > \y\ > 0 is (2, —1) which 
does not lead to a solution of equation (1). Hence, m is a power of 2. Since m > 2, 
it follows that m is a multiple of 4. We may now replace x and y by xml4 and ?/m/4 

respectively and study equation (1) only for m = 4. Clearly, since ro = 4 is even, we 
may assume that y > 0. 

Proposition is therefore proved. D 

3. THE PROOF OF THEOREM 

Since x4 - y4 = (x - y)(x + y)(x2 + y2) € C, it, follows that x-y €C,x+y e C 
and x2 + y2 € C. We distinguish two cases: 

Case 1. x = y = l(mod2). 
In this case, one of the numbers x — yoix + yis divisible by 4 and the other one 

is 2 modulo 4. Moreover, since both x and y are odd, it follows that x2 + y2 is 2 
modulo 8. It now follows that there exists e 6 {±1} such that 

x — sy = 2(mod4), 

x + sj/ = Q(mod4). 

Write 

«-e» = 2rj(-2"'+-). 
i = l 

J 

(4) a; + e|/ = 2sri(22" i+l), 
3=1 
K 

aJ + 2/2 = 2f](22 '""+l), 



where s >- 2,1, J and K are three non-negative integers (some of them may be zero), 
0 <. «i < .. . < a/, 0 < f3i < .. . < fij, 0 <, 7J < ... < -JK and 22 + 1 is a Fermat 
prime whenever S e {a;}f=1 U {/?j}/=1 U {7*}£=i-

Notice first that the three sets {a;}l=1, {/%}/=1, {7*}|=i a r e pairwise disjoint. 
Indeed, assume for example that <$ e {a.}|= J n {/%}/=i- It follows that 22 + l|(s -
'!/, a- + j/)( which contradicts the fact that x and y are coprime. 

Notice also that K > 0 and that 71 > 0. Indeed, if it" = 0 then x2 + y2 = 2, 
which is impossible because x > y >- 1. If 71 = 0, it follows that 3 = 22 + \\x2 + y2, 
which is impossible because x and y are coprime and —1 is not a quadratic residue 
modulo 3. 

We now use formulae (4) and the identity 

(5) 2(x2+y2) = (x-~yf + (x + y)2 

to conclude that 

4 n(-2 7*+ 1 }=4n(2 2°'+ j)2+2 2 s n ^ + i ) 2 

fc=l t= i i = i 

or 

(6) r | ( 2 ^ + -) = LV22" + * ) 2 + - 2 { , _ 1 ) IV22"' +1)2-
k=l i=\ 3 = 1 

Our main goal is to show that I = J = 0. 
Suppose that this is not so. In order to achieve a contradiction, we proceed in 

three steps. 

S t e p 1.1. 0e{a i}f= 1U{/3 i}/= 1 . 

Assume that this is not the case. 
Suppose first that I > 0. Hence, aj ^ 0. Notice first that 

(7) I I ( 2 2 " i + l ) = E 2iS'2"i 

i=l UC{1,...,I} 

and the sum appearing on the right hand side of identity (7) is precisely the binary 
expansion of the product appearing on the left hand side (this is because of the fact 
that all exponents appearing on the right hand side of identity (7) have distinct 
binary representations, therefore they are all distinct). Since ai > 0, it follows that 

1 

(8) n ^ 2 " ' + I)2 = ! + 22"1+1 + 22"l+1 + higher powers of 2, 



where the higher powers of 2 are missing when 1 = 1. From formula (6), it follows 
that 
(9) 

K 

1 + 2271 + higher powers of 2 = TJ (227t + 1) 
*=i 

= (1 + 22°1+1 + higher powers of 2) + 22(s~1)(l + higher powers of 2). 

Clearly, the numbers 2ai +1 and 2(s — 1) are distinct because the first is odd and the 
second is even. On the one hand, from formula (9) and the fact that 271 is even we 
conclude that 271 = 2(s — 1). On the other hand, since the binary representation of 
the number given by formula (9) has at least three digits of 1, it follows that K > 2. 

If J = 0, then formulae (6) and (9) imply 

K 

1 + 2271 + 2272 + higher powers of 2 = TJ (227t + 1) 
(10) i i i 

= 1 + 22(s_1) + 22"1+1 + higher powers of 2. 

Formula (10) leads to 272 = 2a i + 1, which is impossible because a% > 0. 
Suppose now that J > 0. In this case, /3j > 0. Arguments similar to the preceeding 

ones yield that 

1 + 2271 + 2272 + higher powers of 2 = TJ (2271' + 1) 
k=l 

= (1 + 22"1+1 + higher powers of 2) 

+ 22(s_1)(l + 22/ '1+1 + higher powers of 2). 

From equation (11) and the fact that 271 = 2(s ~ 1), it follows that at least one of 
the following three situations must occur: 

1) 272 = 2a i + 1. This is impossible because ai > 0. 
2) 272 = 2(s - 1) + 2f t + 1 = 271 + 2f t + 1. This is impossible because both ft 

and 7i are positive. 
3) 2 a i + 1 = 2(s - 1) + 2* + 1 or 2a i = 2(s - 1) + 2f t = 271 + 2 A , which is 

impossible because fit 5̂  71. 
This completes the argument in the case I > 0. 
Assume now that I = 0. Hence, J > 0 and fi\ > 0. Arguments similar to the 

previous ones imply that formula (6) reads 

K 

1 + 2271 + higher powers of 2 = TJ (227" + 1) 
(12) ti 

= 1 + 22(s-1)(l + 2 2 * + 1 + higher powers of 2). 
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From equation (12), it again follows that 2"» = 2(s - 1) and K >. 2- Formula (12) 
can now be written as 

K 

1 + 2271 + 2272 + higher powers of 2 = J[(22'"° + l ) 
( l 3 ) *=i 

= 1 + 22(s-1)(l + 22"1+1 + higher powers of 2). 

From equation (13), it follows that 272 = 2(s - 1) + 2f t + 1 = 2"» + 2Pl + 1, which 
is impossible because both di and 71 are positive. 

Step 1.1 is therefore proved. 

S t e p l.II. If I >0, thenai 5^0. 

Suppose that this is not the case. Assume that / > 0 but a% = 0. Let t >. 1 be 
such that at = i — 1 for i = 1, . . . , t and either / = t or a*+i ^ t + 1. Then 

(14) n(22" (+1)=n(2-'-1+1) n ^+D=v? - D n (220i+*)• 

i = l t = l i j ; i+ l i j i t+ l 

Hence, 

/ 
J | (2 2 0 i + l)2 = (1 + 22 '+ 1 + higher powers of 2)(1 + higher powers of 2) 

= 1 + 22 '+1 + higher powers of 2. 

From formulae (6) and (15), it follows that 
(16) 

K 

1 + 2271 + higher powers of 2 = J | (227fc + 1) 
jt=i 

= (1 + 22>+1 + higher powers of 2) + 22(5"~x)(l + higher powers of 2). 

Clearly, 2s +1 and 2(s — 1) are distinct because the first number is odd and the other 
is even. From formula (16), it follows that 2^ = 2(s - 1) and that K >- 2. Formula 
(6) now becomes 

1 + 2271 + 2272 + higher powers of 2 = J7j227,i + 1) 
k=i 

2<+l 
(17) 

= (1 + 22"+1 + higher powers of 2) 
+ 22(s~~1)(l + higher powers of 2). 
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Suppose first that J = 0. Then T& = 2' + 1, which is false because t is positive. 
Suppose now that J > 0. Since a* = i-1 for i = 1,. . . , t, it follows that ft >- t >- 1. 

From the arguments employed in Step 1.1, it follows that formula (17) can be written 

K 

1 + 2271 + 22'12 + higher powers of 2 = J{{2V" + 1) 

(18) , k=1 

= (1 + 22 +l + higher powers of 2) 

+ 22(s- l)(l + 22"1+1 + higher powers of 2). 

From equation (18) and the fact that 27> = 2(s - 1), it follows that one of the 
following situations must occur: 

1) 272 = 2* + 1. This is impossible because i > 0. 
2) 2"11 = 2(s - 1) + 2f t + 1 = 2~'1 + 2 A + 1. This is impossible because both -yi 

and ft are positive. 
3) 2' + l = 2 ( s - l ) + 2 f t + 1 or 2* = 2'n +2 f t , which is impossible because 71 # ft. 
This completes the proof of Step l.II. 

S t e p 1.III. If J > 0, then ft # 0. 

Notice first that Steps 1.1, l.II and l.III contradict each other. 
Assume that the claim made in Step l.III does not hold. Let J > 0 and assume 

that ft = 0. Let t >. 1 be such that ft = j - 1 for j = 1,.. . , t and either J = t or 
J > i and ft+1 >-1 + 1. We have 

(w) j p ^ + 1 ) = n ( 2 2 ^ 1 + 1 ) n (22//;/+1)=(22< -1) n y+u. 
3=1 j = l i > t + i j > t + i 

Hence, 

j J 

(20) flj22'5' + ^ = (22* ~ !)2 I I ^ + I)2 = 1 + 22 '+ 1 + higher powers of 2. 
i=i jjrf+i 

From formula (6) it follows that 

K 

1 + 22'1 + higher powers of 2 = ][[(22'"s + l) 
k=i 

- (1 + higher powers of 2) + 22(<5~l3(l + 22*+1 + higher powers of 2). 
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Assume first that I = 0. It follows that 

K 

1 + 2271 + higher powers of 2 = J J {2rk + 1) 
(21) k=i 

= 1 + 22(s~1)(l + 22<+1 + higher powers of 2). 

From equation (21), it follows that K > 2 and that 2T. = 2 (s - 1). Formula (21) can 
now be written as 

K 

1 + 2271 + 2272 + higher powers of 2 = TT(227t + 1) 
(22) j£ 

= i + 22<S-1>(1 + 22<+1 + higher powers of 2). 

From equation (22) and the fact that 271 = 2(s - 1), it follows that 272 = 2(s - 1) + 
2* + 1 = 271 + 2* + 1, which is impossible because both 7x and t are positive. 

Assume now that / > 0. In this case, ot\ >- t >. 1, From formula (6) and the 
arguments employed at Step 1.1, it follows that 

K 

1 + 2271 + higher powers of 2 = TJ(2 2 U + *) 
(23) , k=1 

= (1 + 22 1 + 1 + higher powers of 2) 
+ 22(s-1)(1 + 22<+1 + higher powers of 2). 

Notice, that 2 a i + 1 and 2(s - 1) are distinct because the first number is odd and 
the other is even. From formula (23), it follows that 2"<l = 2(s - 1) and that K >- 2. 
Formula (23) can now be written as 

K 

1 + 2271 + 2272 + higher powers of 2 = J J (227' + 1) 

(24) „, fc=1 

= (1 + 22 + 1 + higher powers of 2) 
+ 22(s"x)(l + 22<+1 + higher powers of 2). 

From equation (24) and the fact that 271 = 2(s — 1), it follows that one of the 
following situations must occur: 

1) 272 = 2a i + 1 . This is impossible because a\ > 0. 
2) 272 = 2(s - 1) + 2* + 1 = 271 + 2f + 1. This is impossible because both ft and 

t wee positive. 
3) 2 a i + 1 = 2(s - 1) + 2* + 1 = 271 + 2* + 1. This leads to 71 = t and on=t + l. 

473 



I tliis last case,i4 follows that a2 ^ * + 2 and pt+1 >.t + 2, whenever they exist. 

From formulae (6) *od («) w e get 

(25) 

1 + 22' + 2272 + hiSher powers of 2 = JJ(22 n ' + 1) 
fc=i 

/ J 

= (22*+I + l)2 JJ(22" i + I)2 + 22'(22' - If f j (22"3' + l)2 

s>2 3>t+l 

= (22'+1 + l)2 + 22'(22' - I)2 + higher powers of 2 

= 1 + 22' + 22 '+ 2 '+ l + 22'+2 + higher powers of 2. 

Equation (25) implies 272 = 2( + 2t+1, which is impossible. 
Step l.III is thus proved. 
Steps 1.1, l.II and l.III imply that I = J = 0. From formula (6), it follows that 

K 

(26) J J ( 2 2 7 t + l ) = l + 22(s-1}. 
k=l 

From equation (26), it follows that K = \ and 271 = 2(s - 1). Solving the first two 
equations of system (4) for x and y we get 

(27) s = 227l_1 + l and y = e(2271~X - 1), 

where 2271 + 1 is a Fermat prime and s 6 {±1}. Since y > 0, it follows that e = 1. 
This belongs to the first family of solutions claimed by Theorem. 

Case 2. x j£ j/(mod2). 
In this case all three numbers x — y,x + y and x2 + y2 are odd. Assume that 

x~y = JJ(22'H+l), 
i=l 

J 

(28) x + y = H(22"1 +1), 
i=i 

x2+y2 = fl(221k + v> 
fc=i 

where /, J and K are three non-negative integers (some of them may be zero), 
0 C oi\ < • • • < ai, 0 <. Pi < ... < 0j, 0 C 7i < ... < JK and 22" + 1 is a Fermat 
prime whenever 5 e {«;}/=! u {ft}/=i U {7*}f=r 

Notice again that the three sets {ai}!=1,{0j}j-1,{'fk}l=1
 a re pairwise disjoint, 

JT > 0 and 7i > 0. Notice also that I + J > 0. 
We proceed in four steps. 
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S t e p 2.1. K = J and <yk = ft + 1 for all k = 1,... ,K. 

From formulae (28) and from the arguments immediately below formula (7), it 
follows that 

Liog2(a;-j/)j = £2«% 
i=l 

J 

(29) Llog2(a; + l/)J=Vj2ft, 
i=i 

Llog2(z
2 + y 2 ) J = f > ^ . 

*=1 

We now use the following obvious 

Lemma. 
1) If z is a positive number, then 

(30) Llog2 z
2\ e {2Llog2 z\, 2Llog2 2J + 1}. 

2) If a> b axe positive numbers, then 

(31) Llog2(a + &)J £ {Llog2 aj, Llog2 aj + 1}. 

From identity (5) and the above Lemma, it follows that 

1 + Llog2(s
2 + y2)] = Llog2(2(a;2 + y2))\ 

(32) =[log2{{x + y)2 + (x-yf))\ 

G {2Llog2(a; + y)\ + u\u = 0,1,2}. 

From formulae (29) and (32), it follows that 

K j 

(33) 1 + Z^2 7* =u + J22Pi+1 for some«6 {0,1,2}. 
t=i i=i 

Since 71 > 0, it follows that the number appearing on the left hand side of equation 
(33) is odd. Hence, u = 1, K = J and -yk = A + 1 for all k = 1,. . . , K, 

Step 2.1 is thus proved. 
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Step2.I I . Oe{a,}i= 1U{ j3 i}/= 1 . 

Assume' that this is not the case. By Step 2.1, we know that J > 0. In particular, 
0i >0 . 

We use formulae (28) and identity (5) to conclude that 

(34) 2 f [ (2 2 7 t + 1) = rj(22<,i + I)2 + TJ(2-* + -)2-
k=l i= l j=l 

By the arguments employed in Step 1.1, it follows that 

K 

2 + 2271 + 1 + higher powers of 2 = 2 J J (227" + I) 

(35) }
 t = 1 

= U(22" ' + I)2 + (1 + 22 'J ,+1 + higher powers of 2). 

i = l 

If J = 0, then formula (35) becomes 

K 

2 + 2271+1 + higher powers of 2 = 2 TT (227t + 1) 
(36) t=i 

= 1 + (1 + 22"1+1 + higher powers of 2). 

Prom formula (36), it follows that 271 + 1 = 2f t + 1 or fi — 0%, which is impossible. 
Suppose now that I > 0. In this case, oi > 0. By the arguments employed in 

Step 1.1, it follows that 

K 

2 + 22""1 + 1 + higher powers of 2 = 2 J | (227'" + 1) 

(37) „, k=1 

= (1 + 22 + 1 + higher powers of 2) 
+ (1 + 22"1+1 + higher powers of 2). 

From equation (37), it follows that one of the following situations must occur: 
1) 271 + 1 = 2 a i + 1. This implies ji = a t , which is impossible. 
2) 271 + 1 = 2f t + 1. This implies 71 = A, which is impossible. 
3) 2ai + 1 = 2 f t + 1. This implies ax - fix, which is impossible. 
Step 2.II is thus proved. 

S t e p 2.III. If either I = 0 or a% # 0, then x = 2 and y = 1. 
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Suppose that either / = 0 or ai ^ 0. By Steps 2.1 and 2.II above, it follows that 
fa = 0 and 7i = 1. We now show that 7 = 0 and 7 = 1 . Suppose that this is not 
the case. Then at least one of the numbers ai or fa exists. From formula (34) and 
the fact that fa = 0 and 71 = 1, it follows that 

K 

2 + 23 + higher powers of 2 = 2 J | (227fc + 1) 
fc=i 

(38) =rj[(22"i+l)2 + 32rj(22"i+l)2 

i=l 3^2 

= II(22"i+l)2 + (l + 23)n(22^+l)2. 
i= l j > 2 

It follows that K >. 2. Since J = if, it follows that J >- 2 as well. Suppose, for 
example, that 7 = 0. From formula (38), it follows that 

K 

2 + 23 + 2272+1 + higher powers of 2 = 2 TT ( ^ + 1) 
(39) tti 

= 1 + (1 + 23)(1 + 22"2+1 + higher powers of 2). 

From equation (39), it follows that 272 + 1 = 1&~ + 1. which is impossible because 
12+fa-

Assume now that 7 > 0. From formula (38), it follows that 

K 

2 + 23 + 2272+1 + higher powers of 2 = 2 JT (227t + 1) 

(40) „ k=1 

= (1 + 22 + 1 + higher powers of 2) 

+ (1 + 23)(1 + 22"2+1 + higher powers of 2). 

From equation (40), it follows that one of the following must occur: 
1) 2~'2 + 1 = 2ai + 1 . This is impossible because 72 + «i-
2) 272 + 1 = 2 & + 1. This is impossible because 72 ¥=• fa-
3) 2ai + 1 = 2 & + 1. This is impossible because an + fa: 
Hence, 7 = 0, J = K = 1, fa = 0 and 71 = 1. It follows that x - y = 1 and 

x + y = 3. Hence, (x,y) = (2,1) = (22 ,1) which is one of the solutions claimed by 
Theorem. 

Step 2,111 is thus proved. 
Assume now that (x,y) # (2,1). By Steps 2.1, 2.II and 2.1II, it follows that 7 > 0 

and ai = 0. The proof of Theorem will be completed once we show 



S t e p 2.IV. If 0j = 0, then (x, y) ~ (23', 1) for some . = 1,2,3. 

Let t >- 1 be such that a,- = % - 1 for % ^ 1, . . . , t and either I = t or J > t and 
o-t+i ^ t + 1. It now follows that 

(41) TJ(22"* + 1) = TJ(22'"1 + 1) r j ( f + 1) = (22' - 1) r j (22<>i + 1). 
i=l i=l i>t+l i^t+1 

Hence, 

/ 
(42) JJ(22"' + l)2 = 1 + 22'+i + higher powers of 2. 

i=l 

Prom equation (34), it follows that 

K 

2 + 22''1+1 + higher powers of 2 = 2 F | (22'"' + 1) 
(43) t

 k=l 

= (1 + 22 + 1 + higher powers of 2) 
+ (1 + 22"1+1 + higher powers of 2). 

Erom equation (43) and the fact that ji = fa +1 > /3i, it follows that 2* +1 = 2ft +1 
or fa = t. Hence, 71 = t + 1. Equation (34) now becomes 

K 
2 + 2

2 '+ 1 + 1 + higher powers of 2 = 2 FT (22'a + 1) 

(«> , fe" 
= (22' - l ) 2 J I (22<>i + l ) 2 + (22' + I)2 H(22"j + l ) 2 . 

i>t+l i>2 

We now show that I = t and J = 1. 
Suppose, for example, that I > t and J = 1. Then, from formula (44), it follows 

that K > 1, which contradicts the fact that K = J, 
Suppose now that I = t and J > 1. Then K = J > 1. Since fa >. t + 2, it follows, 

by formula (44), that 
(45) 

K 
2 + 22'+1+i + 2^ 2 + 1 + higher powers of 2 = 2 J\(22'"' + 1) 

= (22' - I)2 + (22' + I)2 + 22"2+1 + higher powers of : 

= 2 + 22<+1+1 + 22"2+1 + higher powers of 2. 
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Equation (45) implies that 72 = P2 which is impossible. 
Finally, suppose that I > t and J > 1. Since /32 >- t + 2 and at+i >- i + 2, it 

follows, by formula (44), that 
(46) 

K 

2 + 22 '+1+1 + 2272+1 + higher powers of 2 = 2 I p 2 ? U ' + l) 
fe=i 

= ((22< - l)2 + 22° '+ l + 1 + higher powers of 2) 

+ ((22< + l)2 + 22lH+1 + higher powers of 2) 

= 2 + 22 '+ I + 1 + 22"'+1+1 + 22'J2+1 + higher powers of 2. 

Equation (46) implies that one of the following three situations must occur: 
' 1) 272 + 1 = 2a'+> + 1. This implies 72 = Ot+i, which is impossible. 
2) 272 + 1 = 2^2 + 1. This implies 72 — P2, which is impossible. 
3) 2aft+, + 1 = 2* + 1. This implies at+i = 0%, which is impossible. 
The above arguments show that I = t, J — K = 1, ai = i — 1 for i = 1,.. . ,t, 

Pi = t and 71 = t + 1. It now follows that 

(47) x - y = 22' - 1 and x + y = 22' + 1. 

This implies x = 22 and y = 1. It remains to show that t ^ 3. But this comes from 
the fact that if t ^ 4, then xi - yA = 22 — 1 is divisible by 22^ + 1 which is not a 
Fermat prime (in fact, I/J(22° + 1) is not a power of 2). 

Theorem is thus completely proved. 
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