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BINARY AND TERNARY RELATIONS 

VÍTĚZSLAV NOVÁK and MIROSLAV NOVOTNÝ, Brno 

(Received November 5, 1990) 

Summary. Two operators are constructed which make it possible to transform ternary re
lations into binary relations defined on binary relations and vice versa. A possible graphical 
representation of ternary relations is described. 
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1. INTRODUCTION 

In recent years ternary relations have often been studied in literature—cyclically 
ordered sets and groups ([1], [5], [6], [3], [8], [9]), but also the betweenness relation on 
lattices, partially ordered sets or graphs ([4], [2], [7]). When constructing examples 
or counterexamples of such relations we meet with the problem of graphical repre
sentation of ternary relations (formal description by ordered triplets is not suitable). 
If t is a ternary relation on a set G which is cyclic (the definition see below), then 
we can use oriented triangles: 

z 
o 

(z,y,z)€t, (y,z,z) £t, ( * ,* ,» )€* 

o > o 
x y 

Nonetheless, even in this case we can get into troubles: if G = {z,y,z,ufv,w}, 
t = {(z, y, z), (z, u, y), (y, v, z), (z, w, z)} and t* is a cyclic hull of t, then the graph 
of te is as follows: 
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We have obtained an oriented triangle corresponding to triplets (xtzty)t (z,y, x), 
(y, x,z) which are not in tc. With general ternary relations the difficulties increase. 
If t is a ternary relation which is not cyclic, then (x, y, z) € t cannot be represented 
by a triangle, but by an oriented "broken line" composed of two vectors: the first of 
them having the initial point x and the end point y, the second having the initial 
point y and the end point z (the cases when either x = y or y = z are not excluded). 
Two different oriented broken lines may include the same vector, so that different 
broken lines must be distinguished, e.g. by different colours. However, this way of 
representation is not practically applicable. The$e considerations lead us to replacing 
a ternary relation by a binary relation whose carrier is a binary relation. 

2. DEFINITIONS AND EXAMPLES 

Let G be a set and t a ternary relation on G (i.e. t C G3). The pair G = (G, t) will 
be called a ternary structure. Let G = (G, t) be a ternary structure. The relation t 
(and the structure G) is said to be 

symmetric, iff (x, y, z) €*=>(* , y, x) € t\ 
asymmetric, iff (x, y, z) € t => (zt y, x) g t\ 
cyclic, iff (x, y, z) £ t => (y, zt x) e t; 
transitive, iff (x, y, z) € *, (z, y, u) € t => (*, y, ti) € t. 

K the last condition is satisfied only for y = zt i.e., if 

{xtyy y)£tt (ytytz)et=> (x, ytz)£tt 

then i (and 6 ) is called weakly transitive. 
A ternary structure G -= (G, t) is called a cyclically ordered seit iff it is asymmetric, 

cyclic and transitive. 
If G is a set and a = (x, y) 6 G2, then we put a""1 = (y, x). 
Let G be a set, Q a binary relation on G. Further, let r be a binary relation on 

the set Q with the property 
* '. * !\ • 

a = (x,y) € g, £ = (* ,«)€ e, (a,P) € r => y = z. 
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Then r is called a binding relation on Q. 
Let G be a set, £ a binary relation on G and r a binding relation on Q. Then 

G = (G, Q, r) is called a double binary structure. An edge a € g in G is said to be 
isolated iff (a, /?) £ r, (/?, a) £ r for any /? € g. 

Let G = (G, £, r) be a double binary structure. The relation r (and the structure 
G) is said to be 

inversely symmetric, iff (a,/?) € r =-> (/J""1,a""1) G r; 
inversely asymmetric, iff (a, /?) € r => (/J""1, a~x) g r; 
reversely transitive, iff (a, /?) € r, (0"x, 7) € r => (a, 7) € r; 
transferable, iff (a, /?) € r => there exists 7 G £ with (/?, 7) G r, (7, a) € r. 
We now give two ways of representing finite double binary structures. 

R e p r e s e n t a t i o n 1. Let G = (G,Q,r) be a finite double binary structure 
(i.e., the set G is finite). Let i be an injection of G into a plane. We can identify x 
and i(x), i.e., suppose that G is a finite subset of a plane. Any a = (x9 y) G Q will be 
represented by the vector with the initial point x and the end point y. The relation 
r is a subset of Q2 such that (a,/?) G r implies that the end point of a coincides 
with the initial point of/?. Thus, any element (a,/?) G r may be represented by an 
oriented broken line obtained as the union of the vectors a, /?. 

This representation is appropriate for interpreting various conditions for G. The 
inverse symmetry of G means that for any oriented broken line (a,/?) in r the in
versely oriented broken line (P"l,a~x) is in r, too. The inverse asymmetry means 
that for any oriented broken line (a,/?) in r the inversely oriented broken line 
(/J"*"1, a""1) never is in r. The reverse transitivity means: If oriented broken lines 
(a,/?), (/J""1,7) are in r, then (a,7) also is in r, i.e., if the configuration 

a^ ^ r1^. 

is in r, then the configuration 

obtained by cancelling 0 and f}~x is in r as well. The transferability means the 
following. If a = (x, y) G Q, /? = (y, z) G Q and the oriented broken line (a, 0) is in r, 
then the oriented broken lines (/?, 7), (7, a) are in r as well, where clearly 7 = (z> x). 
Thus, 7 = (a + p)"1 where + means the usual addition of vectors. 
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R e p r e s e n t a t i o n 2. Let G = (G,Q,r) be a finite double binary structure. 
We identify the elements of G with points of the coordinate axis. It follows that any 
a = (*, y) € G2 is a point in a plane; a""1 = (y, x) is the point symmetric to a with 
respect to the line y = x. Thus, Q is a finite subset of a plane. If a € Q, 0 £ Q 
and (a,/?) € r, then we represent the pair (a, ft) by the vector with the initial point 
& and the end point ft. Hence, r is the set of vectors whose initial points and end 
points are in Q. As a = (*, y) € Q, ft = (z, u) G Q, (a, /?) € r imply y = z, a may be 
connected with ft by the vector (a, ft) € r only if the first coordinates of a"1 and /? 
coincide. 

Some properties of r may be also read in this representation. If r is inversely 
symmetric, then the set r is symmetric with respect to the line y = x. The reverse 
transitivity means the completion of the configuration formed by vectors (a,/?), 
(/J"1,7) by the vector (a, 7): 

The transferability has the following meaning: If the vector ((x,y),(y,z)) is in r, 
then the point (z,x) is in Q and the vectors ((y,z),(z,x)), ((*,-&)> (x>y)) are in r.. 
This means the existence of the oriented triangle with vertices (x, y), (y, z)t (Z) x) in 
our representation of r. 

Example 1. Let G = {*,y,*,ti,t/}, 01 = {(x,y),(y,z),(yiu),(y}V)y(ZiU)i 

(ti,v)}, n a {((x^Ky^z^^yKy^u^^x^Ky^)),^^),^^))}. Then the 
double binary structure G\ = (Gr,£i,ri) has the following representation: 
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?(v,v) («,«) 

Fig. 1 

E x a m p l e 2. Let G = {x,y,z,«,t>}, & = {(*,y), (y,*)> (*,*), (y,«), («,*), 
(V,v), (v,x), (z,u), («,«), (v,z)}, r 2 = {((x,y),(y,z)), ((y,z),(z,x)), ((z,x),(x,y)), 
((*,y),(y,«)), ((y,«),(«,x)), ((«,x),(x,y)), ((x,y),(y,t;)), ((y,«),(t»,x)), ((v,x), 

•(*,y)), ((*,«),(«,»)), ((«,»),(v,z)), ((v,z),(z,v))}. Then G 2 = (<?,<&, r 2) has the 
following representation: 

(*,У) 

{«,*) 

(z,x) («,x) (t/,x) 

Fig. 2 
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3. OPERATORS T AND B 

We denote by 9i the class of all double binary structures and by & the class of 
all ternary structures. 

Let G = (G, Qy r) be a double binary structure. Let us define a ternary relation t 
on the set G by 

(x,y,*)eto(z,y) = a€Qi (y,*) = /?G£ and (a,/?)Er, 

and denote the ternary structure (G, t) as T(G). Thus, T is an operator transforming 
a double binary structure into a ternary structure, i.e. 

Let G = (G, t) be a ternary structure. Let us define a binary relation Q on the set 

Gby 

(«, y) G Q <=> there is z G G with either (x, y,z) et or (z, x, y) E <; 

let us define a binary relation r on the set Q by 

(a, /?) € r <-> there exist z,y,z EG such that a = (x, y), /? = (y, z) 
and (z,y,z) E t. 

Clearly, (G, Q,r) is a double binary structure; we denote it by B(G). Thus, B is an 
operator transforming a ternary structure into a double binary structure, i.e. 

B: ^ — a. 

Theorem 3.1. Let G be a ternary structure. Then (ToB)(G) = G, i.e., ToB = 
ids. 

Proof . Let G = (G, t) and put B(G) = (G, Q, r) ,(To B)(G) = T(G, Q, r) = 
(G,*'). If (*,y,*) € *, then a = (x,y) G £, /J = (y,z) € £ and (a,/?) € r by the 
definition of B. But then («,y, z) G t1 by the definition of T; thus t C t'. Assume 
(«, y, z) G <'. Then a = («, y) € £, /? = (y, 2) € Q and (a,/?) € r by the definition of 
T and, therefore, (a?,y, 2:) G < by the definition of B. Thus tf C t and hence <' = t. 

D 

Theorem 3.2. Let G = (G, g, r) be a double binary structure and let (B o 
T)(G) = (G, £',r'). Then tf C Q and r' = r. If G contains no isolated edges, 
then Q' = Q. Thus, ifSt* is the class of all double binary structures without isolated 
edges, then B o T& = id**. 
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P r o o f . Put T(G) = ( G , 0 and suppose (*,y) € ^. Then there exists z € G 
such that either (z ,y ,z) G * or (z,x,y) G t. In either case we have (*,y) € Q\ thus 
#' C Q. Let (a, /?) G r'. Then there exist x,y,z € C? such that a = (*, y), /? = (y, z) 
and (x, y, z) G t. By the definition of T we have a G Q, P € Q and (a, £) € r. Thus, 
r' C r. Conversely, let (a, fi) G r. Then a = (x, y) € I?, ,# = (y, *) € £ and (x, y, z) € t 
by the definition of the relation t. It follows that a = (s ,y) € $',,# = (y,*) € Y 
and (a, /?) € r' by the definition of B. Thus r C r' and hence r* zz r. If G contains 
no isolated edges and if a = (*,y) € Q, then there exists 0 € Q such that either 
(a, /?) G r or (/?, a) 6 r. In the first case the edge /? must have the form fi = (y, z) 
and (x,y,z) G t by the definition of t. Then (x,y) = a G ^ by the definition of 
B. In the second case we have /? = (z,x) and (z,x,y) G *. It also follow* that 
<* = (*> y) € #'. Thus # C Qf and hence #' = Q. O 

Theorem 3.3. Let G be a double binary structure. Then the following assertions 
hold: 

(1) G is inversely symmetric iff T(G) is symmetric; 
(2) G is inversely asymmetric iff T(G) is asymmetric. 

P r o o f . Let G = (G>Q,r) and T(G) = (G,*). 
(1) Let r be inversely symmetric and let (x,y, z) € t. Then a = (x,y) G £, 

0 = (V,*) € f a n d (<*>£) 6 r. Thus ( / J " 1 ^ 1 ) G r, so that 0 - 1 = (z,y) G 
Q,a~l = (y, a:) G Q and (z, y, x) G t. Hence * is symmetric. Let t be symmetric and 
let (a, /?) G r. Then there exist x, y, z G G such that a = (x, y), /? = (y, z) and 
(x,y,z) G t. Consequently, (z,y,x) G t so that (z,y) = 0"1 G tf, (y,x) = a"1 G £ 
and (/J""1, a""1) G r. Hence r is inversely symmetric. 

(2) Let r be inversely asymmetric and assume the existence of elements x, y, z G G 
with (xyy,z) G t, (*,y,*) € i. Then a = (x,y) G *, 0 = (y,z) G e, (a,/?) G r, 
and /J""1 = (z,y) G Q,a~l = (y,x) G Q, (/T"1^*1) G r. This contradicts the inverse 
asymmetry of r and thus t is asymmetric. Let t be asymmetric and assume the 
existence of elements a, /? G f such that (a, /?) G r, (/J"1, a"1) G r. Then there exist 
x,y,z G G with a = (x,y), ,0 = (y,z) ,(x,y,z) G *, and p~l = (z,y) G Q,a~l = 
(y, a?) G g, (z, y, a?) G t. This contradicts the asymmetry of t and thus r is inversely 
asymmetric. D 

Theorem 3.4. Let G be a ternary structure. Then the following assertions hold: 
(1) G is symmetric iff B(G) is inversely symmetric; 
(2) G is asymmetric iff B(G) is inversely asymmetric. 

P r o o f . If B(G) is inversely symmetric, then T(B(G)) is symmetric by 3.3; 
but T(B(G)) = G by 3.1. If G = T(B(G)) is symmetric, then B(G) is inversely 
symmetric by 3.3. This proves the assertion (1). Condition (2) follows from 3.3 and 
3.1 analogously. D 
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Theorem 3.5. Let G be & double binary structure. Them G is transferable iff 
T(G) is cyclic. 

P r o o f . Put G = (G,Q,r) and T(G) = (G,t). Let r be transferable and let 
(*, y, z) E t. Then a = (x, y) G £, /? = (y, *) G £ and (a, /?) G r. Thus there 
exists 7 € $ such that (/?,7) G r, (7, a) € r . If 7 = (u,«), then from (^,7) € r we 
have u = z and from (7><*) G r we have v = x. Thus, 7 = (z,x) and (/?,7) G r 
imply (y,z,x) G t. Hence t is cyclic. Let t be cyclic and suppose (a,/?) G r. Then 
a = (x,y), /? = (y,z) and (x,y,z) G t. It follows that (y,*,x) G t, (z,x,y) G t 
so that, if we put (z,x) = 7, we have 7 G Q and (£,7) G r, (7, a) G r. Thus r is 
transferable. O 

Theorem 3.6. Let G be a ternary structure. Then G is cyclic iffB(G) is trans
ferable. 

Proof follows from 3.5 and from G = T(B(G)). 

Theorem 3.7. Let G = (G, £, r) be a double binary structure. If the binary 
rel&tion r is transitive^ then the ternary structure T(G) is weakly transitive. 

Proof . Put T(G) = (G}t) and let x,y,z6 G, (x}y,y) G t, (y,y,z) G t. Then 
a = (*, y) €* , / ? = (y, y) € 0, 7 = (y, *) € £ and (a, /?) G r, (#, 7) G r. Transitivity 
of r implies (a, 7) G r and hence (x, y, 2) G t. Thus t is weakly transitive. D 

Theorem 3.8. Let G be a double binary structure. Then G is reversely transitive 
iffT(G) is transitive. 

P r o o f . Put G = (G,£,r), T(G) = (G,t). Let r be reversely transitive and 
let (x,y,z) G t, (*,y,ti) G t. Then a = (x,y) G Q, p = (y,s) G <?, (a,/?) G r, and 
ff-1 2 (z, y) G Q, 7 = (y,tO € £, (^ - 1 ,7) G r. The reverse transitivity of r implies 
(or, 7) € r and, therefore, (x,y,u) G t. Thus t is transitive. Let t be transitive 
and let a,/?,7 G £, (a,/?) € r, (/J*1,7) G r. Then there exist x,y,z,tt G G such 
that a = (x,y),/? = (y,z), (x,y,z) G t, /T 1 = (*,y), 7 = (y,ti), (*,y,ti) G t. The 
transitivity oft yields (x, y, ti) G t. Thus (a, 7) G r and r is revesely transitive. D 

Theorem 3.9. Let G be & ternary structure. Then G is transitive iff B(G) is 
reversely transitive. 

P r o o f follows from 3.8 and 3.1. D 

Now, from 3.4, 3.6 and 3.9 we get 

Theorem 3.10. Let G be & ternary structure. Then G is & cyclically ordered 
set iff the double bin&ry structure B(G) is inversely asymmetric, transferable and 
reversely transitive. 
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Analogously, from 3.3, 3.5 and 3.8 we obtain 

Theorem 3.11. Let G be a double binary structure. Then G is inversely asym
metric, transferable and reversely transitive iffT(G) is a cyclically ordered set. 

As the operator B transforms a ternary structure into a double binary structure, 
it offers a possibility of graphical representation of a ternary relation. 

E x a m p l e 3. Let G = {x,y,z,ti,t>}, *i = {(x,y,z),(x,y,u),(x,y}v)t(ztu,v)), 
Hi = (G,*i). We construct B(IJi) = (G,Qi,r\). By definition, we obtain 

£i = {(*, y), (y, *), (y,"), (y, "), (*,«0i (", v ) } , 

ri = {((*, y), (y, *)), ((*, y), (y, ti)), ((x, y), (y, v)), ((*, ti), (ti, v))}. 

Thus B(JETi) coincides with the double binary structure Gi from Example 1 where 
its representation can be found. 

E x a m p l e 4. Let G = {x,y,z,t i ,v}, t2 = {(*,y,z) , (y,z ,x) , (z ,x,y) , (x,y,t i ) , 
(y, " , * ) , (^, *,y), (*, y, v), (y, v, x), (v, x, y), (z, ti, v), (ti, v, z), (t>, z,ti)}, JHT2 = (G,t2). 
Clearly, t2 is the cyclic hull of ti from Example 3 and H2 is a cyclically ordered set. 
We construct B(H2) = (G, Q2, r2)\ 

Q2 = {(*, y), (y, *), (z, x), (y, ti), (ti, x), (y, v), (v, x), (z, ti), (ti, v), (v, z)}, 
r2 = {((*, y), (y, *)), ((y, *), (*, x)), ((z, x), (x, y)), ((x, y), (y, ti)), 

((y, ti), («, x)), ((ti, x), (x, y)), ((x, y), (y, v)), ((y, v), (v, x)), 

((f, x), (x, y)), ((z,ti), (ti, v)), ((ti, v), (v, z)), (v, z), (z, ti))}. 

Thus B(.HT2) coincides with G2 from Example 2. 

4. CATEGORIES & AND # 

The class & is a category if we define morphisms in -T in the obvious way, i.e. if 
G = (G, t) € «S*\ H = ( # , s) G ^ and / : G - • # , then / is a morphism of G into 
ffiff 

(x}y,z)et=>(f(*)J(y)J(z))€s. 

The class 9i is category if we define morphisms in St as mappings preserving both 
Q and r, i.e. if G = (G, £, r) £&,H = (H,cr,s) € «» and /*: G - • # , then / is a 
morphism of G into H iff 

(*, V) € Q => (/(*), / (y)) € (r, ((*, y), (y, z))£r=> ( ( / (*) , / (y)) , 

(/(y),/(*)))e*. 
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Clearly, the class 3P of all double binary structures without isolated edges is a full 
subcategory of 9. 

The operator T : & —• & is a functor, if for a morphism / : G —* H we define 
the morphism T ( / ) : T(G) — T(H) by T ( / ) = / . We will show that if / is 
a morphism of G into H then / is a morphism of T(G) into T ( H ) . Thus, let 
G = (G,* , r ) , H = (#,<r,*), T(G) = (G,*), T(JT) = (Hfu) and let (x,y,*) G t. 
Then (*,y) 6 0, (y,*) € 0 and {(z,y),(y,z)) € r. This implies ( / (x) , / (y)) € 
* . < / < » > . / « ) € <r, ( ( / (*) , / (y) ) , ( / ( y ) . / W ) ) ^ # and hence ( / (* ) , / (y ) , / ( z ) ) € it. 
Thus, / : T (G) -> T(JBT) is a morphism. Cleraly, T(1 G ) = 1T(G) and T(g o f) = 
T(f) o T ( / ) . Thus, T : St -+ ^ is a functor. 

Analogously, B : & —• # is a functor, if for a morphism / : G —• .HT in & we define 
the morphism B ( / ) : B(G) —• B(fT) by B ( / ) = / . Since for a ternary structure G 
the double binary structure B(G) contains no isolated edges, the functor B is in fact 
a functor from 9 into St. Theorems 3.1 and 3.2 show that the functors T : 9I1 -+ & 
and B : & —• 9V are isofunctors. Thus, we have proved 

Theorem 4.1. The categories & and St1 are isomorphic. The functors B : & —• 
Sf and T : & —• ST are isofunctors. 
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