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Mat. Čas. 25, 1975, No 3, 265-269 

PROJECTIVE TENSOR PRODUCT OF ^-VALUED MEASURES 

RICHARD BAGBY-CHARLES SWARTZ 

I n [2], M. D u c h o i i considers the projective tensor product of two vector-
valued measures. That is, if ii\J/ -> X and v\Jf -> Y are countably additive 
set functions with values in the Hausdorff locally convex topological vector 
spaces X and Y, then the product measure /i X v i s denned on a measurable 
rectangle A X B by ju x v (A x B) — JLL(A) ® v(B), where x (x) y denotes 
the tensor product of x and y. If s/ is the algebra of sets generated by the 
measurable rectangles A X B where A e Ji and B e Jr, then ju X v has 
a unique finitely additive extension to a mapping from s/ into the tensor 
product X (x) Y. If 2 is the o*-algebra generated by stf', then the locally convex 
space X is an admissible factor if for any locally convex space Y and any 
pair of vector measures JU \Jl -> X and v \ Jr -> Y, JLI X v is countably additive 
on s/ with respect to the projective topology (rc-topology) on X §>nY ([7] § 43) 
and has a (necessarily unique) countably additive extension from 2 m t o 
X §) nY ([2]). D u c h o n notes ([2], [4]) that any nuclear space is an admissible 
factor. 

I n this note we present measures /z: P(N) -> Z-9 (1 < p < oo) and v\ 
P(N) -> Co such that the product fi x v is not countably additive on stf\ 
(Here P(N) denotes the power set of the natural numbers N.) Thus no P 
space (1 < p < oo) is an admissible factor; in particular, I1 is not an admissible 
factor. The example showing t h a t I1 is not an admissible factor reveals an 
error in the proof of an assertion in [2] (see also [3]) that I1 is an admissible 
factor. For another example constructed using the Dvoretsky—Rogers Theorem 
see [8]; see also remark 5 below. We also give necessary and sufficient conditions 
in order that a fixed ^-valued measure /u and any Co valued vector measure v 
be such that [i x v has countably additive extension from 2 m t o I1 ® nCo. 

A vector measure yi\Jl->X(J/ a o*-algebra) admits products with respect 
to Y if for every vector measure v\Jf -> Y(Jr a c-algebra) the product /u X v 
has a countably additive extension from 2> the c/-algebra generated by measur
able rectangles, into X c§) n Y. Thus X is an admissible factor if every X-valued 
vector measure admits products with respect to every locally convex space Y. 

I n Theorem 5 we present a necessary and sufficient condition for a fixed 
/--valued measure to admit products with respect to Cn. 
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In Lemma 1 and Theorem 2 below, sJ will denote the algebra of subsets 
of N X N generated by the rectangles A X B, A c N, B c N. 

Lemma 1. Let {xn}n=1 (with xn = {xnm}Z=i) oe unconditionally convergent 
in P (1 < p < oo) and {sn}n=i G co- Suppose the vector measure JU : P(N) -> l* 
is defined by /LI(A) = ^ xn and v: P(N)->Co is defined by v(A)= ]T snen, where en 

neA neA 

is the sequence whose only non-zero entry is a 1 in the n-th position. If ja X v 
is countably additive from sf into P ex) nCo, then for each {ocn}n-i in lv' (1/J> + 
+ VP' = l ) we have 2 \ocnxmnSn\ < oo. 

msn 

Proof . If fi X v is countably additive on si, then ^ JU X v(m, n) is un-
m,n 

conditionally convergent in l? <g) nCo, and thus ^ \ < oc, ju X v(m, n) > | < oo 
m,n 

for each oc in the dual of l? ® nCo. 
00 

Regarding en e I1 = c%, we may interpret oc = 2 an^n as an element 

00 

of (lv 0 nc0)* ([7], 43.4). Then < a, /u X v(m, n) > = 2 onxmidinsn = ocnxmnsn, 
t=i 

and the lemma is proved. 
For our example, we first construct an example of a series in Z-9 (1 <p< oo) 

which is unconditionally convergent but not absolutely convergent. 

Define a sequence of matrices {A;}^0 by Ao = [1] and Ay+i = J j \ . 
l—Aj Aj] 

Obviously A; is a 21 by 2J matrix; a simple inductive argument shows that 
distinct rows of Aj are orthogonal for each fixed j . For the inductive step, 
note that the inner product of two rows of Aj has the form ^ a . b -\- a . b, 
where a and b are rows of A^_i. 

Choose t satisfying 

(1) 2-1-1/* < j < m m (2-i , 2 ^ - I / P ) 

and let A be the infinite matrix 

A0 0 0 0 . . . 
0 £Ai 0 0 . . . 
0 0 PA2 0 ... 

Let xn = {xnjc}™=1 be the n-ih row of A. We show that 2 xn has the desired 
w=i 

properties. 

Let Ij = {21, 21 -f 1, ..., 2^+i — 1}. For each n there is a unique j such tha t 
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n elj; we see that xnk = ±tf for k e Ij and xnk = 0 for k $ Ij. Thus \\xn\ \v

p 

= 2H& for n e Ij so that 

2 ll*»l \P = 2 2 I l*»l \v = 2 2> 2 > W = oo by (1). 
n=l j=0 npIj j=0 

Since the rows of each Aj are orthogonal we see 

(2) 2 iCnfc-Cmfc = 
fc=l l 

О, п -^ т 
2т, п = те1] 

Let {ew}n=i b e a sequence in {0, 1} with at most finitely many non-zero 
00 

terms. Define y = {yk}k^i a s the finite sum y = 2 snxn • For & G IJ the sum 
w=i 

for yk reduces to ]? £^n&. 
nelj 

Note that ?/ represents an arbitrary finite partial sum of an arbitrary 
oo 

rearrangement of 2 xn or the difference of two such partial sums. 
n=\ 

First we consider the case 1 < p < 2. Let J be the first integer j for which 
there is an n e Ij with sn •=£• 0. We have 

(3) I \y\ IJ = | \y*\v = 2 2 \y*\* < | w1-*'* ( 2 l^l2)2"2 

fc-=l j=JkeIj j=J kelj 

by Holder's inequality. Since 

2 M 2 = 2 ( 2 *nXnk? = 2 2 2 *menXm*Xn* = 2 £* 2 ' **' < 2> • 2> *2> 
fcelj fcelj neli fcelj melj nelj nelj 

by (2), 
we have from (3) 

00 00 

(4) I \y\ \p < ^ 2^1-2>/2) . 2P* ^ = ^ 2^1+?/2> #>'. 
i = j i = j 

B y (1), ̂  2id+»/2) jpj < oo ; t h u s (4) 
i=o 

CO 

implies ^ #n *s unconditionally Cauchy in F 
n=l 

and 11 2 **\ IJ < 2 2^1+J"2> ř^ for 1 < 3) < 2. 
j = 0 

When 2 < p < oo, the above arguments show that 2 x ^ i s unconditionally 
w = l 
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convergent in Z2 and thus 2 xn is unconditionally convergent in lp as well. 

Theorem 2. For 1 < p < oo, eZe/me a vector measure /LI: P(N) -» P by 
//(^4) = 2 xn, where xn={xn]C}^1 is as constructed. Define {SW}^=1GCO by 

neA 
sn = 0* + 1)_1 for n e Ij, and define a vector measure v: P(N) -> Co by v(A) = 
= 2 snen • Then /u X v is not countably additive from stf into lp ® nco. 

neA 

Proof. Suppose^ X v is countably additive. Then by lemma 1, 2 \^nxmnsn\ < 
m,n 

< oo for every {aw}^=1 in P'. Define ocn = 2~21 £-1 for each n e Ij9j = 0, 1, 2, . . . . 
For p = 1, clearly a = {ocn}^=1 e Z00 = (Z1)*; in the case 1 < p < oo we 
compute 

I |a| ij: = 2 2 K l ^ - 1 * = 2 2 (2_2; t-^)pnp-D = 2 21 (2-21 ^ / ( p - D . 
j=0 we/j j=0 ne/j j=0 

Since 2(2~2 £-i)p/(P-D < 1 by (1), this series is convergent. 

But we have 

2 \*nXmn8n\ = 2 2 2 l*»<W»l = 2 2 2 2 ~ 2 ' ^ • V • 0" + l)"1 

m,w j=0 me/j neLj ^=0 melj nelj 
oo 

= 2 0' + I ) - 1 = °°> a contradiction, 
i-o 

R e m a r k 3. From the examples above and the results of [2], it is natural 
at this point to conjecture that a locally convex space X is an admissible 
factor iff X is nuclear. 

R e m a r k 4. If we set yn = snen as in Lemma 1, then we have shown tha t 
the series 2 xn (§) Vm is not weakly unconditionally Cauchy in lp ® nco for 

n,m 

I <p < oo (see the proof of Lemma 1). In particular this implies tha t JU X v 
is not even bounded on s/. In [5] K l u v a n e k has also constructed an example 
of such a pair of series and noted its significance with respect to projective 
tensor products of vector measures. The examples presented above are much 
simpler than Kluvanek's example although his example does take place in 
reflexive Banach spaces. 

M. D u c h o i i ([3]) shows that if /LC is a vector measure of bounded variation, 
then fi admits products with respect to any locally convex space. Using 
Lemma 1 we establish the converse of this result for Z1-valued vector measures. 
In fact, we have 

Theorem 5. If /u: <sffl -> I1, *M a a-algebra, admits products with respect to Co, 
then /Li has bounded variation. 
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Proof . Let {Am} be a disjoint sequence from Jf and set \x(An) = xn == 
{xnt}^. Since ^xn is unconditionally convergent in Z1, it follows from 

oo oo 

Lemma 1 t h a t 2 \sn\ 2 l̂ wnl < °o (take aw = 1 for each n) for every {sn} e Co. 
n=l m=l 

00 OO 00 

Since {s»} e c 0 is a r b i t r a r y , ^ \xnm\ = 2 1 W 1 = 2 IIM-^w)! I < °°- H e n c e , 
n,m=l n=l n=l 

fi has bounded variation ([1] Th. 4). 
R e m a r k 5. I t , of course, follows directly from Theorem 5 and the Dvo-

retsky—-Rogers Theorem ([7]) t h a t Z1 is not an admissible factor. However, 
the examples presented above actually exhibit two vector measures whose 
projective tensor product does not have a countably additive extension and, 
thus, also shows that CQ and Z-9 are not admissible factors. 

Theorem 5 also shows t h a t the Corollary of [3] is the best general result, 
t h a t can be expected for measures that admit products, i. e., a vector measure 
ju: «x# -> Z1 admits products with respect to Co iff /̂  has bounded variation 
(and iff JJ, is dominated with respect to Co ([3]). 
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