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Abstract. Ordered prime spectra of Boolean products of bounded DRl-monoids are 
described by means of their decompositions to the prime spectra of the components. 
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R. Cignoli and A. Torrens in [4] described the ordered prime spectrum of an MV-
algebra which is a weak Boolean product of MV-algebras by means of the ordered 
spectra of those simpler algebras. In [8] and [9] it is shown that MV-algebras are 
in a one-to-one correspondence with DM-monoids from a subclass of the class of 
bounded Dili-monoids. The boundedness of DiZi-monoids leads to the fact that in 
any MV-algebra the ideals in the sense of MV-algebras coincide with those in the 
sense of DiJi-monoids, and by [10], Proposition 4, the analogous relationship is also 
valid for the prime ideals. 

In this paper we generalize the result of Cignoli and Torrens in [4] concerning the 
prime spectra of weak Boolean products of MV-algebras to bounded DM-monoids. 

Let us recall the notions of an MV-algebra and a DIK-monoid. 
An algebra A = (A, ffi,-i,0) of signature (2,1,0) is called an MV-algebra if it 

satisfies the following identities: 
(MV1) x@(y®z) = (x®y)®z; 
(MV2) x ffi y = y © x; 
(MV3) x 9 0 = x; 
(MV4) -.-.a; = x\ 
(MV5) x ffi i 0 = -0; 
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(MV6) ->(-io; ®y)@y = ->(x® ->?/) © x. 

It is known that MV-algebras were introduced by C. C. Chang in [2] and [3] as an 

algebraic counterpart of the Lukasiewicz infinite valued propositional logic and that 

by D. Mundici [6] they can be viewed as intervals of commutative lattice ordered 

groups (l-groups) with a strong order unit. 

If A is an MV-algebra, set x Vy = -\(-ix ®y) ®y and xAy = -i(->x V -vy) for any 

x,y € A. Then (A,V,A,0,->0) is abounded distributive lattice and (A,©,V,A) is a 

lattice ordered monoid (l-monoid). 

An algebra A = (A, +, 0, V, A, - ) of signature (2,0,2,2,2) is called a DRl-monoid 

if it satisfies the following conditions: 

(1) (A,+,0) is a commutative monoid; 

(2) (A, V, A) is a lattice; 

(3) (A, +, 0, V, A) is an l-monoid, i.e. A satisfies the identities 

x + (y\fz) = (x + y)V(x + z); 

x + (y A z) = (x + y) A (x + z); 

(4) if «J denotes the order induced by (A, V, A) then x — y is the smallest element 

z € A such that y + z ^ x for each x, y G A; 

(5) A satisfies the identity 

((a; - y) V 0) + y = x V y. 

Dili-monoids were introduced by K. L. N. Swamy in [11], [12], [13] as a common gen

eralization of, among others, commutative l-groups and Brouwerian and Boolean al

gebras. By [11], the Dili-monoids form a variety of algebras of signature (2,0,2,2,2) . 

If A is a Dili-monoid then by [11], Theorem 2, the lattice (A, V, A) is distributive. 

Moreover, if there exists a greatest element 1 in A then by [5], Theorem 1.2.3, the 

lattice (A , V, A) is bounded also below and 0 is a least element. 

Connections between MF-algebras and bounded Dill-monoids were described in 

[8] and [9]. In the sequel we will consider bounded Dili-monoids as algebras A = 

(A, +,0, V, A, —, 1) of signature (2,0,2,2,2,0) enlarged by one miliary operation 1. 

Denote by DTZh{\) the equational category of bounded Dili-monoids satisfying the 

condition 

(i) l-(l-x)=x 

and by MV the equational category of MF-algebras. By [9], Theorem 3, the cate

gories T>1Zh(i) and MV are isomorphic. 



If A is a bounded DiM-monoid and 0 ^ I C A then I is called an ideal in A if 
1. Vo,6e I; a + be I, 
2. V o € J , s e i ; i ^ o ==> a; € I. 
For any elements c and d of a Di?l-monoid A set c* d = (c — d) \/ (d — c). Then 

we have 

Lemma 1. Let A be a DRl-moaoid and I G 1(A). If a,b G A, a*b e I and 
a e I, then be I. 

Proof . For any a, 6 € A we have 

b sC ((a - b) + a) V b < ((o - b) + a) V ((6 - a) + a) 

= ((a - 6) V (b - a)) + o = (a * 6) + a. 

Hence a*b e I and a € I imply 6 G I. D 

The MV-algebra corresponding to a given DBI-monoid A = (A, +, 0, V, A, —) from 
VTZIKI) is (A,®,-i,0), where x(By = x+y and ->x = 1 — x for any i ,p 6 4 . Hence we 
have ([8]) that ideals in the mutually corresponding MV-algebras and DiW-monoids 
coincide. By [10] this is also true for prime ideals, and by [10], Propositions 4 and 5, 
prime ideals are in both types of algebras just finitely meet irreducible elements of 
the lattices of ideals. That means, if 1(A) denotes the lattice of ideals of a bounded 
DjRI-rnonoid A then I G 1(A) is a prime ideal in A if it satisfies 

VJ, K G 1(A); JDK = I=>J = I orK = I. 

Equivalently, I G 1(A) is prime if and only if 

Va;,y e A;x Ay e I => x e I or y e I• 

Let us denote by Spec A the prime spectrum of A, i.e. the set of all proper prime 
ideals of a DiM-monoid A. Spec^ endowed with the spectral (i.e. hull-kernel) 
topology is a compact topological space by [7], Corollary 6. 

Recall that a weak Boolean product (a Boolean product) of an indexed family (Ax; 
x G X) of algebras over a Boolean space X is a subdirect product A ^ J] Ax such 

xex 
that 

(BP1) if o, b e A then [[a = b]} = {x e X; a(x) = b(x)} is open (clopen); 
(BP2) if a, b e A and U is a clopen subset of X, then a\u U b\x\u G A, where 

((i\uUb\x\u)(x) =aforxe U and (a\uUb\X\U) =bforxeX\U. (See [1] or [4].) 
The following theorem makes it possible to compose the ordered prime spectrum 

of a weak Boolean product of bounded DRl-moaoids from the prime spectra of the 
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components of this product and so it is a generalization of Theorem 2.3 in [4] for 
AfV*-algebras. 

Theorem 2. Let a DRl-monoid A with a greatest element 1 be a weak Boolean 
product over a Boolean space X of a system (Ax\ x € X) of DRl-monoids with 
greatest elements. Then the ordered prime spectrum (Spec .4, C) is isomorphic to 
the cardinal sum of the ordered prime spectra (Spec AX,C), a; e X. 

Proof . Let us denote 4 = {c € A; c(x) = 0} for any x e X. Let P G Spec A 
and let us suppose that Ix g P for each x e X. Then for any x e X there exists 
bx G Ix \ P. Obviously X - (j [[bx = 0]]. Hence by condition (BP1) there is 

x£X 

a finite subset {xi,...,xn} C X such that X = \J [[bXi =0}}. Since 0 4 bXl A 
»=i 

• • • A bXn ^ bXi for each i - 1,. . . ,n, we have [{bXi = 0]] C [[bXJ A...Abx„- 0]], 

hence Q [[6^ = 0]) C [[6^ A .... AbXn = 0]], and thus bxi A ... A &*„ = 0 € P. By 
»=i 

the assumption P is prime, therefore bXh e P for some k — 1,.. . ,n, a contradiction. 
This implies that there exists at least one x e X such that Ix C P. We will show that 
such x is unique for P. For this, let x,y e X, x ^ y, be such that Ix C P, Iv C P. 
The space X is Boolean, hence there is a clopen subset V C X such that x e V and 
j 6 l \ V . /I is a subalgebra of J] *̂> t m l s 0 = (. • •, 0,,..), 1 = (..,, 1,...) 6 A. 

x€X 

Hence by (BP2), 0|v U l|x\v 6 A, and so 0|v u l |x\v 6 4 Q P- Analogously 
I k u 0|x\v £ ly = P- Moreover, (0|v u l |x\v) + (l|v u 0|x\v) = 1. n e n c e 1 e P, 
and therefore P = A, a contradiction. 

Let us now set H(IX) = {P e Spec A; Ix C P} for any x e X. Then from the 
preceding part it is clear that (Spec A, C) is isomorphic to the cardinal sum of the 
ordered sets (H(IX), C), x e X. We will show that the ordered sets (H(IX), C) and 
(SpecAx, C) are isomorphic for any x £ X. 

Let P e H(IX) and v?x(P) = {c(x); c 6 P}. We will show that ^ ( P ) 6 Spec A*. 
Since P G 1(A) and /i is a subdirect product of Ax, it is obvious that <px(P) 6 X(AX). 

Suppose 1 6 <Px(P). Then there exists c£ P such that c(x) = 1. Hence (c*l)(x) = 
0, thus c*l 6 i j C P. Moreover, c € P, therefore 1 e P by Lemma 1, a contradiction 
with P G Spec A. Hence <px(P) is a proper ideal in Ax. 

Let »,z 6 4 and v A z e <px(P). Then there exist c,d e 4̂ and o G P such that 
c(a;) = «, d(i) = z and o(a;) = v A z = (c A d)(x). Hence ((c Ad)-* o)(x) = 0, that 
means (cAd)*a e Ix C. P, and since a G P, we get cAd G P by Lemma 1. Therefore 
c G P or d G P, and so v € <px(P) or z e <Px(P). That means <px(P) is a prime ideal 
in Ax. 

Therefore the assignment <px : P i—y <px (P) is a mapping from H(IX) into Spec Ax. 



Let Q e Spec A*. Put ipx(Q) = {a € A; a(x) 6 Q). Clearly 4>X(Q) # A and hence 

it is obvious that tpx(Q) is a proper ideal in A. Moreover, Ix C 4>x(Q). Let c,d e A 

be such that c A d e ^ ( Q ) . Then c(a) 6 <3 or d(ai) 6 Q, therefore c G 4>X(Q) or 

d € tM<3), That means ^X(Q) e H ( 4 ) . 

From this we get that <px is a bijection of H(IX) onto Spec Ax and that ipx — (p~%. 

Moreover, both the bijections respect set inclusion, hence they are order isomor

phisms. Q 

R e m a r k . It is obvious that the assertion of Theorem 2 can be modified for any 

subvariety of the variety VR1\ of all bounded Di?/-monoids. For instance, it is valid 

for MV-algebras (see [4], Theorem 2.3) and Brouwerian algebras. 
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