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LINEAR STIELTJES INTEGRAL EQUATIONS IN BANACH 

SPACES II; OPERATOR VALUED SOLUTIONS 

STEFAN SCHWABIK, Praha 

(Received September 30, 1998) 

Abstract. This paper is a -continuation of [9]. In [9] results concerning equations of the 
form 

r(i) = ~(a) + ţ d[A(s)]ф) + f(t) - f(a) 

were presented. The Kurzweil type Stieltjes integration in the setting of [6] for Banach 
space valued functions was used. 

Here we consider operator valued solutions of the homogeneous problem 

(t) = I+ Í d[A(s)]Ф(s) 

as well as the variation-of-constants formula for the former equation. 

Keywords: linear Stieltjes integral equations, generalized linear differential equation, 
equation in Banach space 

USC 1991: 34G10, 45N05 

Assume that X is a Banach space and that L(X) is the Banach space of all 

bounded linear operators A: X -f X with the uniform operator topology. Defining 

the bilinear form B: L(X) x X -+ X by B(A, x) = Ax € X for A € L(X) and x€X, 

we obtain in a natural way the bilinear triple B = (L(X),X,X) (see [6]) because 

using the usual operator norm we have 

\\B(A,x)\\x^\\A\\L(x)\\x\\x, 
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Similarly, if we define the bilinear form B*: L(X) x L(X) -> L(X) by the relation 

B*(A, C)=ACe L(X) for A, C e L(X) where AC is the composition of the linear 

operators A and C we get the bilinear triple B* = (L(X), L(X), L(X)) because we 

have 

\\B*(A,C)\\L{X) < \\AC\\L(X) < \\A\\L(X)\\CUW. 

Assume that [o, 6] C R is a bounded interval. 

Given A: [a,b] -+ L(X), the function A is of bounded variation on [a,b] if 

k 

w ( A ) = sup { VJ \lA(<*j) ~ A(%-i)lli(X)) < oo, 

where the supremum is taken over all finite partitions 

D: a = a-o < a\ < ... < ak~i < ak = b 

of the interval [o, 6]. The set of all functions A: [a, b] -> i(A") with var(A) < oo will 

be denoted by BV([a, b]; L(X)). 

For A: [a, b] -*• £ ( X ) and a partition D of the interval [a, b] define 

Va
b(A,D) = sup { [ £ [ A ( « , - ) - ^ ( a , - . ! ) ] ^ ! } , 

i=l 

where the supremum is taken over all possible choices of yj € X,j = 1 , . . . , k with 

fed <. 1 and similarly 

'ЦA,D) = sup {( $>(«;) - A(aj-i))cĄu 
j=i X)ï 

where the supremum is taken over all possible choices of Cj € L(X),j = 1 , . . , ,k 

with \\CjU[X) < I-

Define 

(B)vAi(A)=supV^(A,D) 
[a,6] 

and 

(B*)var(A)= sup Vb
a(A,D) 

[a,b] 

where the supremum is taken over all finite partitions 

D: a = ag < a% < ... < Uk~i < ak = b 
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of the interval [a,b]. 
The function A: [a,b] -$• L(X) with (B)VAI(A) < oo is called a function with 

[a,b] 

bounded B-variation on [a,b] and similarly if (£>*) v<a(A) < oo then A is of bounded 
[a,b] 

B*-variation on [a,b] ([3]). 
We denote by (B)BV([a,b];L(X)) the set of all functions A: [a,b] -+ L(X) with 

(B) var(A) < oo and by (B*)BV([a, b]; L(X)) the set of all functions A: [o, 6] -» L(X) 
[a,b] 

with (B*) var(A) < oo. 
In [9, Prop. 1.1 and 1.2 ] it is shown that 

BV([a,b];L(X)) C (B)BV([a,b];L(X)) = (B*)BV([a,b];L(X)) 

holds. 
Given x: [a,b] -¥ X, the function x is called regulated on [a,b] if it has one-sided 

limits at every point of [a,b], i.e. if for every s e [o, 6) there is a value x($+) £ X 
such that 

JM_ ||a:(f)-*(«+)IU=0 

and if for every s £ (o, 6] there is a value x(s-) £ X such that 

limjx(t)-x(s-)\\x=0. 

The set of all regulated functions x: [a,b] -+ X will be denoted by G([a,b];X) 
and similarly we denote the set of all regulated functions A: [a,b] -» L(X) by 
G([a,6];I(X)). 

If B = (L(X),X, X) is the bilinear triple of Banach spaces mentioned above then a 
function A: [a, b] -*• L(X) is called B-regulated on [a, b] if for every y £ X, \\y\\x ^ 1) 
the function Ay: [a, b] -> X given by t € [o, 6] i-s- A(t)y e X for t € [a, b] is regulated, 
i.e. Ay € G([a, b];X) for every y £ X, \\y\\x < 1. 

We denote by (B)G([a,6];L(X)) the set of all B-regulated functions A: [a,b] -+ 
L(X). 

1. EQUATIONS WITH OPERATOR VALUED SOLUTIONS 

For [a, b] = [0,1] we denote shortly 

BV(L(X)) = BV([0,1];L(X)),(B)BV(L(X)) = (B)BV([0,1];L(X)), 

G(L(X)) = G([0,1];L(X)) and (B)G(L(X)) = (S)G([0,1];I(X)). 



Assume that A: [0,1] -+ L(X) satisfies 

(1.1) ' Ae(B)BV(L(X))n(B)G(L(X)) 

and the following condition (E) (see [9]): 

for every d G [0,1] there are 0 < g = o(d) < 1 and A = A(d) > 0 such that 

( E + ) (B) var (A) < Q 
v ; (d,d+A]n[o,i]v ' 

and . 

(E-) (B) var (A) < Q. 
[d-A,d)n[o,i] 

Taking the bilinear triple B* ~ (L(X),L(X),L(X)), by Proposition 1.1 in [9] we 
have 

(B)BV(L(X)) = (B*)BV(L(X)) 

and 
(B) var(A) = (B*) var(A) 

[a,ą џ,ą 

for every [a,b] C [0,1]. Therefore condition (1.1) reads 

(1.1) A e (B*)BV(L(X)) n (B)G(L(X)), 

and in condition (E) the symbol B can also be replaced by B*, i.e. condition (E) reads 

for every d e [0,1] there are 0 < g = g(d) < 1 and A = A(d) > 0 such that 

( E + ) (B*) var (A) < g 
(d,d+A]n[o,i]v ' 

and 

(E-) (B*) var (A) < Q. 
v ' v [d-A,d)n[o,i] 

Hence the results presented in Section 2 from [9] can be used for equations of the 
form 

(1.2) Y(t) = Y+ f d[A(s)}Y(s) + F(t) - F(d) 
Jd 

for every t € [0,1] where F 6 G(L(X)), d e [0,1) and Y 6 L(X). 
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The operator valued function Y: [a, 13] -+ L(X) is called a solution of (1.2) on an 
interval [a, 13] C [0,1] iiY satisfies (1.2) for every t e [a, 13]. If d e [a,0] then of 
course we have Y(d) =Y for this solution. 

With regard to the above mentioned facts we obtain by a simple reformulation of 
Proposition 2.4 and Theorem 2.10 from [9] the following 

1.1. Theorem. Assume that A: [0,1] -+ L(X) satisfies (1.1) and condition (E). 
TJien for every d e [0,1], Y e X, F e G(L(X)) there is a A > 0 such that for the 
interval Jd = [d - A, d + A] n [0,1] there is a unique function Y e G(Jd; L(X)) such 
that 

Y(t) =Y+ f d[A(s)]Y(s) + F(t) - F(d), t e Jd, 

i.e. Y(t) is a JocaJ solution of the operator valued equation (1.2) on Jd = [d — A, d + 
A]n[o,rj. 

if 

(1.3) • A e (B)BV(L(X)) n G(L(X)), 

condition (U): 

(U+) [I + A + A ^ r 1 e L(X) exists for every t € [0,1) 

and 

(U-) [I - A-A(t)]^1 e L(X) exists for every t € (0,1] 

and (E) hold, then for every choice ofd e [0,1], Y e L(X), F e G([0,1]; L(X)) there 
exists a unique Y e G([0,1]; X) which is a (global) solution of (1.2) on [0,1]. 

Let us consider the special case of the equation (1.2) with F a constant, i.e. the so 
called homogeneous equation 

(1.4) Y(t) = Y+ f d[A(s)]Y(s). 
Jd 

Theorem 1.1 applies to this equation and therefore there is a unique (global) 
solution to this equation and this operator valued solution is regulated provided 
A: [0,1] -+ L(X) satisfies (1.3), (E) and (U). 

Together with (1.4) let us consider the equation 

(1.5) $(t) = I + j d{A(s)]t>(s) 
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where I £ L(X) is the identity operator. 

Clearly every solution Y: [0,1] -» L(X) of (1.4) can be written in the form 

y(t) = *(()?, t€ [o , i ] . 

Let us now consider the properties of the solution $: [0,1] -+ L(X) of (1.5). 

1.2. Lemma. Assume that A: [0,1] -+ L(X) satisfies (1.3), (E) and (U). Tien 
for the solution $: [0,1] -> L(X) of (1.5) we have 

$£(B)BV(L(X))nG(L(X)) 

and there is a constant K > 0 such that ||$(i)ll < ^ for every t e [0,1]. 

Proof. By Theorem 1.1 $ € G([0,1];._(J-)) and therefore there exists a 
Jv > 0 such that \\$(t)\\ ^ K for every t £ [0,1]. it remains to show that 
<S>e(B)BV([0,l];L(X)), 

Assume that 

D:0 = a0 < a% < ... < a t - i < a t = l 

is an arbitrary partition of the interval [0,1]. 

For any yj e X, j = 1, . . . , k with fo|| <. 1 we have 

' ii * II II * fa" 

\\^(aj)~^(aj-.i)}yj\\x = \\J2l d[^(sp(s)yi|| , 
i - i i = 1 a'~l 

Deine 

tp(s) = *(S)J/J- for s € (aj_i,aj) and v(s) - Q for s = aj . 

Evidently \\<p(s)\\ <. if. 
Then by 1.18 from [9] we get 

f' d[A(s)}Hs)yj = £ ' d[A(_)M«) 

+ [/Ka,-_i+) - Atoy-i)] - {aj-i)vi + Wo,-) _ ^ (a^ . - . ) ]*^)^ 
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and 

\\J2£ d[A(sMs)yj\\x = \\'££ d[A(s)Ms) 

+ [A(aj-l+) - A(aj-1)]i(aj-1)yj + [A(aj) - A(aj-))*(<*i)Vj\\x 

= I f d[A(s)Ms) + E ^ ( « i - i + ) - A(aj-1)Mai-1)yj || jQ ^ 

k r1 

+ ]T[A( a i) - A(aj-)]i(aj)yj\\ < / d[A(s)Ms)\\ 
j=1 »x »Jo nx 

k k 

+ ' | E [ A ( a ^ 1 + ) - ^("i- i)]*(«i- i)%| |x + || E ^ ( ° i ) ™ A(«i-P(ai)2/i 

For a given r\ > 0 let us choose a 9 > 0 such that 

WA^j-t +9)- A(ai-1+)\\L{X) < ^ 

and 
\\A(aj-e)-A(aj-)\\Lm<^Lj 

foval\j = l,...,k. Then 

k 

|| E (^( a i- i+) " A(ai-i)]*(«i-i)2/i|| 
i=i nx 

k 

= I £ > ( _ , • _ . + ) - ^(a ,_! +0) + A( a i_! + 9) - A(ai_1)]$(ai_1)%| 
"i=i " x 

k 
< II ]T[A(a i_1+) - ..(a,--! + e)]$(a i_1)y i | 

" i = i " X 

k 

+ II X > ( « i - i + *) " ^4(ai-i)]$(a i_1) l; j | 
"i=i nx 

k K k 

< E k+\ + II E ^ ( « i - i +fl) - A(aJ-_1)]$(ai_1)W|| 
i=i i=i 

<irj? + _r(B)var(A) 

and similarly also 

k 

II J > ( a i ) ~ ^ (« i - ) ]* (« i )» | v < ^ + *(-*) ^r(A) . 
11

 rt-__i ''"* iUl iJ 



By 1.11 from [9] we have further 

ă[A(s)Ыs) \\ <K{B)vai(A) 
ІÎЛ |u\lj 

and finally we obtain 

k k .aj 

J J > ( a j ) - Ha^^y^ = \\j^ J d[Ms)}Hs)yj\\x < -*»? + ZK(®) var(A). 

Passing to the corresponding suprema we arrive easily at 

(B) var(#) ^ ZK(B) var(A) < oo, 

V i r to,i)v 

i .e.$€ (B)BV([0,1];L(X)). O 

1.3. Lemma. Assume that A: [0,1] -+ L(X) satisfies (1.3), (E) and (U). 
Then the solution $: [0,1] -+ L(X) of (1.5) has an inverse [$(t)]_1 € i (X) for 

every t € [0,1]. 

Proof . For t = d we have $(£) = $(d) = I and the inverse [$(£)]""J evidently 
exists for this value. 

Assume that there is a point t* € [0,1] such that the inverse [#(<*)]_1 does not 
exist. Then there exists y e X such that the equation 

W)z = y 

has no solution in X. Assume that $ : [0,1] —y L(X) is a solution of the operator 
valued equation 

* ( * ) = / + / d[A(s)]*(s); 

this solution exists and is uniquely determined by the second part of Theorem 1.1. 
Let us set z = 9(d)y. The function x: [0,1] -» X given by x(t) = $(f)y is a solution 
of the equation 

x(t)=y + J^d[A(s)}x(s) 

with jc(t*) = y and a;(<J) = ^>(d)y. On the other hand, ip(t) = $(t)z is a solution of 

<p(t) = z + J Џ(s)Ms) 
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where ip(d) = z = vP(o!)y = x(d) and 

x(t)=x(d)+ J d[A(s)}x(s). 

Hence by the uniqueness of a solution stated in Theorem 2.10 from [9] we have 
x(t) = ip(t) for all t e [0,1]. Therefore 

x(t*) =y = v(t") = $ ( f ) - = *(.*)"•(%, 

i.e. z = 9(d)y 6 I is a solution of the equation §(t*)z = y. This contradicts 
the assumption and proves that the operator $(i) € L(X) has an inverse for every 
i€ [0 , l ] . D 

1.4. Lemma. Assume that A: [0,1] -+ L(X) satisfies (1.3), (E) and (U). 
Then the inverse [#(i)] -1 = t - 1 ( i ) to the solution $: [0,1] -+ L(X) of (1.5) 

belongs to G(L(X)) and there is a constant L > 0 such that 

for every t € [0,1]. 

Proof . By Theorem 1.1 we have $ 6 G(L(X)) and therefore the onesided 
limits of this function exist at every point of [0,1]. E. g., the limit lim $(r) exists 
for every t € [0,1) and by 1.18 from [9] we have 

lim $(r) = / + lim / d[A(s)]$(s) =J+ f d[A(s)]$(s) 
r~+*+ r-+t+ j d Jd 

+ lim / d[A(sp(s) = $(i) + lim f d[i(sp(s) 
r-+t+ Jt r-H+ Jt 

= $(i) + [A(t+) - A(i)]$(i) = [/ + A+A(i)]$(i). 

Hence $(i+) = [I + A+A(t)]i>(t) and because $ - 1(i) exists by Lemma 1.3 and 
the inverse [I + A+/l(i)] -1 exists by (U+) from the assumption (U) the inverse 
[$(i+)]_1 = $ - 1 ( i+) also exists and we have the relation 

[f (t+)]-1 = <S>-1(t+) = $ - 1(i) • [I + A+A(i)] - 1 , t 6 [0,1). 

Similarly we have also 

* - 1 ( i - ) = $-1(«) • [I - A-A(t)}-\ t e (0,1] 
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where $-!(*-) = [*(t-)]- J . 

Using the continuity of the operation of taking an inverse (see [2], p. 624) we obtain 

lim $_1(r) = $-1(*+) for t e [0,1) 

and 

lim_ $-!(,•) = i-"1^-) for t e (0,1] 
because lim $(r) = f (t+) for t e [0,1) and lim $(r) = $(*-) for t e (0,1]. 

Hence the operator valued function $ _ 1 : [0,1] -+ L(X) belongs to the space 
G(L(X)) and it is therefore bounded, i.e. there is a n L ^ O such that 

for every t e [0,1]. D 

1.5. Lemma. Assume that A; [0,1] -* L(X) satisfies (1.3), (E) and (U). 
Assume that d e [0,1] is fixed and that $: [0,1] -> L(X) is the solution of (1.5). 

Then for every to £ [0,1] and x e X, the unique solution x: [0,1] —> X of the 
homogeneous equation 

x(t) = x+ f d[A(s)}x(s) 
J to 

is given by the relation 

a:(t) = $(t)$-1(*o)S, *6[0,1]. 

Proof . The solution x exists and is unique by Theorem 2.11 in [9]. Using (1.1) 
we have 

a:(t) = $( t )$- 1( to) i= [ /+ / d[A(s)]$(s)]#-1(to)5 

= [ /+ f° d[A(s)]$(s) + f d[A(s)]$(s)]$-1(to)£ 

= <&(t0)$-1(t0)x+ f d[A(s)]§(s)$~1(to)x = x+ I d[A(s)]x(s) 
J to J to 

and the lemma is proved. • 



2. VARIATION OF CONSTANTS 

2.1, Lemma. Assume that A: [0,1] H> L{X) satisfies (1.3), (E) and (U). Let 
$: [0,1] -+ L{X) he the solution of (1.5) and assume that its iaverse Q"1: [0,1] -4 
L{X) givea by Lemma 1.3 is such that S"1 e {B)BV{L{X)). 

Then for every g e G{X), t € [0,1] the equality 

(2.1) / d[A(r)]#(r) f d^-^sMs) = # ( . ) / df*-1^)]^*) + / d[A(s)]g(s) 
Jd Jd Jd Jd 

holds. 

Proof. Since g e G{X) and $ _ 1 6 {B)BV{L{X)), the integrals on both sides 
of (2.1) exist by [6, Theorem 11] (see also [9, 1.12]). 

To show that the equality (2.1) is valid for every regulated function g: [0,1] + X 
it is sufficient to prove it for an arbitrary finite step function, because the finite step 
functions are dense in the space G{X) (see [2]). 

For a given a 6 [0,1], c 6 X and for s 6 [0,1] we define 

V'a (s) = 0 if s < a, ipt(s) = c if s > a 

and 
i>a(.s) = 0 if s < a, %l>- (s) = c if s > a. 

It is a matter of routine to verify that every finite step function can be expressed 
in the form of a finite sum of functions of the the type ipJ and ip~ . Hence by the 
linearity of the integral it suffices to show that (2.1) holds for functions of this type. 

Let us prove e.g. that (2.1) is satisfied for the function i>£-
Assume that a < d. Then 

/ ds[$-1(s)]V'J(*) = [*~1W-*_1(d)]c if r>a 

and 

(2.2) [T ds[$-1(s)]^J(s) = [$-1(a+) - $-1(d)]c if r ^ a. 

Hence for t > a we have 

(2.3) / ' d[A(r)]$(r) f da[$-1(s)]^(s) 
Jd Jd 

= J* dlA^Mr)]®-1^) - #-x(d)]c = J" d[A{r)}[J - S t r ) * " 1 ^ 

= [A{t) - A{d)]c - [f (i) - 9{d)]<i-l{d)c = [A{t) - 4(d)]c + c - ^ ( t ) * - 1 ^ . 



If t € a then 

/ d[A(r)]$(r) f d,[9~1(sM+(s) = - f d[A(r)]$(r) f d , ! * - 1 ^ * ) 
>d Jd Jt Jd 

= -(J" d[A(r)Mr)J^ d,[$-1(s)M(s)+J^ d[A(r)]9(r) JJ d,^-1 (s)]i/>+(s)) 

and 

J d[A(r)]*(r) JJ d,]*-1^)]^) 

= [A(a+) - A(a)]$(a)[$-1(a+) - ^(dflc 

+ lim / dliHlswp-'W-s^MJc 
s~^°+ Ja+S 

= [A(a+) - A(a)]$(a)[$-1(a+) - $-:1(d)]c 
fd fd 

+ lim / d[A(r)]c- lim / d[A(r)]$(r)$_1(d)c 
S-+0+ Ja+S <5-iO+ Ja+S 

= [A(a+) - A(a)]$(a)[$-1(a+) - $~l(d)]c + [A(d) - A(a+)]c 

-[*(d)-$(a+)]$- 1(d)c . 

Further we have 

I" d[A(r)]$(r) f d , ^ - 1 ^ ) ] ^ ) = [$(«) - $(i)][$-1(a+) - ^(dftc 

and 

f d[A(r)]*(f) ^ ds[$-1(S)^+(S) 
Jd Jd 

= - {[A(a+) - A(a)]#(a)[$-1(a+) - $~1(d)]c + [A(d) - A(a+)]c 

- [$(d) - ^(a+^-^d^ + [$(a) - $(t)][$-1(a+) - ^^(d)]^. 

Since [A(a+) - A(a)]$(a) = A+A(a)$(a) = $(a+) - $(a) we have 

/ dfy4(r)]*(r) fT d,[^-1(sM+(s) 

Jd Jd 

= - {[$(«+) - $(a)][$-1(a+) - i>~l(d)] + [A(d) - A(a+)] 

(2.4) -1 + # (a+)$- 1 (d) + ^ ( a j t - 1 (a+) - $(a)$- 1 (d) 
-$ ( t )$ - 1 ( a+ ) + *(t)$-1(<t:)}c 

= - {[A(d) - A(a+)] - $(t)[$-x(a+) - $_1(d)]}c 

= [A(a+) - A(d)]c + ^(t)^-1 (a+) - $-J(d)]c 



for t ^ a. 
For the right hand side of (2.1) we use (2.2) for obtaining 

$(<) / d[$-1(s)]i)+(s) = §(t)[<$>-1(t)-$>-1(d)]c if t>a 

and 

(2.5) $(f) / d f * " 1 ^ ) ] ^ ) = [$-1(a+) - $-x{d)]c if t sC a. 

Now it is a matter of routine to show that 

/ d[A(s)]^+(s) = [A(t) - A(d)\c \it>a 
Jd 

and 

(2.6) ' / d[A(s)]i>+(s) = [A(a+) - A(d)]c if t <_ a. 

Using (2.5) and (2.6) we obtain 

#(i) / d[$-1(S)]^+(s)+ / d[A(s)]i>+(s) 
Jd Jd 

= -StjOf*-1^) - $-x(d)}c+ [A(i) - A(d)]c if i > a 

and 

$(*) r< i [$ - i (# + w+ /* d[A(S)^+w 
= [#- 1 (a+)-$- 1 (d)]c + [A(a+)-A(d)]c if K « -

Looking at (2.3) and (2.4) we can see immediately that the equality (2.1) holds for 
the function tl}+ if a < d. 

For a >- d as well as for the case of the function iji~ the result can be proved 
similarly. The computations are straightforward but slightly tedious. D 

Let us assume that A: [0,1] -> L(X) satisfies (1.3), (E) and (U). 
Let us consider the equation 

(2.7) x(t) = x + / d[A(s)]x(s) + f(t) - /(to). 
Jtn 



By [9, Theorem 2.10 ] we obtain that 
for every choice oft0 e [0,1], x e X, f £ G(X) there exists x € G(X) such that 

x(t) =x+ [ d[A(s)]x(s) + f(t) - /(to) 
•ho 

for every t e [0,1]. 
TJiis solution of (2.7) is determined uniquely. 

2.2. Theorem. Assume that A: [0,1] -» L(X) satisfies (1.3), (E) and (U). Let 
$: [0,1] -> L(X) be the solution of (1.5) and assume that its inverse t " 1 ; [0,1] +> 
L(X) given by Lemma 1.3 is such that S^1 e (B)BV(L(X)). 

Then for every t0 e [0,1], x e X and f 6 G(X) the formula 

(2.8) x(t) = Ht)<f>-1(t0)x + f(t)~f(to)-Ht) I d[$ - 1(s)]( / (s)- / ( t 0)) , 

t e [0,1], represents a solution of (2.7), 

Proof . Using (2.8) we have for t € [0,1] 

/ d[A(r)]x(r) 
J to 

= f d[A(r)]{*(r)$-x(t0)£ + f(r) - /(to) - *(r) j d[i~1(s)](f(a) - /(to))} 

= / d[A(r)]#(r)#-1(t0)5+ / d[A(r)](f(r) - f(to)) 
Jt0 J to 
- / d[A(r)]9(r) f d[$-x(s)](/(s) - /(to)). 

Jto Jto 

For a solution $ of (1.5) we have 

/ d[A(r)]$(r) = $(*) - #(t0) 

and by Lemma 2.1 we have 

f d[A(r)]$(r) f d[^1(s)](f(s)-^f(t0)) 

Jt0 Jt0 

= $ ( . ) / d[§~1(s)](f(s)~f(i0))+ I d[A(s)](f(s)-f(to)). 
Jto Jto 



Therefore 

f d[A(r)]x(r) 
to 

= [#(t)-*(.o)]*_1(*o)>?+ / d[i4(r)](/(r)-/(t0)) 
J to 

- #(t) f dp-HsMfis) - /(to)) - f d[A{a)](f{s) - /(to)) = *(t)*-1fa>)2- * 
J t o " '*() 

-*(t) / dp-^K/^-Zfo)). 
•/io 

Hence 

jf dL4(r)]x(r) = x(t) -x- (f(s) - /(to)) 

for every t 6 [0,1] and this means that the function x: [0,1] —Y X given by (2.8) is a 
solution of the equation (2.7). D 

Remark . From the point of view of the variation-of-constants formula (2.8) 
presented in Theorem 2.2 the assumption that the inverse $ - 1 : [0,1] —• L(X) to 
$: [0,1] -4 L(X) given by Lemma 1.3 is such that §-1 e (B)BV(L(X)) is very 
unnatural. It would be nice if the property $~~l 6 (B)BV(L(X)) could be derived 
from the general assumptions, i.e. from the fact that A: [0,1] -> L(X) satisfies (1.3), 
(E) and (U). 

In the next section we will show that in the special situation of A 6 BV(L(X)) 
the variation-of-constants formula (2.8) holds without any farther assumption. 

3. THE VARIATION-OF-CONSTANTS FORMULA FOR THE CASE A e BV(L(X)) 

Assume throughout this section that A 6 BV(L(X)). 
First of all it should be mentioned that by [9, 1.5] we have A e G(L(X)) and 

therefore A: [0,1] -> L(X) evidently satisfies (1.3) because, as was already mentioned 
in the introductory part of this note, we have BV(L(X)) C (B)BV(L(X)) by [9, 
Prop. 1.1 and 1.2]. 

As was mentioned in the last Remark in [9], if A 6 BV(L(X)) then A satisfies 
also condition (E). 

Let us now prove the following proposition, 

3.1. Proposition. Assume that A: [0,1] -+ L(X). 



Then A e BV(L(X)) if and only if 

f II * 
(3.1) sup{ sup VJz^.fyita,- - A(aj-i)]Cj\\ } < oo 

P O^DjW ^ \\L(X)J 

where P: 0 = a0 < «i < ... < a*_i < ak = 1 is a partition of [0,1], Cj, Dj € L(X) 
with ||C3-||_W ^ 1. IPillifx) <l,j = l,.-.,k, and 

k 

w ( A ) =sup{csup I g u M a , -A(aj-1)]CilLm}. 

Proof . Assume that 

P:0 = a0 <at < ... < ak-i < ak = 1 

is an arbitrary partition of [0,1]. 
If Cj,Dj 6 i (X) with HQII i w < 1, WDjWux) < 1, i = 1,. . . , fc then 

||£x>i[4(a,)-^-i)Jc4 
i - i 

* 
< _L H^IU(X)ll^(ai) - ^(ai-i)ll_(A-)l|Cill_(x) 

3=1 

k 

<Y,U(aj)-A(aj^)wLiX). 
3=1 

Hence 

sup IJTDAAW - A(aj-1)]Cj\\ <. _T P ( a j ) - Afe-r)!!^) 
^ • ^ ' " . , • = 1 L(X) 3=1 

where the supremum on the left hand side is taken over all Cj,Dj e L(X) with 
| |C , | | _ W s= l , | |Dil |_W < 1- Consequently, 

sup { sup I Y,Dj[A{ai) - A(aj^1)]Cj\\ 'j 

(3.2) p Ci'Di ri 

< S " P ] C I И Ы - ^("J-I)IU(ЛГ) = yar(A) 



Assume that D, € L(X) with ||I>j||i,(x) C 1 and XJ 6 X with ||a;j||x < 1> J = 
1, . . . , k. Let us take w e X such that ||tu||x = 1. Then for all j = 1,.. •, k there 
exist Cj e L(X) with ||Cj||x,(x) ^ 1 s u c n that CJW = Xj. Hence 

k k 

\\j2DAA(aj) - A(aj-1)}xjlx = \\J2Di[A(ai) ~ A(aj-1)]Cjw\\x 

i=i j=i 
k 

< s u p \\j2DAA(<Xi)-A(aj-1)}djy\\ 

= \ilDAA(o<i)-A(ai-1))Cj\ 

< s u p \\lZDAA(ai) - A(aj-1)]Cj\\ 
Cj,Dj " ~j~x lli(X) 

where the supremum on the right hand side is taken over all Cj,Dj £ L(X) with 
l|Cilb(x) =% 1, H-DilU(x) ^ 1. Passing to the supremum over all Dj e L(X) with 
llAillipO s* 1 and Xj e X with \\XJ\\X < 1, j = 1, •. •, k we get 

sup | £ w ( a i ) - ^ - i ) t e | x 
(3.3) " ^ j=1

 k 

< sup lE^-t^^-^i-i^ilL^-
C-j,Dj M . x IIi(Aj 

Assume that e > 0 is given. Choose vectors Xj e X with ||SJ||X ^ 1> j = 1> • • • >& 
such that 

(3.4) \\[A(aj) - A(aj-1)}Xj\\x > ||[.4(a,-) - A(aj-1)}\\Lm - | . 

Let us set 

[A(aj) - A(aj-i)}xj 
Vj \\[A(aj) ~ A(aj-l)}xj\\x 

and 

йWaЛ-Aiaj-фjćO 

vj=Oif[A(aj)-A(aj-1)]xj=0. 

For t)j # 0 let Y3- be the onedimensional subspace of X given by 

^ { A t ^ . - A e R} 



and assume that f} is a bounded linear functional on Y} such that fi(v}) = 1 and 
denote by f} e X* its extension onto X with ||/i| | = 1. 

Assume that w e l i s fixed such that \\w\\x = 1 and define the linear operator 
D} e L(X) by the relation 

DjX = fj(x)w, xeX, j = 1,. . , , k. 

Then certainly 

IPill£(X) = l|/illlMI = -

and 

D}[A(a}) - A(*}-X))x} = \\A(a}) - Afo -^ fo l l x -V j 

= ||A(ai) - A(a^1)}xj\\xfj(vj)w = \\A(a}) - A(a}-i)]xj\\xw. 

Hence by (3.4) we get 

* k 

| £l>,[A(a,-) - Aia^jxA = | £ |U(a,-) - ^(a^ .^lUtollx 
" i = i " * i = i " 

k k 

= E H (̂ai) ~ ̂ («i-i)MU > E (HA(«i) - ^(ai-i)]!k(x) - I) 
i=l i=l 

k 

= ElWai)~A(ai-i)]Him-^ 
i=l 

Taking the supremum over all Dj e L(X) with ||i?i||i(x) < 1 ar»d as,- e X with 
\\XJ\\X ^ l , i = l,...,fc we get 

fc fc 
SUP || E DilA(ai) - ^("i-i)]^!^ > E HA(ai) _ ^(«i-i)]IU(X) - e 

xi>Di i=l i=l 

and using (3.3) we finally obtain 

fc fc 
SUP \TlDj[A(<x})-A(a}-.1))C}\ >- ]T ||-4(aj) - A(<x}^)]\\L{x) - e. 

ci<D-inj=i "Llx> i=i 

Taking the supremum over all partitions P of [0,1] we obtain together with (3.2) 
for every e > 0 the inequality 

k 

var(A) - e < sup { sup || ] P Dj[A(aj) - A(a}-i)]C} | } s? var(A) 
[°.l] F l C i , D i

l 1 " I l i (X) J [0,1] 



and therefore 

yar(A)=sup{ sup \\j2Dj[A(aj)^A(aj-1)}Cj\\ } . 
[o,i] p lcj,Dj"j^J

1 HL(X)J 

a 
R e m a r k . It has to be mentioned that the characterization of the space 

BV(L(X}) given by Proposition 3.1 is interesting independently of the context 

of the ecpations studied in this paper. 

3.2. L e m m a . Assume that A: [0,1] -+ L(X) satisfies A e BV(L(X)) and (U). 

Then for the solution $ : [0,1] -» L(X) of (1.5) we have $ € BV(L(X)). 

P r o o f . Since BV(L(X)) c (B*)BV(L(X)) the conclusion of Lemma 1.2 holds 

and there exists a K > 0 such that ||$(t.)|| ^ K for every t e [0,1]. It remains to 

show that the relation $ 6 W ( L ( X ) ) holds. 

Assume that 

P: 0 = ct0 < an < . . . < afc-j < afc = 1 

is an arbitrary partition of the interval [0,1] and that Cj,Dj € L(X),j = l,..,,k 

with | |Cj | | i (x) sg 1, ||£>j||i(x) ^ 1 are given. 

The fact that $ € G(L(X)) yields by [6, Prop. 15] the existence of the integral 

J0 d[A(r)]$(r) and therefore by definition for every e > 0 there is a gauge 5: [0,1] ->-

(0, co) such that 

\\J2lAW<) - Atfi-imo-t) - f d[A(r)]$(r)| < -±-

II g j Jo »L(X) K +1 

for every Mine P-partition 

{fio,Ol,01,...,0l-l,Ol,0t} 

of the interval [0,1]. 

By the Saks-Henstock Lemma (see [6, Lemma 16]) we have" 

(3-5) 1 fL[A(m - A(M-i))H4) ~ / ' d[A(r)Mr)\\ «. j^rr 

for every 5-fine P-partition 

{^,o{A,...,0i._voiit0{.} 
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L(X) 

of the interval [ctj-i, aj], j = 1, . . . , k. 
Further, we have 

$(<*;) - _(a3-_i) = p d[A(r)]_(r) 

for every j = 1, . . . , k by the definition of a solution of (1.5) and therefore 

I £_>,[_(_,) - S&i-WA = I ED,[/° ' dWrpOOjc-l 

= \\tl{Di[J ' *\Mr)Wr)-£,[A{lH)- A(M-i)]* tf)]Cj} 
3 = 1 aj~l <=1 

+ EE^iW^') - ^ti)]*W)c4 (X) 
5 = 1 t = l 

<| l_M/J/W r )W r ) -^ 
fc h 

+ I EE^'W^') - A^ii)]*^)Ci|l(X) 
5 = 1 « = 1 

< £![£' . mr)Mr)-hA(m~A(pum^)}\\Lm 

+1 EE^w^') - A^-i)]*(^)ci|L(x) 
5 = 1 t = l 

provided 
{ ^ . . T J , ^ , . . . , ^ - ! . ^ . ^ } 

is a .5-fine P-partition of the interval [cy-i, «j], j = 1, • • •, fc- Hence using (3.5) we 
obtain by the last inequalities 

1X>Í[<K«Í)^(«Í-I ) ]C4 ( X ) 
3 = 1 

^Uk+l lhk 
<^\ílhDAA(m^(íiU)n4)ci\L(x-

3 = 1 í = l 
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For the second term on the right hand side we have 

k h 

1 EE^w3 ' ) - A(pumai)cA 
"j=n=i "L{x> 

k h 

^EEll^ll-wll^J-^-iJIUwII^JIIiwII^IUw 
j = l i = l 

^ K • E E IM#> ~ ^(Ci)IU(x) ^ K • var(A). 
3=1 »=1 P'1) 

Hence 

1 E DAH<*j) ~ *fo-i)]C,-| < £ + K • var(A) 
i = l "W [oдf 

and since e > 0 can be taken arbitrarily small, we get 

k 

J g I3 i[$(a i) - "-(oy-i)]^ | i ( ; f ) ^ K • var(A) 

for any partition 
P: 0 = a0 < at < ... < ak-i < ak - 1 

of the interval [0,1] and any choice of Cj,Dj 6 L(X),j = l,,..,fewith ||Cj||j,(x) < 1> 

WDMx) < i-
Passing to the suprema over all Cj,Dj 6 L(X),j = 1,..., fc with ||Cj||x,(x) ^ 1> 

I|DJ||I,(A') < 1 and all partitions P of [0,1] we obtain 

k 

sup sup \\"S^DM(aj) - $(aj-i)]Cj\\ < K • var(A) 
P C 3 .Dj » *~"J Hf.(X) [0,1] 

and this together with Proposition 3.1 yields the result. • 

3.3. Lemma. Assume that A: [0,1] -> L(X) satisfies A €BV(L{X)) and (U). 
Then the inverse [$(i)]_1 = *_ 1(i) to the solution $: [0,1] -> L(X) of (1.5) exists 

for every t 6 [0,1] and we have * - 1 € J3V(L(X)). 

Proof . By the results given in Lemma 1.3 and 1.4 the inverse ~>~~1 exists and 
$ - 1 e G(L(X)). Hence there is a constant L > 0 such that 

llfc-'WIIrW <£ 
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for every t 6 [0,1]. 
It remains to show that $ _ 1 € BV(L(X)). 
Assume that 

P: 0 = a0 < a\ < ... < uk-\ < ak — 1 

is an arbitrary partition of the interval [0,1] arid that Cj,Dj _ L(X),j = 1,.. . ,k 
with ||Cji|i(x) < 1. \\DJWL(X) < 1 are given. 

We have 

k k 

W^Djli-Haj) - 9-Haj-WA = I Y^D^^iW - Hc^'Hai-i^cA 
3=1 j=l 

k 

= J Y^Dj<S>-1 (aj^Ha^) - *(a i ) ]*- 1 (^_ 1 )C i | | ' 
3=1 

= || E - ^ t e J I - ' t e ) - *(%-i)]*-1(ai- i)C i | | 
i=l 

^ i 2 - var($) < i 2 • K - var(A). 
[o,i]v ^ [o,i]v 

(! 
Passing to the suprema over all Cj,Dj € L(X),j = l,...,k with ||C,-||x,(x) < 1, 
II-DJIIL(X) ^ 1 a n d aU partitions P of [0,1] we obtain 

sup sup Wj^DM-^aj) - t " 1 («,•_!)]& II 4L2-K- var(A). 
P CjtDj » JTj \\L{X) [0,1] 

and this, together with Proposition 3.1 yields $~ l e BV(L(X)). Q 

3.4. Theorem. Assume that A: [0,1] -¥ L(X) satisfies A 6 BV(L(X)) and (U). 
Let $: [0,1] -» L(X) be the solution of (1.5). 

Then for every t0 e [0, l],x£X and } £ G(X) the formula 

(2.8) x(t) = $( t )$- 1 ( t 0 ) i+ /(t) - /(to) - $(t) / d[*-\s)\(j(s) - /(to)), 
J to 

t € [0,1], represents a solution of (2.7). 

Proof . By Lemma 3.3 the inverse $ _ 1 : [0,1] ~4 L(Jf) given by Lemma 1.3 
belongs to BV(L(X)) and therefore we have also * _ 1 e (B)BV(L(X)). All the 
assumptions of Theorem 2.2 being satisfied we obtain the result by this theorem. D 



3.5 E x a m p l e . Let us consider the abstract linear differential equation 

(3.6) - - j = a(t)x + <p(t) 

on [0,1] where o; [0,1] -+ L(X), <p: [0,1] -> X and both o and <p are Boclmer 
integrable. For equations of this kind see e.g. [1]. 

A solution of (3.6) is understood to be a solution of the integral equation 

(3.7) x(t) = x0 + I a(s)x(s) ds + / <p(s) ds 

where d € [0,1] and x0 = x(d). 

More generally we can consider the integral equation of the form 

(3.8) x(t)= J a(s)x(s)ds + g(t) 

with g € G(X). 
Let us set 

A(t) = [ a(s) ds and f(t) = I ip(s) ds, <e[0,l]. 
Jd Jd 

Assume that D; 0 = ao < a\ < •. • < ajt-i < a* = 1 is an arbitrary partition of 
[0,1]. Then using the properties of the Boclmer integral we get 

J2\\A(<*i)-A(a]--i)\\ = Y;\\r' a(s)ds\\ 
3=1 j=l Ja'J-l 

:"£ IKв)||ds= / ||o(í)||dв<. 
~ í J <*,.., Jo 

and therefore A € BV(L(X)). Since the function ||o|[ is Lebesgue integrable over 
[0,1] we have 

U(t)~A(r)\\^\l'\\a(s)\\ds\ 

for t, r € [0,1] and this yields the continuity of A on [0,1]. Hence lim A(t) = A(r) for 

r e [0,1) and lim A(t) = A(r) for r € (0,1] and consequently we have A+A(r) = 0 

for r € [0,1) and A~A(r) = 0 for r e (0,1] and the function A: [0,1] ~> L(X) satisfies 
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the condition (U) given in Theorem 1.1. Similarly the function / : [0,1] -» X is also 

continuous and belongs trivially to G(X). 

It is a matter of routine to show that 

if x € G(X) then the integrals J0 d[A(s)]a;(s) and J0 o(s)a;(s)ds both exist and 

f d[A(s)]x(s)= f а(s)x(s)ds. 
Jo Jo 

Since g is assumed to belong to G(X), every solution of (3.8) also belongs to G(X) 

and therefore the equation (3.8) is equivalent to 

x(t) = / d[A(s)]x(s) + g(t) = g(d) + f d[A(s)]x(s) + g(t) - g(d). 
Jd Jd 

Hence by Theorem 2.10 in [9] there exists a unique solution x: [0,1] -+ X, x € G(X) 

of (3.8) and by Theorem 3.4 we get after a straightforward calculation 

x(t) = %(m-\t0)g(d) + g(t) - g(d) - *(t) | * dp"1(s)](g(s) - g(d)) 

= g(t)-*(t)J d^HsMs) 

where the function $ : [0,1] -+ L(X) is a solution of (1,5) with A given by A(t) = 

J*d*a(s)ds fo r t e [0,1]. 
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