Mathematic Bohemia

Bohdan Zelinka

Location-domatic number of a graph

Mathematica Bohemica, Vol. 123 (1998), No. 1, 67-71

Persistent URL: http: //dml.cz/dmlcz/126298

Terms of use:

(C) Institute of Mathematics AS CR, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

LOCATION-DOMATIC NUMBER OF A GRAPH

Bohdan Zelinka, Liberec
(Received September 18, 1996)

Abstract

A subset D of the vertex set $V(G)$ of a graph G is called locating-dominating, if for each $x \in V(G)-D$ there exists a vertex $y \rightarrow D$ adjacent to x and for any two distinct vertices x_{1}, x_{2} of $V(G)-D$ the intersections of D with the neighbourhoods of x_{1} and x_{2} are distinct. The maximum number of classes of a partition of $V(G)$ whose classes are locatingdominating sets in G is called the location-domatic number of G. Its basic properties are studied.

Keywords: locating-dominating set, location-domatic partition, location-domatic number, domatic number

MSC 1991: 05C35

In this paper we will introduce the location-domatic number of a graph. All graphs considered will be finite undirected graphs without loops and multiple edges.

The location-domatic number of a graph is a variant of the domatic number, introduced by E. J. Cockayne and S. T. Hedetniemi. A dominating set in a graph G is a subset D of the vertex set $V(G)$ of G with the property that for each vertex $x \in V(G)-D$ there exists a vertex $y \in D$ adjacent to x. A partition of $V(G)$, all of whose classes are dominating sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is called the domatic number of G and denoted by $d(G)$.

A special case of a dominating set is a locating-dominating set. It was defined by D.F. Rall and P. J. Slater in [2]. Let $N_{G}(x)$ denote the open neighborhood of a vertex x in a graph G, i.e. the set of all vertices which are adjacent to x in G. A dominating set D in a graph G is called locating-dominating in G, if for any two distinct vertices x_{1}, x_{2} of $V(G)-D$ the intersections $D \cap N_{G}\left(x_{1}\right), D \cap N_{G}\left(x_{2}\right)$ are distinct. In [2] also the location-domination number of G is defined as the minimum number of vertices of a locating-dominating set in G.

Now we can define the location-domatic number of G analogously to the domatic number., A partition of $V(G)$, all of whose classes are locating-dominating set in G, is called a location-domatic partition of G. The maximum number of classes of a location-domatic partition of G is called the location-domatic number of G and is denoted by $d_{\text {loc }}(G)$

Note that $d_{\text {loc }}(G)$ is well-defined, because the whole set $V(G)$ is a locatingdominating set in G and therefore there exists at least one location-domatic partition of G, namely $\{V(G)\}$.

Theorem 1. Let there exist three pairwise distinct vertices x_{1}, x_{2}, x_{3} of G such that $N_{G}\left(x_{1}\right)=N_{G}\left(x_{2}\right)=N_{G}\left(x_{3}\right)$. Then

$$
d_{\mathrm{loc}}(G)=1
$$

Proof. Suppose that $d_{\mathrm{loc}}(G) \geqslant 2$. Then there exist two disjoint locatingdominating sets D_{1}, D_{2} in G. At least one of the sets $V(G)-D_{1}, V(G)-D_{2}$ contains at least two of the vertices x_{1}, x_{2}, x_{3}. Without loss of generality let $V(G)-D_{1}$ contain x_{1} and x_{2}. As $N_{G}\left(x_{1}\right)=N_{G}\left(x_{2}\right)$, we have also $D_{1} \cap N_{G}\left(x_{1}\right)=D_{1} \cap N_{G}\left(x_{2}\right)$ and D_{1} is not locating-dominating, which is a contradiction. This yields the result.

Theorem 2. Let there exists two distinct vertices x_{1}, x_{2}, of G such that $N_{G}\left(x_{1}\right)=$ $N_{G}\left(x_{2}\right)$. Then

$$
d_{\mathrm{loc}}(G) \leqslant 2 .
$$

Proof. Suppose that $d_{\text {loc }}(G) \geqslant 3$. Then there exist three pairwise disjoint locating-dominating sets D_{1}, D_{2}, D_{3} in G. At least one of the sets $V(G)-D_{1}$, $V(G)-D_{2}, V(G)-D_{3}$ contains both the vertices x_{1}, x_{2}. The rest of the proof is analogous to the proof of Theorem 1.

The symbol Δ will denote the symmetric difference of sets. Then for any two vertices x, y of G the symbol $\varepsilon(x, y)$ will be defined as the number of clements of $N_{G}(x) \Delta N_{G}(y)$ while $\varepsilon(G)$ will denote the minimum of $\varepsilon(x, y)$ over all pairs of distinct vertices x, y of G.

Theorem 3. For every graph G the inequality

$$
d_{\mathrm{loc}}(G) \leqslant \varepsilon(G)+2
$$

holds.

Proof. Let $d=d_{\text {loc }}(G)$ and let $\left\{D_{1}, \ldots, D_{d}\right\}$ be a location-domatic partition of G. Let x, y be vertices for which $\varepsilon(x, y)=\varepsilon(G)$ holds. First suppose that x, y are in distinct classes of the partition; without loss of generality let $x \in D_{1}, y \in D_{2}$. Then for $i=3, \ldots, d$ we have $D_{i} \cap N_{G}(x) \neq D_{i} \cap N_{G}(y)$. This is possible only if D_{i} contains a vertex of $N_{G}(x) \Delta N_{G}(y)$. As D_{3}, \ldots, D_{d} ate pairwise disjoint, we have $d-2 \leqslant \varepsilon(x, y)$, which implies the assertion. If both x, y are in the same class of the partition, we have even $d-1 \leqslant \varepsilon(x, y)$.

Theorem 4. Let a graph G contain two vertices x_{1}, x_{2} of degree 1 which are both adjacent to a vertex y. Then

$$
d_{\mathrm{loc}}(G)=1
$$

Proof. Suppose $d_{\mathrm{loc}}(G) \geqslant 2$. As G contains vertices of degree 1 , according to [1] its domatic number is at most 2 and hence also $d_{\mathrm{loc}}(G) \leqslant 2$. Suppose $d_{\mathrm{loc}}(G)=2$ and let $\left\{D_{1}, D_{2}\right\}$ be a location-domatic partition of G. Without loss of generality let $y \in D_{1}$. The vertices x_{1}, x_{2} are adjacent to no vertex of D_{2} and hence $x_{1} \in D_{2}$, $x_{2} \in D_{2}$. Obviously $D_{2}=V(G)-D_{1}$ and $D_{1} \cap N_{G}\left(x_{1}\right)=D_{1} \cap N_{G}\left(x_{2}\right)=\{y\}$, which is a contradiction. Hence $d_{\text {loc }}(G)=1$.

Now we can determine the location-domatic numbers of some well-known types of graphs.

Corollary 1. For the complete graph K_{n} we have

$$
\begin{aligned}
& d_{\mathrm{loc}}\left(K_{2}\right)=2 \\
& d_{\mathrm{loc}}\left(K_{n}\right)=1 \quad \text { for } n \geqslant 2
\end{aligned}
$$

Corollary 2. For the complete bipartite graph $K_{m, n}$ we have

$$
\begin{aligned}
d_{\mathrm{loc}}\left(K_{1,1}\right) & =d_{\mathrm{loc}}\left(K_{2,2}\right)=2 \\
d_{\mathrm{loc}}\left(K_{m, n}\right) & =1 \quad \text { in the other cases. }
\end{aligned}
$$

Corollary 3. For the circuit C_{n} we have

$$
\begin{aligned}
& d_{\mathrm{loc}}\left(C_{3}\right)=1 \\
& d_{\mathrm{loc}}\left(C_{n}\right)=2 \quad \text { for } n \geqslant 4
\end{aligned}
$$

Proof. Let the vertices of C_{n} be u_{1}, \ldots, u_{n} and the edges $u_{i} u_{i+1}$ for $i=1, \ldots, n$, the subscript $i+1$ being taken modulo n. The circuit C_{3} is the complete graph K_{3} and thus $d_{\text {loc }}\left(C_{3}\right)=1$ by Corollary 1. For C_{4} we have a location-domatic partition $\left\{\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\}\right\}$ and thus $d_{\text {loc }}\left(C_{4}\right) \geqslant 2$. For $n \geqslant 5$ we have a locationdomatic partition $\left\{D_{1}, D_{2}\right\}$, where D_{1} (or D_{2}) is the set of all u_{i} with i odd (or even, respectively); hence also $d_{\mathrm{loc}}\left(C_{n}\right) \geqslant 2$. If n is not divisible by 3 then $d_{\text {loc }}\left(C_{n}\right) \leqslant$ $d\left(C_{n}\right)=2$ and thus $d_{\text {loc }}\left(C_{n}\right)=2$. If n is divisible by 3 , then $d\left(C_{n}\right)=3$ and the unique domatic partition with three classes is $\left\{D_{1}, D_{2}, D_{3}\right\}$, where D_{i} for $i \in\{1,2,3\}$ is the set of all u_{j} with $j \equiv i(\bmod 3)$. Each vertex is adjacent to no vertex of its own class and to one vertex from each of the other classes. Thus $u_{1} \in D_{1} \subseteq V\left(C_{n}\right)-D_{2}$, $u_{2} \in D_{2}, u_{3} \in D_{3} \subseteq V\left(C_{n}\right)-D_{2}$ and $D_{2} \cap N_{C_{n}}\left(u_{1}\right)=D_{2} \cap N_{C_{n}}\left(u_{2}\right)=\left\{u_{2}\right\}$, which implies that $\left\{D_{1}, D_{2}, D_{3}\right\}$ is not location-domatic partition. Therefore $d_{\mathrm{loc}}\left(C_{n}\right)=2$ in this case, too.

By P_{n} we denote the path of length n, i.e. with n edges and $n+1$ vertices.
Corollary 4. For the path P_{n} we have

$$
\begin{aligned}
& d_{\mathrm{loc}}\left(P_{2}\right)=1 \\
& d_{\mathrm{loc}}\left(P_{n}\right)=2 \text { for } n \neq 2
\end{aligned}
$$

Theorem 5. Let p, q be integers, $q \geqslant 2,1 \leqslant p \leqslant q$. Then there exists a graph G with $d_{\mathrm{loc}}(G)=p, d(G)=q$.

Proof. We start with the case $p=q$. Let r be an integer, $r \geqslant 4 q$. Let D_{1}, \ldots, D_{q} be pairwise disjoint sets of vertices, let $\left|D_{1}\right|=r+1,\left|D_{i}\right|=r$ for $i=2, \ldots, q$. Let the vertices of D_{1} be $u, v(1,1), \ldots, v(1, r)$, let the vertices of D_{i} for $2 \leqslant i \leqslant q$ be $v(i, 1), \ldots, v(i, r)$. Consider an auxiliary graph H; it is the complete graph whose vertex set is $\left\{D_{1}, \ldots, D_{q}\right\}$. If q is even, then H may be decomposed into $q-1$ pairwise edge-disjoint linear factors F_{1}, \ldots, F_{q-1}. If q is odd, then H may be decomposed into q pairwise edge-disjoint graphs F_{1}, \ldots, F_{q}, each of which is a linear factor of a graph obtained from H by deleting one vertex. In any of these cases consider two sets D_{i}, D_{j}. Let h be the number such that the edge joining D_{i} and D_{j} in H belongs to F_{h}. Each vertex $v(i, k)$ for $k=1, \ldots, q$ will be joined by edges with the vertices $v(j, k-h), \ldots, v(j, k+h)$, the numbers in brackets being taken modulo q. Moreover, the vertex $u \in D_{1}$ will be joined by edges with all vertices $v(i, 1)$ for $i=2, \ldots, q$. The resulting graph will be G_{q}. From the construction it is clear that $\left\{D_{1}, \ldots, D_{q}\right\}$ is a location-domatic partition of G_{q} and thus $d_{\mathrm{loc}}\left(G_{q}\right) \geqslant q$. On the other hand, the vertex u has degree $q-1$. Hence the minimum degree $\delta\left(G_{q}\right) \leqslant q-1$ and by [1] we have
$d_{\mathrm{loc}}\left(G_{q}\right) \leqslant d\left(G_{q}\right) \leqslant \delta\left(G_{q}\right)+1 \leqslant q$, which implies $d_{\mathrm{loc}}\left(G_{q}\right)=d\left(G_{q}\right)=p=q$. Now let $3 \leqslant p \leqslant q-1$. Take the graph G_{q} constructed above, add a new vertex w to it and join it by edges with all vertices $v(i, 1)$ for $2 \leqslant i \leqslant q$ and with all vertices $v(i, 2)$ for $2 \leqslant i \leqslant p-1$. The resulting graph will be denoted by G_{p}. We have $\varepsilon(u, w)=p-2$ and $d_{\mathrm{loc}}\left(G_{p}\right) \leqslant p$ by Theorem 3. If we denote $\widetilde{D}=\{w\} \cup \bigcup_{i=p}^{q} D_{i}$, then $\left\{D_{1}, \ldots, D_{p-1}, \widetilde{D}\right\}$ is a location-domatic partition of G_{p} and thus $d_{\mathrm{loc}}\left(G_{p}\right)=p$. Now let $p=2$. We take again the graph G_{q}. To it we add a new vertex w and join it by edges with the same vertices with which u was joined. The resulting graph will be G_{2}. We have $\varepsilon(u, w)=0$ and thus $d_{\mathrm{loc}}\left(G_{2}\right) \leqslant 2$. If we denote $\widetilde{D}=\{w\} \cup \bigcup_{i=2}^{u} D_{i}$, then $\left\{D_{1}, \tilde{D}\right\}$ is a location-domatic partition of G_{2} and $d_{\mathrm{loc}}\left(G_{2}\right)=2$. Finally let $p=1$. To G_{q} we add two new vertices w_{1}, w_{2} and join them with the same vertices with which u was joined. The resulting graph will be G_{1}. We have $N_{G_{1}}\left(w_{1}\right)=N_{G_{1}}\left(w_{2}\right)=N_{G_{1}}(u)$ and by Theorem 1 then $d_{\mathrm{loc}}(G)=1$. Evidently $d\left(G_{p}\right)=q$ for each $p=1, \ldots, q-1$.

Theorem 6. Let G be a graph with n vertices, let $y=\Phi(x)$ be the inverse function to the function $y=2^{x}+x$. Then

$$
d_{\mathrm{loc}}(G) \leqslant \frac{n}{\Phi(n+1)}
$$

Proof. The function $y=2^{x}+x$ is a monotone increasing function mapping the set R of real numbers bijectively onto itself. Therefore the inverse function $y=\Phi(x)$ to this function exists, it is again a monotone increasing function which maps R onto itself.

Now consider the graph G. For the sake of simplicity we denote $d_{\mathrm{loc}}(G)=d$. Consider a location-domatic partition \mathcal{D} with d classes. As G has n vertices, there exists at least one class $D \in \mathcal{D}$ such that $|D| \leqslant n / d$. The sets $D \cap N_{G}(x)$ for $x \in V(G)-D$ are pairwise distinct non-empty subsets of D; their number is less than or equal to $2^{n / d}-1$ and, as D is a locating-dominating set, so is the number of vertices of $V(G)-D$. Hence $n \leqslant n / d+2^{n / d}-1$, which is $n-1 \leqslant 2^{n / d}+n / d=\Phi^{-1}(n / d)$. As $y=\Phi(x)$ is a monotone increasing function, we have $\Phi(n+1) \leqslant n / d$ and this yields $d \leqslant n / \Phi(n+1)$.

References

[1] E. J. Cockayne, S. T. Hedetniemi: Towards a theory of domination in graphs. Networks 7 (1977), 247-261.
[2] D.F. Rall, P. J.Slater: On location-domination numbers for certain classes of graphs. Congressus Numerantium 45 (1984), 77-106.

Author's address: Bohdan Zelinka, Katedra diskrétní matematiky a statistiky TU Liberec, Hálkova 6, 46117 Liberec 1, Czech Republic, e-mail: bohdan.zelinka@vslib.cz.

