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ABOUT THE MAXIMUM AND THE MINIMUM 
OF DARBOUX FUNCTIONS 

JANA FARKOVA, Bratislava 

In paper [3] the following statement is proved: If/ is a real valued function 
of a real variable, continuous and non-constant, then there is a Darboux 
function g with the property that the function F — / -f- g is not a Darboux one. 

A natural question arises if a similar statement holds for the functions 
<p = max (/, g) and ip = min (/, g) as well. 

The answer is negative and as follows: 

Theorem 1. Let f and g be Darboux real valued functions of a real variable. 
Let every x e ( — oo, oc) be a point of the upper (lower) semi-continuity of at least 
one of them. Then the function <p = max (/, g) (ip = min (/, g)) is a Darboux 
function. 

Proof . Let x, y(x < y) be real numbers, let <p(x) < c < <p(y) (a proof for 
<p(x) > <p(y) is analogical). 

Let A = {u: if x < u < u, then <p(u') < c). Let xo = sup A. Because 
/ and g are Darboux functions, f(xo) < c, g(xo) ^ c (of course xo =t= y). If 
max (f(xo), g(%o)) — c, then <p(xo) = c and the Theorem is proved. 

Let max (f(xo), g(%o)) < c, l e t / b e upper semi-continuous in xo. Now choose K 
such that f(xo) < K < c. Let 0 be such a neighbourhood of xo tha t for x e 
e 0 f(x) < K holds. With regard to the construction of the point xo in 0 such 
a point £ (£ > xo) exists tha t <p(£) ^ c > K. Therefore 99(f) == g(£). Then 
either <p(£) = g(£) = c, or (because of g Darboux) there exists z e (xo, f) 
such that g(z) = c. But again <p(z) = g(z) = c. (The proof for ip = min (/, g) 
is analogical.) 

I f / i s not a Darboux function, then there evidently can easily be constructed 
a Darboux function g (even a suitable constant) such that max (/, g) (min (/, g)) 
is not a Darboux function. 

As the following theorem shows, Darboux upper semi-continuous functions 
are the only functions with the property tha t the maximum of the function 
and an arbitrary Darboux function is again Darboux. 

Lower semi-continuous functions play an analogical role in the case of 
a minimum. 
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Theorem 2. Let f be a Darboux real valued function of a real variable. Let f 
be not upper semi-continuous (lower semi-continuous). Then there exists such 
a Darboux function g that <p = max (/, g) (ip = min (/, g)) is not Darboux. 

Proof . L e t / n o t be upper semi-continuous in a point x0. Therefore lim sup 
X-+XO 

f(x) > f(x0). I t means tha t at least one of these inequalities must hold: 
lim sup f(x) > f(x0), lim sup/(x) > f(x0). Let lim sup/(;r) > (^0) hold (in the 

X-+X+ X->XQ X-+X+ 

second case the proof is analogical). 
Now choose K such that /(x0) < K < lim sup/(x), lim sup/(x) + f(x0) ^ 2K. 

Define a function g: g(x) = f(%)9 for x < x0, g(x) = 2K — f(x), for x0 < x. 
We shall show that g is Darboux, therefore for x, y real and c such tha t 

g(x) <c< g(y) there exists z e (min (x, y), max (x, y)) so that g(z) = c (it is equi
valent to the statement tha t g((x, y}) is connected). 

If max (x, y) ^ x0, or if min (x, y)> x0, it follows immediately from the 
definitions of / and of g. Let min (x, y) = x0 and let x < y. Since g(y) > c, 
f(y) < 2K — c; considering tha t c > g(x) =f(x0), 2K — c < 2FL — f(x0) and 
since lim sup/(x) + f(x0) ^ 2K, then 2K — f(x0) < lim sup f(x). Thus there 

X-+X+ x-*x+ 

is a point f e (x0, y) such that f(£) > 2K — c. Therefore f(y) < 2K — c < f(£) 
and thus there is a point z e (£, y) such tha t / (z ) = 2K — c an.d then g(z) = c. 

Let min (x, y) = x0 and x > y. In this case f(x) = 2K — g(x) > 2K — c > 
> 2FC — g(y) = 2K — f(x0) > f(x0) = f(y). I t follows tha t there exists a point 
z e (y, x) such that f(z) = 2K — c and then g(z) = c. 

Let now x, y be such real numbers tha t x0 e (x, y). Then g((x, y}) = 
= g((x, x0}) U g((x0, y}). Because of connectivity g((x,x0}) and g((x0,y}) 
and because g((x, x0}) n g((x0, y}) ^ 0, g((x, y}) is a connected set. 

Because of <p(x0) = f(x0) < K and <p(x) ^ K for x e (x0, oo), cp = max (/, g) 
is not Darboux. 

A similar proof can be given also for the minimum. 

In [3] similar questions are studied also for a class D0 of real valued functions 
of a real variable having ,,the Darboux property in the sense of Radakovic". 
A function belongs to D0 iff the closure of the image of an arbitrary interval 
is an interval or a one-point set. The following statement is proved there: 
Continuous functions are the only functions such tha t their sum with every 
function from D0 is again from D0. 

These results were generalized in [2] for real valued functions defined 
on a topological space. Symbol D0(38) denotes here a set of all real valued 
functions defined on a topological space X with a topological base 3&, with the 
property: If B e J*, x,y e B and c is such tha t f(x) < c < f(y), then for an 
arbitrary e > 0 there is a point f e B such tha t /(f) e (c — e, c + £)• Here are 

111 



further definitions of some topological properties of the base, which will 
be needed: 

A base 38 is said to satisfy the condition (1*) provided that for an arbitrary 
open set U,XEX,BE£$,XEU and x e B there exists C e 38 such that C c: 
cz U n B and x e C - C. 

A base 38 is said to satisfy the condition (2*) provided that for every O G J 1 

and every decomposition of 0 , 0 = A U B, A n B = 0, A =f= 0 ^ B with 
the property 

U nO c A, U nO c JS resp., if c7 c ^4, U ^ B, resp., and 17 e ^ , and 
either -4' n 5 or 4̂ n B' is non-empty. 

In [2] the following theorem is proved: Let X be a topological space with 
a base 38, satisfying the conditions (1*) and (2*). L e t / a n d g be from Do{38). Let 
every x e X he a, point of continuity of / or of g. Then the functions cp = 
= max (/, g), ip = min (/, g) are also from Do(38). 

R e m a r k 1. In [2] it is proved tha t a base satisfies the condition (2*) 
iff it consists of connected sets only. Thus only in a local connected space 
there exists a base with the property (2*). 

We now give an example to show that in this more general case the con
tinuity cannot be replaced by the upper semi-continuity if it is to be (p e Do{3S). 

Similarly an example can be constructed showing that the continuity cannot 
be replaced by the lower semi-continuity if it is to be ip e Do{38). 

R e m a r k 2. I t is necessary to explain the meaning of the upper and the 
lower semi-continuity of a real valued function / defined on a topological 
space. 

In [1] a real valued function / defined on a topological space is called upper 
(lower) semi-continuous iff set {x:f{x) ^ a} {{x:f{x) < a}) is closed for all 
real a. A real valued function / defined on a topological space is called upper 
(lower) semi-continuous in a point xo, if for every e > 0 there is a neighbour
hood U of the point xo such tha t for every u e U: f{u) < f{xo) + e {f{u) > 
>f{x0)-e). 

By the limit superior of/ at Xo (lim supf{x)) we mean a real number a with 

the properties: 

1) if b < a, then in every neighbourhood U of point xo there is a point y 
such thsbtf{y) > b, 

2) if a < c, then there is such a neighbourhood U of point xo that for y e U, 

f(y) < c 
The limit inferior of / at xo (lim inf f{x)) is defined analogously. 

x-*xo 

Without difficulties it is possible to prove: 
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A func t ion / i s upper (lower) semi-continuous in a point x0 iff lim sup f(x) < 
X->Xo 

<f(x0) (liminf/(:r) ^ f(x0)) holds. 
X-+Xo 

Evidently a funct ion/ i s upper (lower) semi-continuous iff/ is upper (lower) 
semi-continuous in every point x e X. 

E x a m p l e . Let X be the topological space consisting of all real numbers 
with the base 3? = {(a, b), a,b — real, a =£ 0}. 

Evidently & satisfies the conditions (1*) and (2*). 
Define fi(x) = -—1, for x > 0, f\(x) = 1, for x = 0, fi(x) = sin (Ijx), for 

x < 0; f2(x) = — 1 , for x > 0, f2(x) = 1, for x = 0, fe(x) = sin ( — 1/x), for 
x < 0. 

Any point a: e X is a point of the upper semi-continuity / i and / 2 . With 
regard to the definition of 31 it follows that / i , / 2 e D0(&). If <p = max (/, r/) 
and (a, b) e & such that 0 e (a, 6), then y((a, 6)) = <0, 1> U {—1}, therefore 
<p$D0(&). 

The continuity may be replaced by the upper (lower) semi-continuity 
in a more special case, if the base gfi satisfies a condition (2), stronger than the 
condition (2*): 

A base 3S is said to satisfy condition (2) provided for every O e 3$ and every 
decomposition of O, O = A U B, A C\ B = 0, A ^ 0 =\= B with the property 

U r\0 c A, U n O c B resp., if U <-= ^4, U c: B, resp., and £7 e ^ , it is 

In the proof of the following theorem another notion will be required: 
Let X be a topological space with a base &. A set 4 c j satisfies the property 
M*(&), ifB^A for any 5 G ̂ , for which B a A. 

J£f*(@i) is a system of all real valued functions, defined on X such tha t 
the sets {x:f(x) ^ a} and {x:f(x) < a} have the property J f * ^ ) for every 
real a. Evidently D0(&) <= Ji'^St). 

In [2] it is proved that if X is a topological space with a base S3 satisfying 
the condition (1*), / , g eJ?*(&) and any point x e X is a point of continuity 
/ or g, then max (/, g) eJ?'*(38) and min (/, g) e Jt'^SSl). 

I t is easy to show tha t in the proof of this statement for max (/, g) the 
continuity may be replaced by the upper semi-continuity and for min (/, g) 
by the lower semi-continuity. 

Theorem 3. Let X be a topological space with a base 3$ satisfying the con
ditions (1*) and (2). Letf, g e Do(&) be such functions that every xeX is a point 
of the upper (lower) semi-continuity of f or of g. Then <p = max (/, g) e Do(&) 
(v = mm(f,g)eDom). 

Proof . Let O e £$, x,y eO, <p(x) < c — e <c<c + e < <p(y), <p(z) $ (c — e, 
c + e) for zeO. Let A = {w.ueO, <p(u) < c}, B = {uiueO, <p(u) ^ c}, 
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O = A U B. Because cp EJ£'%(8&), the decomposition satisfies the property 
of the condition (2) (A -# 0 4= 5 ) and therefore ^ 4 ' n J B - # 0 - # ^ 4 n I 5 ' . 
Let #0 e -4 n B', let #0 be a point of the upper semi-continuity of/ (for g the 
proof is analogical). Whence it follows that there exists U e £8, U <= 0, x0e U 
such tha t f(u) < f(x0) + E/2 for ueU. Since x0 e B', there exists X±E U n B, 
accordingly (p(x\) ^ c + E. 

If /(^i) = 99(̂ 1), then /(xi) ^ c + E, thus f(x0) > f(xi) — e/2 ^ c + E/2, 
contrary to (p(x0) < c — e. Therefore g(x±) = (p(xi) must hold; then g(xi) ^ 
^ c + E and because r/(^o) < c — E and (7 G DQ(&), there exists a f e U 
such that gr(f) e (c + e/2, c + E). Since /(f) < f(x0) + e/2 < c - e/2, y(f) = 
= £l(f) e (c + E/2, c + e) holds contrary to our assumption. Thus cp e D0(38). 

The proof for ip = min (/, g) with the assumption of the lower semi-conti
nuity is analogical, but it is necessary to use the existing x0 E A' n B. 

As the following theorem shows, the assumption of the upper (lower) semi-
continuity cannot be dropped. 

Theorem 4. Let X be a topological space with a base &. Let f e D0(&), let f 
not be upper (lower) semi-continuous. Then there exists a function g e D0(&) 
such that <p = max (/, g) ^ D0(£3) (xp = min (/, g) <£ D0($)). 

Proof . (The construction of the function g is similar to tha t in Theorem 2 
in the real case.) The proof is accomplished again only for the function op\ 
it is evident how the function g can be constructed in the second case. 

Let in a point x0 E X fnot be upper semi-continuous. Thus lim sup/(#) > 
X+Xo 

> f(x0). Choose a real number K such that lim sup/(;r) > K > f(x0), lim sup 
X-+XO X^-Xo 

f(x) +f(x0) > 2K holds. 
Define g: g(x0) = f(x0), g(x) = 2K - f(x), for x e X - {x0}. Then g e D0(@), 

<p = m3Lx(f,g)£D0(<%). 
We shall prove tha t g e D0(SS): Let Be 83, x,y EB, C and E > 0 be such 

that g(x) <c — £<c<c-\-e< g(y). I t is necessary to show that there exists 
zeB such that g(z) e (c — e, c + e). Let x #= x0, then g(x) = 2K — f(x), 
g(y) = 2K — f(y) if y #= x0, g(y) = f(y) ii y = x0. Then for both cases the 
following holds:/(x) = 2K - g(x) >2K-c + e>2K — c>2K-c-e> 

>f(y). 
Since fED0(&), there exists ZEB, Z ^ X0 such that f(z) e (2K — c — E, 

2K — c + e) and therefore g(z) E (C — s, c + e). Let x = x0, then g(x) = 
==f(x), g(y) = 2K — f(y); considering that c — e>f(x0), there must be 
2K — c + e < lim supf(x) (because lim sup/(^) + f(x0) > 21 ) . Accordingly 

X+Xo &*X° 

f(y) = 2K — g(y) < 2K — c - s< 2K — c<2K — c + s< lim sup f(x) holds. 
X-+X0 

Since / e D o ( ^ ) , there exists z e B , z 4= *o such that /(z) e (2K - c - e, 

2K — c + e) and thus g{z) s (c — e, c + e). 
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If B e £3, xo e B, then cp(B) is not connected; evidently cp & Do(&). 
From Theorems 3 and 4 there follows 

Corollary. Let X be a topological space with a base & satisfying the conditions 
(1*) and (2). Then the upper (lower) semi-continuous functions f e Do(&) are the 
only functions with the property that the function max (/, g) (min (/, g)), where g is 
an arbitrary function of Do(&) is again one of Do(&). 

In most papers dealing with the structure (algebraical or topological) 
of a system of functions, having in some sense the Darboux property, the 
question arises as to the effect of a further property of the functions of the 
system, if, namely, the functions belong to the first class of Baire's classification 
(further only: / i s of the 1st class) on the structure. 

I t is an important question, because a Darboux function of the 1st class 
is the most natural and the most frequently occurring generalization of a con
tinuous function. 

A problem of this kind is solved by 

Theorem 5. Let X be a topological T\ space satisfying the 1st axiom of coun-
tability (any point x e X has a countable base of neighbourhoods) with a base S3 
satisfying the conditions (1*) and (2). Then the upper (lower) semi-continuous 
functions f e Do(&) are the only functions with the property that max (/, g) 
(min (/, g)), where g is an arbitrary function of Do(SS) and of the 1st class, is again 
of Do(£$) and of the 1st class. 

Proof . I t is necessary to prove the following assertions: 
1) i f / is upper (lower) semi-continuous, f e Do{&) and g is an arbitrary 

function of Do(£$) and of the 1st class, then max (/, g) (min (/, g)) is of Do(SS) 
and of the 1st class too, 

2) if / is not an upper (lower) semi-continuous functions of Do(3S), then 
there exists a function g e Do(3?) of the 1st class such that max (/, g) (min (/, g)) 
is not a function of Do(&) and of the 1st class. 

1) In [4] on page 56 it is proved tha t i f / and g are real valued functions, 
defined on a set X and S-measurable, where S is a cr-structure (if Sn e S for 

oo 

n = 1,2, ..., then ( J Sn£ S, if S±, £2 e S, then Si n #2 e S) of subsets of X 
n= l 

(in our case this cr-structure consists of all subsets of the topological space X, 
of the type Fa)9 then the functions max (/, g) and min (/, g) are S-measurable, 
too. With the help of Theorem 3 the proof of 1) is now complete. 

2) If f$Do{&), then a function geDo(^), g is of the 1st class such tha t 
max (/, g) $ Do(83) (min (/, g) <£ D0(&)) can be easily constructed. 

L e t / n o t belong to the 1st class. Thus there exists an open set 0 <-= ( —oo, oo) 
00 

such that /--(G) is n o t o f t h e t v p e Fa {/-*•{&)$ Fa{X)). G = \J Ot, where Of are 
i-i 
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disjoint open intervals. I t is obvious tha t there exists an i0 such that / - 1(0 i o) £ 
<£Fa(X). Let Oio = (a', b). I t is possible that a'= — oo. But in this case there 
must exist a real number a" such that/~1((a / ' , b)) $Fa(X). In the reverse case 

tl{OJ =f-H'-ao, b)) = / - i ( ( J (6 - t, 6)) = UZ-Mtfi - h b)) eFo(X). 
i=l ?=1 

Therefore there exists a real number a such that f~x((a, b)) ^Fa(X). Define 
g(x) = a, for .r e X. Evidently g e D0(£%), g is of the 1st class, cp = max (/, g) 
is not of the 1st class, because qj~l(a,b) = f~1(a,b) $ Fa(X). (The proof for 
ip = min (/, g) is analogical.) 

Now suppose that f E D0(38), f is of the 1st class, but / is not upper semi-
continuous. Let us define the function g as in the proof of Theorem 4: g(x0) = 
~~ f(xo) (point x0 is again an arbitrary point such that / in x0 is not upper 
semi-continuous), g(x) = 2K — f(x), for x E X — {^0}. 

We know that g E D0(S8) and max (/, g) $ D0(&). I t is necessary to show 
that g is of the 1st class, and thus for every open set G <~ ( — oo, oo) g~1(G) e 
eFa(X) holds. Let us denote by h a function defined: h(x) = 2K — f(x) 
for x E X. I t is obvious ([4], p. 55) tha t h is of the 1st class. 

If either {h(x0)} u {g(x0)} e G, or {h(x0)} u {^o)} E X — G, then h~1(G) = 
= g-MG) and therefore g-i(G) EFG(X). Ifh(x0) e G and g(x0) $ G, then g~i{G) = 
= A-i(G) - {x0} = h~i(G) n(X - {x0}), if h(x0) $ G and g(x0) E G, then 
g~1(G) = h~l(G) u {.To}. Because X is a topological T\ space satisfying the 1st 
axiom of countability, any one-point set is closed and of the type GQ. (Therefore 
X — {x0} EFG(X).) Since Fa(X) is a r/-structure, it is obvious tha t in both these 
cases g~l(G) EFG(X). The function g is thus of the 1st class. 

Similarly a function g can be constructed in the case when / is not lower 
semi-continuous. 
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