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differential equations with quasi-derivatives.
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1. INTRODUCTION

The aim of our paper is to give some conditions for existence of Kneser solutions
of the differential equation

® Ly) =0,

where
n—1
L) = Lay+ 3 Bu(O)Lay + Po()5(y),
Loy(t) = y(1), -
Luy(t) = (O Eoy(®) = n (0 42,
Liy(t) = pa(t)(Le-1y(t))’ for k=2,3,...,n—1,
Lay(t) = (Ln-13(1))'s
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n is an arbitrary positive integer, n > 2, P(t), k = 0,1,...,n = 1, pi{t), i =
1,2,...,n—1 are real-valued continuous functions on the interval I, = [a, %), —~c0 <
a < oo; f(t) is a real-valued function continuous on E; = (—00,00).

I =1, then L(y) = Lyy + R(Of() = v + Ro()f(y). Po(t) and () are
real-valued continuous functions on I, and on E, respectively.

It is assumed throughout that
(A) Pu(t) €0,pi(t) >0forallte I,, k=0,1,...,n—-1,i =1.2...,n—1; f(0) #0,

f(t) > 0 for all t € Ey; Po(t) is not identically zero in any subinterval of I,; n
is an arbitrary positive integer, n > 2. If n = 1, then Po(t) < 0 and f(t) 2 0
for all t € I, and E;, respectively.

The problems of existence of monotone or Kneser solutions for third order ordinary
differential equations with quasi-derivatives were studied in several papers ([5], [7],
[8], [10]). The equation (L), where p;(t) = 1, i = 1,2,3 (n = 4) was studied, for
example, in ([6], [9], [12]). Equations of the fourth order with quasi-derivatives were
also studied, for instance, in ([1], [3], [13]).

Existence of monotone solutions for n-th order equations with quasi-derivatives
was studied in [4].

In our paper, Theorem 1 and Theorem 2 give sufficient conditions for existence of a
Kneser solution of (L) on [a, o0) for n an even number or for an odd one, respectively.

Now we explain the concept of a Kneser solution, and other useful ones:

Definition 1. A nontrivial solution y(t) of a differential equation of the n-th
order is called a Kneser solution on I, = [a,0) iff (y(t) > 0, (—1)*Liy(t) > 0) or
(y(t) <0, (=1)*Liy(t) < 0) forall t € L, k=1,2,....n— L.

Definition 2. Let J be an arbitrary type of an interval with endpoints ¢, ¢,
where —o0o € t; < ts € oo. The interval J is called the maximum interval of existence
of u: J — ET, where u(t) is a solution of the differential system u' = F(t,u) iff u(t)
can be continued neither to the right nor to the left of J.

Definition 3. Let ' = U(t,y) be a scalar differential equation. Then yo(t) is
called the maximum solution of the Cauchy problem

(%) = Ult,y), y(to) = yo

iff yo(t) is a solution of (x) on the maximum interval of existence and if y(t) is
another solution of (), then y(t) < yo(t) for all ¢ belonging to the common interval
of existence of y(t) and yo(t).

We give some preliminary results.
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Lemma 1. Let A(t,s) be a nonpositive and continuous function for a < t €
s < to. If g(t), ¥(t) are continuous functions in the interval [a, to) and

t

P(t) = g(t) + / A(t,s)¢(s)ds  fort < [a, o),

to

then every solution y(t) of the integral equation

Y1) = g(t) + / Alt,5)y(s) ds

to
satisfles the inequality y(t) < ¥(t) in [a, to).

Proof. See [6], page 331. [m]

Lemma 2. (Wintner) Let U(t,u) be a continuous function on a domain to <
t<to+a, a>0u>0,let u(t) be a maximum solution of the Cauchy problem
o = U(t,u), u(te) = ug 2 0 (v = U(¢,u) is a scalar differential equation) existing on
[to, to + a); for example, let U(t,u) = 1(u), where y(u) is a continuous and positive
function for u > 0 such that -

du

Y(u)
Let us assume f(t,y) to be continuous on to < t < to + @, y € E}, y arbitrary, and
to satisfy the condition

[£(& ) S U, ly).

Then the maximum interval of existence of a solution of the Cauchy problem
¥ =f(ty), y(t) = vo,
where |yo| < uo, is [to. to + al.
Proof. See (2], Theorem IIL5.1. [m}

Lemma 3. Let (A) hold, and let there exist real nonnegative constants a,, az
such that f(t) < a:1lt| + ag for all t € E,. Let initial values Lyy(a) = by be given for
k =0,1,...,n = 1. Then there exists a solution y(t) of (L) on [a,00), which fulfils
these initial conditions.

Proof. See[4], Lemma 3. ]
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2. RESULTS

Lemma 4. Let us assume g(t, z) to be continuous on tg—a < t < to, o a positive
constant, z € E}, z is arbitrary and satisfies a condition

lg(t, 2) < ¥(zD),
where (t) is a continuous and positive function for t > 0 such that

o dt

w—@:oo.

Then the maximum interval of existence of a solution of the Cauchy problem
' =g(t,2), z(to) = o,
is [to — e, tg).
Proof. Let us consider the Cauchy problem
(u) u' = y(u), u(—to) = ug =1z0l-
According to the assumptions, the problem (u) admits a single solution ug(t) on

[—t5, 00), where
uo(t) = R1(t +to)

and R: [ug,00) = [0,00), R(u) =
consider the Cauchy problems

o w(t dt, R_1(R(u)) = u, u € [uo,00). Let us
(U) o' =U(t,u) = ¥(u), u(—te) = uo = |20|, (t,u) € [~to, —to + a] X [0,00),

) ¥'(t) = g(=t,~y), y(=to) = ~z0, (t,y) € [~to, —to + ] x ET,

(z) 2'(t) = g(t, Z) 2(to) = 20, (t,2) € [to — a,to] x EJ.

Then ug(t) = R_y(t + ¢o) is the maximum solution of (U) on the maximum interval
of existence [—to, —to + a]. According to Lemma 2 there exists a solution yo(t) of (y)

n [—to, =t + a]. Then the Cauchy problem (z) admits the solution zo(t) = —yo(—t)
on [ty — @, to] because of

25(t) = yo(—t) = g(t, —yo(—1)) = g(t, 20(¢))
on [tg ~ . to]. So the maximum interval of existence of (z) is [to ~ a, to]. 0
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Lemma 5. Let (A) hold, and let there exist nonnegative real constants a;, az
such that f(t) < a1|t| + as for all t € E. Let initial values Lyy(to) = by be given for
k=0,1,...,n — 1, to > a. Then there exists a solution y(t) of (L) on [a, 00), which
fulfils these initial conditions.

Proof. According to Lemma 3 there exists a solution of (L) on [to,00) such
that the initial conditions hold. To prove our lemma we need to prove existence of
a solution y(t) of (L) on [a, o] satisfying the given initial conditions. Consider now
the following system (S), which corresponds to the equation (L):

ur1(t)
pi(t)

n—~1
w(t) = = Y Pe(t)ursa(t) — Polt) f(wa (1)),
k=1

ui(t) = k=1,2,...,n—1,

(8)

where ug(t) = Liay(t), ¥ = 1,2,...,n, fu = wpqifpe, k= 1,...,n—1, f =

=¥ Puugrr — Pof(ua), F = (fi, far. oy fu), u = (ug,uz, . un), o = (ug,4h, ..,
n

n
ul), |ul = kz lukl, |F| = X |fel, (t,u) € [a,to] X E}. Then
=1 k=1

|F(t,u)] = f\"*—“h

n—1
=3 Potgys — Pof(uw)
k=1

k=1 Pk
n—1 1

€ X =Pt Sl = Polarlus| +a2) < Kaful + Ko = v,
k=1

where K, K, are appropriate positive real constants. It is obvious that

/ © ds
¥(s)
for s € Ey, s > 0. Lemma 4 yields existence of a solution of (S) on fa, to). This fact

implies existence of a solution y(¢) of the equation (L) on [a,t5] which satisfies the
given initial conditions. The lemma is proved. [m]

Lemma 6. Let (A) hold, and let y(t) be a solution of (L) on [t;,0), where
t, 2 a. Let (B) hold, where (sp = s)

(B) (=1)F "My (t,8) <0, Na.(t) <0, nx2
k=1
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and

s

S1
My(t,s) = /——le / ds / =Pk ék 1 dsg-1,
S pa-2(s1) J Paalse) P (

t

n—1
Mit;9) = = Pus(s), ) = [ L (-Peck(s)Ga(a)) s
t2 k=1

Gr(8) = Ln-s(t) + (=1 Lo srant) [ —2

———— + (=1 Ln-st2y(t2)
Prky1(51)

t2 tz

x [ [ (1) Lt

Pa—k+1(51) J Pn—k+2(s2)
p &

ta to

2 t.
. / ds; /z dsy / dsk—2
Pa-kt1(s1) J Paopia(s2) S Pa—a(sk-2)
s 51 s

fork=2,3,...,n -1, G1(s) =0.
a) Let n be an even number and ty € (t1,00) such that (—=1)*Lyy(ts) > 0 for
k=0,1,...,n—1. Then (=1)*Lyy(t) > 0 for t € [t1,t2], k=0,1,...,n—1.
b) Let n be an odd number and t; € (t1,00) such that (—1)*Lyy(ts) < O for
k=0,1,...,n—1. Then (=1)*Lyy(t) < 0 fort € [t1,62). k=0,1,...,n— L.

Proof. Letn > 2. Integration of the identity L,y = (L,-1y)’ over [t2,t], where

ty <t <t (n can be an even number as well as an odd one) yields
Lo 1y(t)
Lot~ [ S Pl ayls) ds - / Po(s)f(y(s))a
t2 =)

+ {n—1
= Lncsalta) + [ (RO s+ [ S P nmin(s) do
ts 12 A; 7
Let us denote the expression Ln-1y(t2) + f( Po(s)f(y(s)))ds by Kn(t). It is

obvious that K, (t) <0 for all t € [t;,t2]). We have

+n—1

Lo_1y(t -An(t)+/ S (= Prms () Lnoiy(s)) ds.

2 p=1



It can be proved that

Lu-ry(s)

* ds;
= Lo-ky(t2) + Lo—ks1y(t: /———
n-kY(t2) k+1y(t2) " Prrt1(51)

s ds = ds;
+Ln,my(:2)/ ——‘—/ .
0 Pn—k+1(51) s Preks2(s2)
ds; S dgg
Loay(ts) [ b2
12 P k+1(51) o Pn-ke2(s2) Sy, Pnoa(sk—2)

+/S ds; /" dsy /” ds3 /5"3 L ay(se—1)dsk—1
12 Pr—tr1(81) i, Pn-i42(82) Jiy Pa-ryalss) = s

2 Pr1(8k-1)

for k = 2,3,...,n — 1. By interchanging the upper and the lower bounds in the
previous integrals, we have

Ly ky(s)

iy dsl
= Loy(ta) + (1) Lok y(t / —_—
ky(t2) +(-1) k+1y(t2) )

. t2 d t2 d
P Lot [ s [7

Pa-k+1(s1 Pn-k+2(52)

- t2 ds t2 ds. t2 dsj_.
+(-1)* 2Ln_2y(52)/ — [ T / 2

s Paki1(81) Sy Proksa(s) S, Pna2(8k2)

+(—1)"’1/Lz da /t2 dss 4../12 Lo_1y(sk—1) dsi—1
s DPn—kt1(s1) st Pr—r+2(52) s :

vz Pno1(Sk-1)

Denoting the last (k — 1)-dimensional integral by /i (s), the previous sum by Gi(s),
I1(s) = Ln-1y(s), G1(s) =0 for k=1.2,...,n — 1 (55 = s) we obtain

Lu-ky(s) = Ge(s) + (-1 1, (s).

tn—1
= Ka(t) + / (—Pack(9)[Gi(s) + (1) ()] ds

2 k=1
tn—1 iy
= K0+ [ Y (-Prls)G s))ds+/ 2 Poos () (-1 (s ds
2
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n—1
Denoting Kn(t) + f:z 5 (—Pn1(5)Gr(s)) ds by gn(t) and denoting f:z (= Pr—i(s) x
k=1

(=1)*=11i(s)) ds by (=1)*71J,(t) we have

n—1

Lo-ay(t) = ga(t) + 3 (-1 Ju(8),

k=1
where Ji(t) is the k-dimensional integral
t2 t2 ds, ta dsy
Ji(t) = — —P,Asds/ /
k(0 ¢ (=Proesdls)) o Pukr1(s1) Js, Pk+2(s2)

f” Lon_1y(sk—1) dsg—1
Sk—z pn—l(sk—l)

for k=2,3,...,n—1and J1(t) = = [{*(~Pac1(s)Ln-1y(s)) ds. )
By changing the notation of the variables we have

t2 & dsk_» /Lz dsi-3
Je(t) = — -P,_ 1)) ds_
(t) / (=Pi(st-1)) dsis / e [ e
/‘2 Loyy(s)ds

1 Pr-1(s)

Jx(t) is a k-dimensional integral on a k-dimensional domain. This domain can be
described as an elementary domain in the following way:

t<sk-1 <t
Sk-1 < Sk—2 S B2
Sk—2 K Sk—3 < b2
s2K 81 <t
$1 <SS e,
as well as like
t<s <ty
t<s1 <
t<s2 <81
t < Sz < Skg
< Sk-1 K Sk—2
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for k=2,3,...,n— 1. Hence
Ji(t)
t2 ° dsy ST dsy -2 Pk (Sk-1)
= - Ln,zsds/—*/ ~—/ AN, e VY P
/t 1(s) v Pa-2(s1) Ji  pa-s(s2) f Pn-1(s) k-1

The last integral can be rewritten into the form

ty 1
L) = - / Mt ) Loay(3)ds = [ Mi(t,5)Lamy(s) s,

where
° dsy /5‘ ds; /5‘"2 ~Po_(8k-1)
Mi(t,s :/J — .. — et dsi—
K9 ¢t Pn-2(s1) Jr Pn-s(s2) i Pa-1(8) k=1
for k =2,3,...,n—1, My(t,s) = —Pa_1(s). Hence
Ln-1y(t)

n-—1 n—1 t
= 90(®)+ (D0 = 0al0) + 305 [ Mt ) Lacra(s)ds
k=1 k=1 ta

t

t rm—1
:gn(t)+/t [Z(—l)"‘le(t,s)]Ln_ly(s)ds:gn(t)+ A An(t,5)Ln_1y(s)ds,

k=1

n—1
where An(t,s) = 3 (=1)*"'Mi(t,s). We note that s < to, s; < to, t < 5,
k=1
t<sifori=1,2,...,n— 3. According to the assumptions of the lemma, we have
gn(t) = Ka(t) + No(t) and ga(t) <0, A,(t,s) € 0. According to Lemma 1 we have

Ln_1y(t) < 0 for all ¢ € [t;,22]. By virtue of

t
L )]
Ln1y(s) ds > La_sy(ts) 20,

Lu—2y(t) = La—2y(t2) +
W) = o)+ 5,000
A

we have Ln-2y(t) > 0 on [t1,t2]. By using of a similar procedure (n can be an even
number or an odd one), we get for n > 2:

a) (~1)¥Lxy(t) > 0 on [t1,t] for k= 0,1,...,n — 1, for n an even number,

b) (=1)*Liy(t) < O on [t1,22) for k=0,1,...,n ~ 1, for n an odd number.
If n = 1, then the assertion of the lemma is obvious. o
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Lemma 7. Consider a solution y(t) of (L) on [t;,00), t; > a such that (A)
holds, let n be an even number and t2 € (t;,00) such that (-=1)*Liy(t2) > 0 for
k=0,1,...,n— 1. Let Pi(t) = 0 on [t1,t2] for all odd integers k € (1,n]. Then (B)
holds.

Proof. Wehave Gi(s) 2 0 for all even numbers k € [1,n], and Gy (s) < 0 for all
odd ones. If k is an odd number, then 7 — k is an odd number too, and P,_x(t) =0

tn=t
on [t1,t]. Therefore No(t) = [ Y (—Pu-k(s)Gi(s)) ds < 0. Similarly, My(t,s) =0
is k=1

a1

for all odd k < n. So An(t,8) = S (—1)* 1Mi(t,s) < 0 because Mx(t,s) > 0 for
k=1

alk=1,2,...,n—1. )

Lemma 8. Consider a solution y(t) of (L) on [t,00), t > a such that (A)
holds, let n > 1 be an odd number and t3 € (t,,00) such that (—1)*Ly(t2) < 0 for
k=0,1,...,n — 1. Let Pc(t) = 0 on [t1,t2] for all even integers k € [1,n]. Then (B)
holds.

Proof. The proof is similar to the proof of the previous lemma, so it is omitted.

[u]

Lemma 9. Let {ym(t)}%2-,, be a sequence of solutions of (L) on [to, o), where

a < ty < ng, n is an even number, and Lyy,(m) = (=1)* for all m > ng, k =

0,1,...,n—1. Let (A) hold, and let Py(t) =0 on [a,00) for all odd integer nunbers
o o

k€ [l,n]. Let —0 < [ Po(s)ds = P <0, [ Pi(s)ds > % for k=1,2,...n -1,
to to

let P, be nondecreasing functions for k = 0,1,....n — 1, [ 1/p.(s)ds < L for
1

o
r=1,2,...,n—1, and let K be a real positive constant such that 0 < f(t) < K for
t € (—00,00). Then there exists a subsequence of {y,,(t)}m=n, Which converges to
wo(t). This function @o(t) is a solution of (L) on [to,00), and (—1)*Lypo(t) = 0 on

[to,00) for k=0,1,...,n — 1.

Proof. Because L,y,,(t) > 0 on [to,m] for m = ng,70 + 1,... (this follows
from Lemma 7 and Lemma 6, part a)), we have that L,-1¥m(t) is nondecreasing
and negative on [to, 0] for m > no. If we prove that Ln,—1¥m(fo) is bounded from
below, it means Ln—1Ym(t) is uniformly bounded on [ty,n0]- Using the expression
(C) several times, where

rs

(€ Ligm(s) :kam(m)+/

m

Ym(S) = ;
Lyy ——)dsfor k=0,1,...,n -2,
( Hll’kﬂ(s))
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we obtain forn >3,2<k<n—1 (sp=s)

1
Litm($) = Liym(m) + Lt 1ym () /

Pr+1(s1)

s

s1
ds; dssy
e [ ]
2y (m) Peri(sn) J pera(on) T
m n

s S1 Su—k

o3
ds; dsy dsp_x—2
+ La—2ym(m /——/ .. /
2m(m) Pit1(81) J Prea(s2) Pr—2(8n—k—2)

s s .
d. ds. L —1Ym(Sn—
+/ 51 / 2 / n—1Ym (Sn—k— l)dsn—k—l-
prt1(51) J pralse) Do (an1)
n 4

Integration of (L) over [to, m] yields

®

Ln-1ym(to)
3-1

= Ln_1Ym m)+/ Py(s) fym(s)) d8+2/ Pak(s)Layrym(s) ds

to

= Lrym(m) + [ Po(s)fym(s)) ds + Z sz(s>[52k(s) + Cai(s)] ds,

to to

where Cy(s) is the last integral in (D) and By(s) i s the rest of the right-hand side of
(D). Let us denote the expression Ln_1ym(m) + f Po(3) f(ym(s)) ds by Fy,. Then

Ln—1ym(to)
21

=F, +Z/ Py (s)Bax S)d5+z P2" (5)C(s) ds

21

> Fa +Z/ Pat(5)Bax(s) ds + Ln_1ym(to)

2 m S dsg T dsy /3"‘”“2 dsn_2k-1
x Por(s / ____/ S ——] ds
,Z/ () [ m P2kt1(51) Jm Pake2(s2) S Pn-1(Sn-24-1)

21

> Fn+ Z/ Pai(s)Bax(s) ds + Lu-1ym(to)

had ds; /w dss /OO dsn—26-1
_p .. ds.
x Z / 2 /:“ Dart1(s1) Joy Pars2(s2) ta Pn—1 (Snﬂk»l)” s
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(We have used the fact that the last integral has the dimension n — 2k, which is an
even number, and to < s; Km<oofori=1,2,...,n—2k—2,¢p < s < m < ).
An easy arrangement yields

31 o -
ds; ®  dsp
Ly to)(1+ /Psds/ —/ —_—..
" 1ym(o)[ ,;1 to 2k(3) o DP2er1(81) Sy, D2rta(s2)

/w don-2e-1 |>F +§ " Poe(s) Bn(s) ds
B | 2 2k 2k S.
to Pa-1(Sn—2x-1) Jm1 Jto

According to the assumptions, the expression in the parentheses above is a positive

$-1loo 00 21
number because of ZZ J[-Poi(s)]ds... [ —Sm=ze=t ZZ (£)"2%% < 1. There-
=1

Pu-1(sn-2t-1)

k=1 tg to
fore
Elm
Fun+ Y [ Pau(s)Bax(s)ds
k=1 k
Lo-1ymlto) > —5 = -~ - .
ds dsn_ 2
1+ E} t{Pz’k(s)dsz{ Fweey t{ Py EoTwy
We have
m o
Fo= Locsym(m) + [ Po(6)(um(s)) ds > ~1+ [ Po(6)f(um(s)) ds
io f
;—1+K/Po(s)ds:—1+KP,
to
Fod f a
51 S1
By (s) = Lokym(m) + L /——+.,,+L_ m/———
ok (S) 2kYm (M) + Log41Ym(m) Do (1) n 2Ym (M) Ponei (o)
Sn—2k-3 d m d m d
/ _ CSm-o2 :1+1/—51 +.“+1/——s‘
Pn-2(8n—2k—2) Pakt1(51) DPar41(81)
m s s

/ MSI‘F(H—Z’C—2)1SH
Pn-2k—2(Sn—-2k-2) 2
Sn—2k-3

because of s <m, s; <mfori=1,2,...,n— 2k — 3. So we have

21 -1

Z/ ng(s)ng(s)dSZnZ/ Pau(s)ds
k=17t k=1 7to

51

> " Pa(s)ds > —n(® — 1)1
/nkz : 2k () s/—n(gf )5
=1Vt
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Hence

1+ KP-2(2-1)
-1 oo o o
s S —2k—1
L+ 3 [Pul)ds [ ot L r it
k=1 to to to
=S, 1€ (*0070)

Ly 1ym(te) 2

forn > 3. If n =2, then Lp_1ym(to) = Fm 2 —1+ KP € (—00,0). It implies that
{Ln—1ym(to)}32=,, is bounded from below for any fixed even number n > 2. So we
have

—L1ym(s) d

7 4
0< Lu-s¥m(to) = Lnaym(m) + / 5 <1 Lo_yym(to) / s
; Pr—1(5)
A

pn—l(s)
to
T 4
sl—sn_lf & 5, e (0,00),
Pn—1(5)
to
T-L () 7T a
—Lipn—2Ymi$s S
> La_; = Lo-stm Thaza¥mlS) 455 1 - Loyt
03 Lu-aum(to) = Ln-am(rm) + [ —-2202) g S
to to
T 4
>—1—Sn_z/ b 5 e (-0
Pr—2(8)

to

Similarly, it can be proved that {Lxym(to)}3-,, is bounded for k=0,1,...,n — 1.
However,

3-1
0< Loym(®) == > Por(t)Lakym (t) — Po(t)f (ym(t)

k=1

1

Nl

< - Pai(to) Lorym (to) — Po(to) K

™

<= Y Poilto)San — Polto) K = Sn € (0,00),
k=1

e
- e

and this implies that {LnYm(t)}3=,, is uniformly bounded on [to,no] for m > no
and 80 Ln_1Ym(t) are uniformly equicontinuous on [to, o] for m > no. According to
Arzela-Ascoli theorem, there exists a subsequence { Ln—1Yx,, } 32—, Of {Ln-1ym } e,
such that {L,—1yx,, }Cun, converges uniformly on [to, no] to, for example, a function

Pn—1(t).

61



To ensure uniform convergence of {Ln—s¥k,, }35=p, on [to,no] to, for instance, a
function @n—2(t), it suffices to show convergence of {Ln—2k,. } S=n, at an inner point
of [to, o). This follows from the fact that Ln_oyx,. (to + €) < Ln-2yk.. (to) < Sn—2
for € > 0, € < ng — to. Then there exists a convergent subsequence {Ln_2Yx,,, (to +
€)}oeng Of {Ln-2yr,, (to + €)}5o,, and therefore {L,.ayk,, }m=n, cOnVerges uni-
formly to @n—2(t) on [to,ng]. It is obvious that Ln_jyk,, = ©¥n_1 on [to,n0), too.
In a similar way we can prove uniform convergence of a subsequence {yr,, }oven, Of
{Ym } -, such that Lyy-,, (t) = @k (t) on [to,ng) for k= 0,1,...,n. Due to the fact
that uniform convergence makes changing of the order of limit processes possible
(a quasi-derivative is a certain kind of limit), we have

0= lim L(y...()
Jim_
21
2

= lim Lugr,. () + Y Po(t) im Loy, (t) + Po(t) f( lim ., (t)
m-—300 m—ro0o m—00

k=1
3-1
=a(t) + Y Po()pai(t) + Po(t) f(o(1)
k=1

for all ¢ € [to,mo]-

But pr(t) = Hm Liti, (1) = Li( lim_ e () = Le( lim_ Loy, () = Luolt),
s0 o (t) fulfils (L) on [to,ng]. It is important that we are able to continue @o(t) on
[to, no+1] in such a way that wo(t) be a solution of (L) on [to, no+1]. Indeed, it suffices
to repeat the whole previous part of the proof with the sequence y.,, for m > no+1
instead of ¥, for m > ng. Now it is obvious that ¢o(t) can be continued on [to, no+v]
(v is an arbitrary integer greater than 1) and therefore wo(t) fulfils (L) on [to,0).
Now let us take an arbitrary point 1 € [t5,00). Then there exists mo € {1,2,...},
t; < mp and a subsequence {ys,, }%—n, Of {Ym}3=,, such that Liys.. = Liwo(t)
on [tp, mg]. But (~1)*Lyys,. (t) > 0 on [tp,mg). Therefore (—=1)*Liepp(t;) > 0. It
implies that (—1)*Lypo(t) > 0 for all t > to, k=0,1,...,n— 1. [m]

Lemma 10. Let {yn(t)}3_,, be a sequence of solutions of (L) on [to, o),
where a < to < ng, n is an odd number, and Lyym(m) = (=1)*1 for all m 2> no,
k=0,1,...,n—1. Let (A) hold, and let P,(t) = 0 on [a,0) for all even integers

o0 oo

k€[l,n]. Let —c0o < [ Po(s)ds =P <0, [Pi(s)ds » —3 fork=1,2,...,n—1,
to 0

let P, be nondecreasing functions for k = 0,1,...,n— 1, [1/p,(s}ds < % for

fo
r=1,2,...,n—1, and let K be a real positive constant such that 0 < f(t) < K for
t € (—00,00). Then there exists a subsequence of {ym(t)}pw=n, Which converges to
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wo(t). This function wot) is a solution of (L) on [ty, 00), and (—1)*Lypo(t) < 0 on
[to,00) for k=10.1,...,n—1.

Proof. The proof is similaf to the proof of Lemma 9 (instead of Lemma 6,
part a), and Lemma 7 we use Lemma 6, part b) and Lem:ma 8, respectively), so it is
omitted. ]

Theorem 1. Let n be an even number. Let (A) hold, and let Py.(t) = 0 on [a, o)
for all odd integers k € [1,n). Let Px(t) be nondecreasing functions on [a,o0) such

that [ Pi(s)ds > —cofork =0,1,...,n—1, f 1/p,(s)ds < co forr =1,2,...,n-1,

and let K be a real positive constant such that 0 < f(t) < K for all t € (-0, 00).
Then (L) admits a Kneser solution y(t) on [a,00), i.e. y(t) > 0, (—=1)*Lyy(t) > 0 on
la,0) fork=1,2,...,n—1.

oo oo
Proof. Letustakety € (¢,00) such that [ Pi(s)ds 2 ~%, [ 1/p.(s)ds € % for
i

k=12...,n-L;r=12,....0—-1. Accordinug to Lemma. 5, thg're exists a sequence
{ym(£) 13-, of solutions of (L) on [to,c0) such that Lgym(m) = (—1)* for all m >
no > to, k=0,1,...,n—1. Lemma 7 ensures validity of (B), and Lemma 6, part a),
yields that {y,.(t)}5,, has the required properties from Lemma 9. According to
the last-mentioned lemma, there exists a function y(t) such that L(y(t)) = 0 on
[to, ), (=1)*Lyy(t) > 0 on [to,00) for k = 0,1,...,n — 1. This solution y(t) of
(L) on [tg,o0) can be continued onto {a, ) by Lemma 5. According to Lemma 6,
part a), y(t) is a Kneser solution of (L) on [a, c0) because y(t) > 0 on [a,o0) (this
follows from f(0) # 0). 8]

Theorem 2. Letn be an odd number. Let (A) hold, and let Py (t) = 0 on [a, c0)
for all even integers k € [1,n]. Let Py(t) be nondecreasing functions on [a, c0) such
oo 0o
that [ Pi(s)ds > —oo fork =0,1,...,n—1, { 1/p,(s)ds < oo forr =1,2,...,n—1
and let I be a real positive constant such that 0 £ f(t) < IV for all t € (—o0,0).
Then (L) admits a Kneser solution y(t) on [a,0), i.e. y(t) < 0, (~1)*Lyy(t) < 0 on
la,00) for k=1,2,...,n—1.

Proof. The proof is similar to that of the previous theorem (instead of
Lemma 6, part a) and Lemma 9 we will use Lemma 6, part b) and Lemma 10,
respectively) and so it is omitted. a
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3. EXAMPLES
Example 1. The equation

(B ezy _—t3t“ + (2 ”%m =0
EE@y'yy #(ty')) ]\/—

admits a Kneser solution y(t) = t~° on [1,00) according to Theorem 1 because

f(l/l’w (8))dt < oo for r = 1,2,3, Po(t) is nonpositive and nondecreasing on [1, co),
TPe(t)dt > —oo for £ = 0,1,2.3,0 < 1//TF 52 < 1, £(0) £0.
1
Example 2. The equation of the n-th order (n is an even number)
:—1

Lay+ 3 Pu(OLawy + Po(t)f(y) =0,

k=1

vl

where Por(t) = —¢=2*=2 for k = 0,1,...,3 = 1L, pr(t) = for r = 1,2,...,n - 1,
f(t) = e admits a Kneser solution on [1 o0) according to Theorem 1 because
oo
f(l/Pr(f’))dt <oforr=12...,n-1, szk t)dt > —co for k = 0,1,.. LE-1,
1
0<e™ <1, £(0) £0.

Example 3. The equation

V1418
Vi+yt

where pr(t) = t"+! for r = 1,2,3,4 admits a Kneser solution y(t) = —t71? < 0 on

Lsy — —Lsy - —Lly + (12673 + 1188712 - 142561 3) =0,

[1,00) according to Theorem 2 because f(l/pr )dt < oo for r = 1,2,3,4, Po(t)

is nonp081t1v0 and nondecreasing on [1,c0), f P(t)dt > —oco for k = 0,1,2,3,4,

0< A= <1, f(0) #0.
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