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M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 22 1972 Č Í S L O 2 

ON A PAIR OF MANIFOLDS WITH CONNECTION 

ANTON DEKRET, Zilina 

In paper [5] the manifold with connection is considered as a quintuple 
£f(B, E, 0, a, C), where E(B, F, G, P) is a fibre bundle (F = G\E, dim F > 
> dim B, E is a closed subgroup of G) associated to the principle bundle 
P(B, G), 0 = PP-1 is a groupoid associated to P, C is a connection of order 1 
on 0, a is a global section of E with the following property: the development 
C x(x)(a) of a by means of C is a regular jet for any x e B. In the present paper 
we consider the manifold with connection as it is considered in [5]. 

On the torsion form of a pair of manifolds with connection 

Let the £f(B,E, 0, a, C) be a manifold with connection. K o l a f using 
Svec's definition in [6] defines the torsion form of the manifold £P as fosllows: 
Let ju0 : G -> G\E be the canonical projection. Let D be the curvature form 
of the connection C. Let R be the reduction of the principal bundle P de
termined by the section a. Then 

U*JU0*(Q,), u e n~x(x) n R 

is the torsion form of £P at the point xeB. We consider the torsion form like 
the above one. 

1. In this paper the index i will have the values 1,2. Let V, T\, Ti be vector 
spaces (dim Tt = vi} dim V = m,m < min (v±, v2)), y : T -> T± © T% be a iso
morphism, pr\ :T\ © T2->Ti is the natural homomorphism. Let f : V ->T 
be a monomorphism with the following property: pr\y^ : V->Tj are mono-
morphisms. 

Denote Z = im £, Z\ = im (pny^); dim z = dim Z% = m. The restriction 
of the homomorphism pr\y to Z determines the isomorphism r\% : Z -> Z% 
and thus rjig : V-> Zi is an isomorphism. Let w be a vector 2-form on V 
with values in T determined by a tensor t eT (x)2 A V*. Then co* = pnyoo 
is a vector 2-form on V with values in T%. Let e :T-> T/Z, E% :Tt-> Tt/Zt be na
tural homomorphisms. The form scot, resp. etcoi, will be called ^-reduction of 
o), or of co/, respectively. Denote S = y~x(Z\ © .Z2) c: T. Obviously Z a S. Let 
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ft : T -> TjS be the natural homomorphism. The vector 2-form /LICO on V with 
values in TjS will bo called £-semi reduction of co. Let S2 = y 1(0 © Z2) and 
let //2 bo the natural homomorphism T -> T/$2 • The form jii2C0 will be called 
the second ^-semireduction of co. Similarly [1200 is the first f-semireduction of 
the form co. 

Let the ^-reduction of co, resp. of coi, vanish. Then the form co, resp. cot, 
is a 2-form with values in Z, or in Z%, respectively, and thus the forms f 1co, 
(rjiZ^coi are 2-forms on V with values in V. 

Definition 1. TVe shall speak that the forms co\, C02 form a ^-reduction pair 
(shortly an r-pair) if their ^-reductions vanish and if 

(1) (^if)_1coi = {rj2S)"1C02 . 

The following lemmas are obvious. 

Lemma 1. The form co vanishes if and only if the forms co\, co2 vanish. 

Lemma 2. The g-semireduction of co vanishes if and only if the ^-reductions of 
the forms co\ and co2 vanish. 

Lemma 3. The second ^-reduction of the form co vanishes if and only if the 
forms coi and the ^-reduction of co2vanish. 

A similar lemma can be expressed about the first ^-reduction of co. 

Lemma 4. The ^-reduction of the form co vanishes if and only if the forms w\ 
and co2 form a ^-reduction pair. 

P r o o f of L e m m a 4. Let the f-reduction of co vanish. Then it is obvious 
that ^-reductions of the forms coi and cD2 vanish and f 1co = (rjt£) 1cot. Con
versely lot the forms coi and C02 form a f-reduction pair. Let u\ e V, U2 E V. As 
the forms £icoi, 82C02 vanish, coi(u\, u2) EZ% and thus there are s\ e S\, s2 E S2 
unambiguously, so that co(u\, u2) = s\ ^-s2. Denote coi(u\,2i2) p^ty(s\ -1-
+ s2) -zieZi, ?fi

1(zi) = yt eZ. When we use (1), wo get 

Oftf) 1co\(ul, 112) = (rj2i)~
1co2(u^, u2) 

and thus Hi — y2 — y. As pny(y) = zi thus y = S] -f- 52 and thus sco(u\, 112) 
= 0, i. o. the I -reduction of the form co vanishes. 

N o t e 1. Let the f-sernireduction of 00 vanish. The form co is a 2-form with 
values in S = y 1(Z^ -f- Z2) and its reduction can be called the jumbled re
duction of the forms co\ and co2. The jumbled reduction of co\, C02 is a 2-form 
with values in S\Z and it vanishes if and only if co\ and co2 form a ^-reduction 
pair. 

2. In this paper we shall use the standard notation of the theory of jets 
(see [2]). Our considerations are in the category C°°. Let M, V\, V2 be differen-
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tiable manifolds; dim M = m, dim V% = v\. Denote pi : V\ X V2 -> Vf the 
natural projection. The following assertions are obvious: 

a) X e J 1(31, V! x V2) => piXeJr
x(M, Vi). 

b) Ni e J[(M, Vi), X2eJr
x(M, V2) => there is a unique jet XeJr

x(M, Vx X 
X V2) so that piX — Xi . X is regular if some jet of the jets X\, X2 is regular. 

c) XeJx(M, Vi X V2) is semiholonomic, resp. holonomic if and only if 
piX are semiholonomic, resp. holonomic. 

Definition 2. Let XLeJ1
x(M, Vi), X2eJr

x(M, V2). We shall speak that jets 
X\, X2 are holonomicly connected if there is a semiholonomic r-frame h at x e M 
so that jets XJi and Xrfi are holonomic. 

Let N, M be differentiable manifolds. Let X eJr(M, N). The contact ele
ment hX at the point /3°rX G N determined by X is a set of jets XhLm where h 
is a semiholonomic frame at ocK e M and Lm is the group of invertible r-jets 
on Rm from 0 into O. We shall speak that hX is holonomic if there is in XhI7m 

a holonomic jet. 

Lemma 5. Let XeJx(M, V\ X V2). Then hX is holonomic if and only if 
piX and pzX are holonomicly connected. 

Proof . Let hX be holonomic. Then there is a frame h at x e M so tha t Xh 
is a holonomic jet. Hence pt(Xh) is holonomic. But pt(Xh) — (ptX)h and 
thus p±X, pzX are holonomicly connected. Conversely let p±X and p%X be 
holonomicl3r connected. Then there is a semiholonomic r-frame h so that 
(piX)h are holonomic. I t results from the assertion c, tha t Xh is a holonomic 
jet and thus JeX is holonomic. 

Lemma 6. Let N, M, V be differentiable manifolds; dim N — n, dim ill = 
m < dim V = v. Let XeJl(N, M), Ye J^iX(M, V) and let Y be regular 

and holonomic. Then YX is holonomic if and only if X is a holonomic jet. 
Proof . Let h± be a holonomic 2-frame at a G N, h2 bo a holonomic 2-frame 

at /3oN and h% be a holonomic 2-frame at /^Y. Let Y have in the frames 7̂2 > 
A3 the co-ordinates: 

Y VY / t2 -(i/p,t4J), P= 1,2, ...,v; p.j= 1,2, ...,m. 
Let X have in the frames h\, ho the co-ordinates: 

X _ h^Xhi = (ak
u, a

k
ut), h = 1, 2, . . ., m; u, t = 1, 2, . . ., n. 

Then YX has the co-ordinates 

YX == {k?Yh2)(k?Xh!) = ( t £ , < ( ) , 

where 

< - vK, < t = yP,Kal + »*< t • 
I t is obvious that if X is holonomic then YX is holonomic. Let YX be holo
nomic. Then O < , - vl u =-- v^ t]. 
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As \f{Vi n = O we have 

(2) 0 = <fl = i/H.fl-
As Y is regular we can suppose without loss of generality that det (yl) ^- 0, 
where /?, k = 1, 2, . . . , m. Thus we get from (2) for any stable index [u, t] 
and for /? = 1, 2, . . ., m a homogeneous system of equations with the un
knowns a*ut], k = 1, 2, . . ., m, the determinant of which does not vanish. 
Thus afu>t] = O. Q. E. D. 

Lemma 7. Let N, M, V be differentiate manifolds, dim N — dim M. Let 
X eJr

a(N, M) be a regular holonomic r-jet. Let YeJr^r(M9 V). Then YX is 
holonomic if and only if Y is holonomic. 

Proof . I t is obvious that if Y is holonomic, YX is holonomic, too. Let 
YX be holonomic. As X is regular and dim N = dim i f l i s invertible and 
thus X~l is holonomic. Hence (YX)X-1 = Y is holonomic. 

Lemma 8. Let X e J2(M, Vi X V2), dim M < dim V2. Let p2X be holonomic 
and regular. Then kX is holonomic if and only if piX is holonomic. 

Proof . If piX is also holonomic, then X is holonomic and thus kX is holo
nomic. Let kX be holonomic. Then there is a semiholonomic 2-frame h at 
aX so that Xh is holonomic and thus ph(Xh) = (ptX)h is holonomic. As p2X 
is holonomic, then from Lemma 6 we get: h is holonomic. Then from Lemma 7 
we get: piX is holonomic. 

Let us suppose dim M = m < min (dim Vi = v±, dim V2 = v2). Let X e 
eJl(M, Vi x V2) be a regular semiholonomic jet with this characteristic: 
PiX, p2X are regular, too. Denote 

T = T?t(Vx X V2), Tt = T^Vt) = Pu,T, V = TX{M). 

We can identify T = T± 0 T2. Let h\ be a holonomic 2-frame at x e M and 
h2 be a holonomic 2-frame at fl\X e Vi X V2- Let (xy,xyj), y = 1, 2, . . ., 
tfi + 1, . . . . fli + #2; PJ j = 1, 2, . . . , m be co-ordinates of the jet X in the 
frames hi and h2. Then (xv,xvj) a = 1,2, . . ., 0i are co-ordinates of the 
jet ^ i K in the frames h±,h2 and (a^1-H3, #£+/), ft = 1, 2, ..., v2, are co
ordinates of p2X in the frames /̂ i and p2h2. Difference tensors (the notion 
of the difference tensor of a semiholonomic 2-jet was introduced by K o l a f 
in [5]) determined by the jets X, ptX have the components A(X) eT ® 2 /\ 
A V*:xjfPtj]9y=l929 . . . , 0 i , 0 i + l , . . . , 0 I + 0 2 , Z 1 ( ^ X ) G T I ® 2 A V*:x^tj]J 

a = 1 , 2 , . . . , 0 i A(PzX)eT2®* A V*:x%+P, 0 = 1, 2, . . ., 02; p, j = 1, 
2, . . ., m. From this we obviously get 

(3) A(ptX)=~pHA(X). 

Vector 2-forms determined by A(X), A(ptX) will be called difference forms 
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of jets X, piX and denoted a>, co$. From (3) we get: co* = dpico. When we 
denote £ = ds ~ s%, where s(y) is a local mapping such that P\X =j\s(y), 
we can with regard to the regularity of jets X, piX, P2X do all considerations 
of paragraph 1. Now the subspaces Z, Z\ are contact subspaces determined 
by the jets $\X, ^\p%X. Instead of the ^-reduction and the f-semireduction 
we shall speak of the reduction and the semireduction of the difference form. 

K o l a f proved in [5]: The reduction of the difference form of the semiholo-
nomic 2-jet X vanishes if and only if the contact element kX is holonomic. 
Hence we get from Lemma 2. 

Lemma 9. The semireduction of the difference form 00 of the jet X e -7|(il/, 
Vi X V2) vanishes if and only if contact elements kp\X, kp2X are holonomic. 

From Lemma 3 we get. 

Lemma 10. The second semireduction of the difference form co vanishes if 
and only if p\x is holonomic and if the contact element kp^X is holonomic. 

From Lemma 5 we get. 

Lemma 11. The reduction of the difference form co vanishes if and only if the 
jets piX, P2X are holonomicly connected. 

Corollary of Lemmas 4 and 11. The difference forms coi, C02 of the jets 
p±X, P2X form an r-pair if and only if the jets piX, P2X are holonomicly 
connected. 

Now Lemma 8 can be expressed as follows: 

Lemma 8'. Let the difference form co2 of the jet P2X vanish. Then the reduction 
of the difference form a> of the jet X e J\(M, V\ X V2) vanishes if and only if 
the difference form co\ vanishes. 

3. Application for the torsion form. We first recall some notions of the 
theory of spaces with connection; see [2] and [5]. Let P(B) G, n) be a prin
cipal fibre bundle. The Lie-groupoid associated to the principle fibre bundle P 
is a set of equivalence classes 0 = P x P\G with the projections a and b, 
which are defined as follows: 0 = {(ui, U2)}, a 0 = 71(112), b0 = nu\. Further 
0i • 02 {(^ , U2)} • {(U2, U3)} = {(u±, U3)} and lx = {(u, u)}, (where nu — x) 
is the unit of 0 over x e B. K o l a f in [4] uses the modified form of Ehresmann's 
definition of the connection on 0 . An element of connection of the order r 
on 0 at x G B is a jet X e Jr

x(a-\x), b, B) sach tha t (PrX = lx. Denote Qr
x(0) 

the set of elements of connection of the order r on 0 at x e B. The connection 
of the order r on 0 is a section Gr : B ->Qr(0) = ( J Qr

x(<P). G'r is the first 
xeB 

prolongation of the connection Gr. If G±(x) = jx
xQ(t), then 

(4) C[(x)=3lCi(t).Q{t), 
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where C\(t) . g(t) is the image of the jet C\(t) in the mapping O(l) e a 1(x) cz 0. 
Let E(B, F, G, P) be a fibre bundle associated to the principal fibre bundle 

P(B, G,7i) . 0 is a groupoid of operators on E: 

0 = (Ul,u2)e&, f = (u2,v)eEn(uj => &{f) = («i, v) eE^uj 

wliere v eF. Let a be a section on 2.7. C~1(x)(a) is the development of the section 
a by means of the element Cr(x). Further we shall use: 

(5) CftxXo) ^Jl{S-i{t)[a{t)]) 
where 

Ci{x) jlQ{t). 

(G) C[-i{x){o) = Ci\x){j\{Ci\t){a)])- see [4] or [5]. 

Let 1P(B, G\, 7t\), 2P(B,G2,7i2) be principle fibre bundles. Denote Px 

= XPXX2PX, where *Pa = n^(x) . P = \J Px is the fibre product of i p 
xeli 

and 2 P . The projection TT on P is defined by n(Px) = x . P has the structure 
of the principle fibre bundle P(B,G\ X G2,TZ), where the group G\ x G2 

acts on P on the right according to the rule 

(PX)G\ x G2-(
1Px)Gl x (2PX)G2. 

Let l0 be a Lie groupoid associated to *P, 0 be a Lie groupoid associated to P. 
As *0 = *P x tP/Gt and 0 = P x P\G\ x G2, then any couple ( l 0, 20) 
where *@ e l0 and a\(lG) = a2(

20), b\(l6) = b2(
29) (at,bi are projections 

on l0) determines a unique element 0 e 0 and conversely. Then 0 is such 
a set of couples (-0, 2 0) , *0 e *<£, that a^W) = a2(

20), b\(W) - b2(
20). Denote 

p. : 0^i0 the map defined by ^ i ( 1 0, 20) = i0. Let *C be the connection 
of order 1 on j0. I t is easy to see that there is a unique connection C\ of order 1 
on 0 such tha t ptC\ = iC1. Let lE(B, Fi,Gt,

 lP) be a fibre bundle associated 
with lP. Denote Ex = ^Ex X 2EX. The fibre product E = \J Ex can be iden-

.reH 

titled with the fibre bundle E(B,F\ x F2,G\ x G2,P) associated to P on 
which the group G\ x G2 acts on the left according to the rule 

G\ x G2(F\ x F2) = G,(F\) x G2(F2). 

Denote pt : E ~> lE maps determined by natural projections Ex -> lEx for 
any x e B. Let la be a global section on lE. Then there is a unique section 
on E determined by 

a(x) = [1a(x),2a(x)]eEx. 

Definition 3. A pair of manifolds with connection is a couple of manifolds 

Sfx(B, iK5 10, i<r, W\), $T2(B, 2E, 20,2a, 2C\). 
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I t is clear from the foregoing consideration that there is a unique manifold 
with the connection ^(B,E,<X>, a,C\), which is determined by the couple 
of manifolds with connection. This manifold we shall call the representative 
of the pair. 

The following relations result from (4), (5), (6) 

ptG[ \x)(a) = IHG\ \x)(fi(a)). 

Then 

(7) Vi[C'1\x)(a)-\ = ^C'1\x)(ia). 

Let xpi be the torsion form of S?i and ip be the torsion form of ^ , which we 
shall call the torsion form of a pair of manifolds with connection. K o l a r 
showed in [5] that the torsion form of a manifold with connection was able 
to be identified at xeB with — AC[ \x)(a). The following relation 

VІ*У> = Щ 

results from (3) and (7). 

Nov, Lemmas 9, 10, 11 imply 

Theorem 1. The semireduction of the torsion form of a pair of manifolds with 
connection vanishes if and only if ipi and xp^ vanish; i. e. if and only if the contact 
elements kxC\ \x)x(a), 2C[ \x)(2a) are holonomic. 

Theorem 2. The second semir eduction of the torsion form of a pair of manifolds 

with connection vanishes if and only iftpi vanishes and the reduction of ip% vanishes 

i.e. if and only if the jet ] C t \x)(ia) is holonomic and the contact element k2C'{\x) 

(2a) is holonomic. 

Theorem 3. The reduction of ip vanishes if and only if ipi and \pi determine 
r-pair; i. e. if and only if jets 1C[ 1(x)(a±), 2C[~1(x)(a2) a r e holonomicly connected. 

Wo are going to determine the co-ordinate condition for the vanishing of 
the reduction of the torsion form of the pair of manifolds with connection. 
Let us recall some notations: 

Ft = GilH(, Hi = Te(Hi), %i, ie2, . . ., «efl 

is a basis in G%, in or B, resp. is the reduction of the principle fibre bundle 
iP, or P, respectively, which is determined by the section ia, or a, resp. Let 
i(p, or *Q resp. be the restrinction of the fundamental form of the connection 
ir, which represents the connection lC on lP (see [4]), or of the curvature 
form of this connection resp., with regard to a local section {v : U -^iB, 
U a B. 
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i<p = kos ® % + *coA ® Hi, 5 = 1 , 2 , . . . , m = dim F* 

A = W| + 1, . . . , ^ = dim 6?/, 

where ie^eHi. We can suppose that ico1; *co2; . . . , *eom, m = dim 5 , are in
dependent on the section h. Then 

%« = iafco*, a = m + 1, . . ., nt; h = 1, 2, . . ., m 
and 

2co* = bfW, det \b)\ * 0, j , & = 1, . . ., m. 

The form *.Q can be written 

*Q = tQ.8 ® les + *0* ® <6A, 

s = 1, 2, . . . , %i, A = nt + 1, . ..,rt. 

Let ^ : P ->fP be the natural projection. Let e be a scalar form and / be 
a function on lF. We will denote 

PU = £~> fPi = / • 

<p -= i^fi^i + 2<pd/p2 is a fundamental form of the connection _T on P restricted 
to the section v : U -> i? (r(#) = [^(x), 2r(#)]) and thus 

i&* = <â ci>* 

2c5* = 6 jW, det |5j[| * 0. 

Likewise Q = 1 0 d^?i + 2£l dp2 is a restriction of the curvature form of the 
connection r on P with regard to the section v. The reduction of the torsion 
form of the manifold SP vanishes if and only if 

*£« - * a ^ * , 

*& = 1)^1, see [5]; 

and thus the reduction of the torsion form of the pair of manifolds with connec
tion vanishes if and only if 

iQct = ia%Q*, 

2 0* = 6*iQ/. 

Point similarity and point equivalence of manifolds of the pair of manifolds 
with connection 

4. Let F = GjH be a homogeneous space in which the Lie group G acts 
on the left; c is the class in F determined by H. Let B be a differentiable 
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manifold. Let U be an open set in B,xe U,feF. Let U ->f be a constant 
mapping from B in F. The r-jet of this mapping will be denoted / ^ . X e 
eJx(B,G), we shall denote Xf= X(fx

r)), where the symbol on the right-
hand side denotes the r-th anholonomic prolongation of the operation of the 
group G on F. 

Definition 4. Let -_F = G/Hi, 2F = G\H2 be homogeneous spaces. We shall 
speak that the jets X eJx{B, lF), Y eJr

x(B, 2F) are G-adjoint if there are a jet 
ZeJr

x(B, G) and the points fi e *F, / 2 e 2F so that X = Zfl, Y = Zu. 

Let Sf\(B, 1E, 0, icr, C), ^2(B, 2E, 0,2a, G) be a pair of manifolds with 
connection. Now 1E9

 2E are fibre bundles associated to P(B, G). Let lF = 
= GjHi be their type fibres. We shall denote p . g the operation of the group G 
on P; lR is the reduction of the principal fibre bundle P determined by the 
section la\ lRx is the fibre of lR over x e B. Let r\ e 1RX, r2 e

 2RX. I t is obvious 
that lRx = rt . Hi. The equality n . g = r2 determines a map x : lRx X 
X2RX->G. Let re1Rx, re2Rx, then r.h\ = r\, r2 . h2 = f(ht e Ht) and 
thus r . h\gh2 = r. Hence H\gH2 = im x. H\gH2 is a class of the decomposi
tion of the group G by the double module (Hi, H2), i. e. H^gH2 e Gj(H\, H2)\ 
see [4]. We shall denote D == G(H1: H2). Thus we get the map q : B-> D; 
q(x) = H\gH2. 

Definition 5. TVe shall say that manifolds 5f\, £f2 of a pair of manifolds with 
connection which have a common principal fibre bundle, are D-similar at x e B 
when there is a neighbourhood U of x e B and deD so that q(U) = d. 

Let r(p) be the representative of the connection G at p eP, F 1(p)(ia) 
be the development of the section la by means of F(p)\ see [4]. 

Theorem 4. The manifolds SP\, SP2 of a pair of manifolds with connection, 
which have a common principal fibre bundle P, are D-similar at x e B if and 
only if the jets r~1(p)(1a), r~x(p)(2a) are G-adjoint (n(p) = x). 

Proof . Let p ePx. Let r(p) = j^Q(t), where Q(t) is a local section on (B, 
n,P) defined on a neighbourhood U of x e B. Let £^\, <9?

2 be Z)-similar. Let 
q(U) = deD. Let g0 e G be a representative of d. Then there is a local section 
jn(t) = rt of (1i2, n, B) defined on U, so that rt . g0 is a local section on (2R, n, 
B). Now ]o*(l) = (rt, c\), 2a(t) = (rt . g0, c2), where ct e*F is the element 
determined by the class Hi in G/Hi. Let us denote gt e G the elements de
termined by Q(t) . gt = rt. We get the mapping d : U -> G, d(t) = gt. Now 

r-Hp)M =Jlo-i(t)(ia(t)) =j1
x[Q-i(t)(rt,c1)] = 

= ji[r1(0te(0 • 9t>ci)l = j j [ r 1 (0 te(0 , gt(ci))] =jlMa)]. 

r~Hp)(2a) = jl[o'Ht)(2a(t))] = Jl[Q-Ht)(rt . g0, c2)] = 
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= 3l[Q~-lt)(n, go(c2))] = j][gtgo(c-i)] 

<xnd thus r~"(p)(la) and r~l(p)(2a) are ©-adjoint. Conversely let F x(p)(la) 
and r 1(p)(2a) are ©-adjoint; n(p) x. Then 

r-Hp)(io)-Jl[gt(f)], 

where gt is a mapping d : U-> ©, d(t) — gt and f G -#. Let /{ sx(ci) sf E 
E ©. Let 2̂ = «i . g0. From the definition of the development of the section 
b}^ means of F(p) we get 

(8) Q-HWMt)) = ^ i ( c i ) - g-MOteW, ^ i (c i ) ) = 

= Q Ht)(Q(t) -gtSi,Ci), 

m Q Ht)(*a(t)) = gts2(c2) = ^ ( O t e C ) , ^2(c2)) -

= e^MOteW -gtsigo,c2). 

From (8) and (9) we get: O(l) . g^i G iI^, g(t) . gtsig0 e 2Rt and thus r/0 G g(l) e I) 
for any teU,i. e. the map q(l) is constant on U. The manifolds Sf\, Sf2 are 
Z)-similar at x e I?. Q. E. D. 

5. Let *XeJf(B,F). We shall say that -JT', 2K are ©-congruent if there 
is g0 e G, so that 2X = g0

1X. 

Let us consider a special pair of manifolds with connection £?i(B, E, P, 
va,C), 2?2(B,E,P,2(j,C) .CW(x) denotes the r-th prolongation of C at 
x ~ B, F(r)(p) (where n(p) = x) denotes the representative of Cf)(x) at p e Px, 
U(r) J(p)(a) denotes the (r + l)-th development of the section a into F and 
thus F(r)-Hp)(a)eJr

x
+1(B,F). I t is obvious that if r^-^p^a), F^-Hp)(2a) 

are ©-congruent, r(<r)-1(p. g)(la), H* x(p. g)(2a) are ©-congruent, too. 

Definition 6. We shall say that Sfi, Sf2 are G-equivalent of the order (r -f- 1) 
at xeB if the jets r<n-i(p)(io), I^'1(p)(2a) are G-congruent (jz(p) — x). 

N o t e . Let -9^, Sf2 be ©-equivalent of the order 2 at x e B. Then: F' 1(p)(1a) 
is holonomic o F' 1(p)(2a) is holonomic. Then: ipi = 0 o ip2 — 0. We obtain: 
If £f\, £f2 are ©-equivalent of the order 2 at x e B, the first semireduction, 
the 2-nd semireduction, respectively, of the torsion form of the pair £f\, £f2 

vanishes if and only if the torsion form vanishes. 

I t is easy to prove the following characteristic of the ©-equivalence of the 
order 1 of the manifolds Sfi, ^2 : &*i, Sf2 are ©-equivalent of the order 1 
at x e B if and only if there are a jet Y e J\(B, G), g0 E © and p e Px, so that 
F(p) . YeJ)t}R,7t,B) and r(p) . g0Y G Jl(2R,n, B), where the symbols 
F(p) . Y and F(p) . g0Y indicate the first prolongation of the operation of 
the group © on P. 
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