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Abstract. A subset D of the vertex set V(G) of a graph G is called locating-dominating, 
if for each x e V(G) — D there exists a vertex y -> D adjacent to x and for any two distinct 
vertices x\, x2 of V(G) — D the intersections of D with the neighbourhoods of x\ and x2 are 
distinct. The maximum number of classes of a partition of V(G) whose classes are locating-
dominating sets in G is called the location-domatic number of G. Its basic properties are 
studied. 
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In this paper we will introduce the location-domatic number of a graph. All graphs 

considered will be finite undirected graphs without loops and multiple edges. 

The location-domatic number of a graph is a variant of the domatic number, 

introduced by E. J. Cockayne and S. T. Hedetniemi. A dominating set in a graph G 

is a subset D of the vertex set V(G) of G with the property that for each vertex 

x G V(G) — D there exists a vertex y 6 D adjacent to x. A partition of V(G), all 

of whose classes are dominating sets in G, is called a domatic partition of G. The 

maximum number of classes of a domatic partition of G is called the domatic number 

of G and denoted by d(G). 

A special case of a dominating set is a locating-dominating set. It was defined 

by D.F. Rail and P. J. Slater in [2]. Let NG(x) denote the open neighborhood of a 

vertex x in a graph G, i.e. the set of all vertices which are adjacent to x in G. A 

dominating set D in a graph G is called locating-dominating in G, if for any two 

distinct vertices xi, x2 of V(G) - D the intersections D n Na(xi), D n NG(x2) are 

distinct. In [2] also the location-domination number of G is defined as the minimum 

number of vertices of a locating-dominating set in G. 
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Now we can define the location-domatic number of G analogously to the domatic 

number., A partition of V(G), all of whose classes are locating-dominating set in 

G, is called a location-domatic partition of G. The maximum number of classes of 

a location-domatic partition of G is called the location-domatic number of G and is 

denoted by d\oc(G). 

Note that d\oc(G) is well-defined, because the whole set V(G) is a locating-

dominating set in G and therefore there exists at least one location-domatic partition 

of G, namely {V(G)}. 

T h e o r e m 1. Let there exist three pairwise distinct vertices x\, x2, x3 ofG such 

that NG(x\) = NG(x2) = NG(x3). Then 

dioc(G) = 1. 

P r o o f . Suppose that d\oc(G) ^ 2. Then there exist two disjoint locating-

dominating sets D\, D2 in G. At least one of the sets V(G) -DltV(G)- D2 contains 

at least two of the vertices x\, x2, x3. Without loss of generality let V(G) — D\ con

tain xi and x2. As Nc(x\) = Nc(x2), we have also DinNG(xi) = D1r\Nc(x2) and 

Z?i is not locating-dominating, which is a contradiction. This yields the result. D 

Theorem 2. Let there exists two distinct vertices xi, x2, ofG such that Na(x\) = 

Na(x2). Then 

d\oc(G) ^ 2. 

P r o o f . Suppose that dioc(G) ^ 3. Then there exist three pairwise disjoint 

locating-dominating sets D\, D2, D3 in G. At least one of the sets V(G) - Di, 

V(G) — D2, V(G) - D3 contains both the vertices X\, x2. The rest of the proof is 

analogous to the proof of Theorem 1. D 

The symbol A will denote the symmetric difference of sets. Then for any two 

vertices x, y of G the symbol s(x,y) will be defined as the number of elements of 

Nc (X)ANG (y) while e(G) will denote the minimum of e(x, y) over all pairs of distinct 

vertices x, y of G. 

Theorem 3. For every graph G the inequality 

dloc(G) ^ e(G) + 2 

holds. 



P r o o f . Let d = dioc(G) and let {Di,..., Dd) be a location-domatic partition 

of G. Let x, y be vertices for which e(x,y) = e(G) holds. First suppose that x, y 

are in distinct classes of the partition; without loss of generality let x 6 D\, y 6 D2. 

Then for i = 3 , . . . ,d we have Di n Na(x) / f l ; n NG(y)- This is possible only if 

Di contains a vertex of NG(x)ANG(y). As D3,..., Dd ate pairwise disjoint, we have 

d - 2 ^ e(x, y), which implies the assertion. If both x, y axe in the same class of the 

partition, we have even d - 1 ^ e(x, y). D 

T h e o r e m 4. Let a graph G contain two vertices x%, x2 of degree 1 which are 

both adjacent to a vertex y. Then 

du,c(G) = 1. 

P r o o f . Suppose d\oc(G) ^ 2. As G contains vertices of degree 1, according to 

[1] its domatic number is at most 2 and hence also dioc(G) ^ 2. Suppose dioc(G) = 2 

and let {Di,D2} be a location-domatic partition of G. Without loss of generality 

let y e D\. The vertices x\, x2 are adjacent to no vertex of D2 and hence x\ e D2, 

x2 e D2. Obviously D2 = V(G)-Dl and Di r\NG(x\) =DxnNG(x2) = {y}, which 

is a contradiction. Hence dioc(G) = 1. D 

Now we can determine the location-domatic numbers of some well-known types of 

graphs. 

Coro l l a ry 1. For the complete graph Kn we have 

dloc(K2) = 2, 

dioc(jfn) = l torn ^2. 

Coro l l a ry 2. For the complete bipartite graph A'm>n we have 

dioc(A'i,i) = d,oc(A2>2) = 2, 

dioc(Armin) = 1 in the other cases. 

Coro l l a ry 3 . For the circuit Cn we have 

dioc(C3) = 1, 

d i o c ( G n ) = 2 forn>4. 
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P r o o f . Let the vertices of Cnbeu\,..., un and the edges u,u,+i for i = 1 , . . . ,n, 

the subscript i + 1 being taken modulo n. The circuit C3 is the complete graph 

K3 and thus dioc(C3) = 1 by Corollary 1. For C4 we have a location-domatic 

partition {{u\,u2}, {u 3 ,u 4}} and thus dioc(C4) ^ 2. For n ^ 5 w e have a location-

domatic partition {D\,D2}, where D\ (or D2) is the set of all U; with i odd (or 

even, respectively); hence also rfioc(Cn) ^ 2. If n is not divisible by 3 then dio c(Cn) ^ 

d(Cn) = 2 and thus dioc(Cn) = 2. If n is divisible by 3, then d(Cn) = 3 and the unique 

domatic partition with three classes is {D\,D2,D3}, where Dt for t € {1,2,3} is the 

set of all uj with j = i (mod 3). Each vertex is adjacent to no vertex of its own 

class and to one vertex from each of the other classes. Thus u\ e D\ C V(Cn) - D2, 

u2 e D2, u3 e D3 C V(Cn) - D2 and D2 n Afc,j«i) = D2n iVc„(«2) = {"2}, which 

implies that {£>i, D2, D3} is not location-domatic partition. Therefore dioc(C„) = 2 

in this case, too. . • 

By Pn we denote the path of length n, i.e. with n edges and n + 1 vertices. 

Coro l l a ry 4. For the path P n we have 

d\oc(P2) = 1, 

dloc(Pn) = 2 for n ^ 2. 

T h e o r e m 5. Let p, q be integers, q ^ 2, 1 ^ p ^ q. Then there exists a graph G 

withd\oc(G) =p, d(G) =q. 

P r o o f . We start with the case p = q. Let r be an integer, r > 4q. Let D\,..., Dq 

be pairwise disjoint sets of vertices, let \D\\ = r + 1, |D; | = r for i = 2,... ,q. Let 

the vertices of D\ be u, »(1 ,1) , . . . , v ( l , r ) , let the vertices of Dt for 2 ^ i < g 

be D(J, 1 ) , . . . , « ( i , r ) . Consider an auxiliary graph # ; it is the complete graph whose 

vertex set is {D\,... ,Dq}. If q is even, then i / may be decomposed into q—1 pairwise 

edge-disjoint linear factors F j , . . . , F , _ t . If g is odd, then / / may be decomposed into 

g pairwise edge-disjoint graphs F\,... ,Fq, each of which is a linear factor of a graph 

obtained from H by deleting one vertex. In any of these cases consider two sets 

Di, Dj. Let h be the number such that the edge joining Dt and Dj in H belongs 

to E„. Each vertex v(i, k) for A: = 1, . . . ,q will be joined by edges with the vertices 

v(j, k-h),..., v(j, k + h), the numbers in brackets being taken modulo q. Moreover, 

the vertex u E f l i will be joined by edges with all vertices u( t , l ) for i = 2 , . . . ,q. 

The resulting graph will be Gq. From the construction it is clear that {D\,... ,Dq} 

is a location-domatic partition of Gq and thus d\oc(Gq) ^ q. On the other hand, the 

vertex u has degree q-1. Hence the minimum degree 5(Gq) < q—1 and by [1] we have 
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dioc(G,) ^ d(Gq) s: S(Gq) +1 < q, which implies _ioc(G,) = d(Gq) =p = q. Now let 

3 ^ p ^ q — 1. Take the graph Gq constructed above, add a new vertex w to it and 

join it by edges with all vertices v(i, 1) for 2 ^ i ^ q and with all vertices v(i,2) for 

2 < i < p— 1. The resulting graph will be denoted by Gp. We have _(_,_) = p - 2 and 

rfloc(Gp) < p by Theorem 3. If we denote D = {_}U (J A , then {Du... ,D p _ i ,_ )} 
i= P 

is a location-domatic partition of Gp and thus _ioc(G,,) = p. Now let p = 2. We 

take again the graph G,. To it we add a new vertex w and join it by edges with the 

same vertices with which u was joined. The resulting graph will be G2. We have 

e(u, w) = 0 and thus _ioc(G2) ^ 2. If we denote D = {w} U [J D{, then {£>!,_.} is 

! = 2 
a location-domatic partition of G2 and _ioc(G2) = 2. Finally let p = 1. To G, we 

add two new vertices wi, w2 and join them with the same vertices with which u was 

joined. The resulting graph will be G\. We have Nd(wi) = NCl(w2) = iVGl(_) and 

by Theorem 1 then _ioc(G) = 1. Evidently d(Gp) = q for each p = 1 , . . . ,q - X. D 

T h e o r e m 6. Let G be a graph with n vertices, let y = _>(_) be the inverse 

function to the function y = 2X + x. Then 

dioc(G) $ 
Ф(n + 1)' 

P r o o f . The function y = 2X + _ is a monotone increasing function mapping the 

set i? of real numbers bijectively onto itself. Therefore the inverse function y = $(_) 

to this function exists, it is again a monotone increasing function which maps R onto 

itself. 

Now consider the graph G. For the sake of simplicity we denote _i o c (G) = d. 

Consider a location-domatic partition V with _ classes. As G has n vertices, there 

exists at least one class D € V such that |_.| ^ n/d. The sets £) n Nc(x) for 

_ G V(G) — Z) are pairwise distinct non-empty subsets of D; their number is less than 

or equal to 2 n / d - l and, as D is a locating-dominating set, so is the number of vertices 

of V(G) - D. Hence n ^ n/d + 2"/d - 1, which is n - 1 <: 2"/ ' ' + n/d = i~l(n/d). 

As y = _>(_) is a monotone increasing function, we have <_ (;i + 1) ^ n /_ and this 

yields _ ^ n / . ( n + l ) . D 
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