Matematický časopis

Charles W. Swartz

Products of Vector Measures

Matematický časopis, Vol. 24 (1974), No. 4, 289--299
Persistent URL: http://dml.cz/dmlcz/126559

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

products of vector measures

CHARLES sWARTZ

1. Introduction

11 [4], [5] and [8] M. Duchon and I. Kluvanek have discussed the notion of tle product of two vector measures where the product in each case is t. hes to be the tensor product. In [9] and [25] the product of vector measures in dho considered but in these papers the product is taken to be the inner product in a Hilbert space; a somew hat similar situation is considered in [28]. A notion of the product of operator-valued measures is considered in [1.5] an 1 [19]. In this paper we consider a general notion of the product of two 1 tor measures and attempt to give conditions which will furnish positive wilt, of the nature of those given by Duchon and Kluvanek in [S] for the --tensor product.

Let X_{1}, X_{2} and Z be locally convex Hausdorff spaces and let $b: X_{1} \times X_{2} \rightarrow$ $\rightarrow Z$ be a separately continuous bilinear map. (The bilinearity assumption is made for convenience; b could also be taken to be sesquilinear, [9], [25].) Let S_{1}, S_{2} be non-void sets and let Σ_{1} and $\Sigma_{2}\left(\mathscr{L}_{1}\right.$ and $\left.\mathscr{A}_{2}\right)$ be σ-algebras (alecbias) of subsets of S_{1} and S_{2} respectively. For any family $\tau \operatorname{I}$ of subsets of a non-void set, let a $a(\mathfrak{T})$ denote the algebra generated by \mathfrak{T} and let $\sigma(\mathfrak{T})$ denote the σ-algebra generated by \mathfrak{I}.

If $\mu_{i}: \mathscr{A}_{i} \rightarrow X_{i}$ (or $\mu_{i}: \Sigma_{i} \rightarrow X_{i}$) is a finitely additive set function, the product, $\mu_{1} \times \mu_{2}$, of μ_{1} and μ_{2} (with respect to b) is defined on $\mathscr{A}_{1} \times \mathscr{\Lambda}_{2}$ (or $\Sigma_{1} \times \Sigma_{2}$) by $\mu_{1} \times \mu_{2}\left(A_{1} \times A_{2}\right)-b\left(\mu_{1}\left(A_{1}\right), \mu_{2}\left(A_{2}\right)\right), A_{i} \in \mathscr{A}_{i}$ (or $A_{i} \subset \Sigma_{i}$). If $H \in a\left(\mathscr{A}_{1} \times \mathscr{A}_{2}\right)\left(\right.$ or $a\left(\Sigma_{1} \times \Sigma_{2}\right)$), then $H \quad \bigcup_{i 1}^{\prime \prime} A_{1} \times B_{i}$ where $\left\{A_{i} \times B_{i}\right\}$ are pairwise disjoint with $A_{i} \in \in \mathscr{A}_{i}$ and $B_{i} \in \mathscr{A}_{2}$ (or $A_{i} \in \Sigma_{1}$ and $B_{i} \in \Sigma_{2}$) ([16], 33. E), and we may extend $\mu_{1} \times \mu_{2}$ to $a\left(\mathscr{A}_{1} \times \mathscr{A}_{2}\right)$ by setting $\mu_{1} \times$ $\times \mu_{2}(H) \quad \sum_{1}^{\prime \prime} b\left(\mu_{1}\left(A_{i}\right), \mu_{2}\left(B_{i}\right)\right)$. Then $\mu_{1} \times \mu_{2}$ is a finitely additive Z-valued set function on $a\left(\mathscr{A}_{1} \times \mathscr{A}_{2}\right.$) (or $a\left(\Sigma_{1} \times \Sigma_{2}\right)$).

The various types of products of vector measures wreated in the literature
fit into the abstract setup above. For example. in [8] $Z \quad X_{1}{ }_{\varepsilon} \varepsilon_{1} X_{2}$ und the bilinear map is that given by the tensor product while in [4] Z is $X_{1} \hat{x}_{\pi} X_{2}$ In |9] and [25], $X_{1} \quad X_{2} \quad I$, where I is a Hilbert space, Z is the scala field, an the map b is taken to be the inner product on $H \quad H$ (if H is comple . b is of course sesquilinear rather than bilinear, but this amoyance cause no real difficulties). Also in [19], 1. Kluvanck and M. Kovarikova con sider the product of spectral measures: in [19] X is a B-space and $X_{1} \quad X^{-}$

- Z $B(X)$. where $B(X)$ denotes the B-space of bounded linear operator on X, and $b(T, S) \quad T S$ is the composition of T and S. A similar product is utilized in [15].

At this point there are several natural questions which arise relative o $\mu_{1} \times \mu_{2}$. For example, if $\mu_{i}: \Sigma_{i} \rightarrow X_{\imath}$ is countably additive. is $\mu_{1}>\mu_{2}$ count ably additive on $a\left(\Sigma_{1} \times \Sigma_{2}\right)$ and if this is the case, does $\mu_{1} \vee \mu_{2}$ have a count ably additive extension to $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)$? The examples presented in [9] and [25] show that even in the case when $X_{1}-X_{2} \quad H$, a Hilbert space, and b is the inner product, $\mu_{1}>\mu_{2}$ will not in general be countably additive or $a\left(\beth_{1} \times \Sigma_{2}\right)$. A similar phenomena occurs when $Z \quad X_{1}{ }^{\wedge} X_{2}$ ([18]). On the other hand, when $Z-X_{1} \hat{ष}_{\varepsilon} Y_{2} \cdot \mu_{1} \times \mu_{2}$ will always have a rountab! additive extension to $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right),[8]$. It should also be pointed out that if cither μ_{1} or μ_{2} has bounded variation, then $\mu_{1} \times \mu_{2}$ always has a countab.) additive extension to $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)$ regardless of the nature of b, [5]. We con idel the question of the countable additivity of $\mu_{1} \times \mu_{2}$ in section 2 and present some fairly general assumptions which guarantee countable additivity on $a\left(\begin{array}{ll}\Sigma_{1} & \left.\Sigma_{2}\right) \text { and the existence of a countably additive extension to } \sigma\left(\Sigma_{1} \times \underline{L}_{2}\right)\end{array}\right.$ In section 3 we consider the case where each $\mu_{i}: \mathscr{d}_{i} \rightarrow X_{i}$ is strongly bounded ([2]) and give conditions that insure that $\mu_{1} \mu_{2}$ is strongly bounded. In section 4 we consider the question of regularity of the product of two regular vector measures. Finally in the concluding section 5 we give some indication of the necessity of the assumptions made in the precedit $\underline{\square}$ three sections.

Before proceeding to the material concerning products of vector measure , we present a lemma concerning scalar measures which will be needed later Two parts of this lemma appear in [8], but we give entirely different proofn here which present (hopefully) interesting applications of the Dunford-Pettis property ([14]; [11], 9.4). In the lemma and throughout the remainder of thepaper, we use the notation and terminology of [10].

Lemma 1.

(a) If $I_{i}^{\prime} \subseteq c a\left(\Sigma_{i}\right)$ is conditionally weakly compact $(i \quad 1,2)$, then $\Gamma_{1} \times \Gamma_{\bullet}$ $=\left\{\mu_{1} \times \mu_{2}: \mu_{i} \in \Gamma_{i}\right\}$ is conditionally weakly compact in ca $\left(\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)\right)$.
(b) If $\Gamma_{i} \subseteq b a\left(s_{i}\right)$ is conditionally weakly compact (i - 1, 2), then $\Gamma_{1}>I_{2}$ is conditionally wakly compact in ba $\left(a\left(\mathscr{A}_{1} \times \mathscr{S}_{2}\right)\right)$.
(c) Let λ_{i} be a positive finite measure on $\Sigma_{i}\left(i=1\right.$, 2). If $\Gamma_{i} \subseteq L^{1}\left(\lambda_{i}\right)$ is conditionally wakly compact, then $\Gamma_{1} \otimes \Gamma_{2}$ is conditionally weakly compact in $L^{1}\left(\lambda_{1} \times\right.$
$\left.\lambda_{i 2}\right)$, where if $f_{i} \in L^{1}\left(\lambda_{i}\right), f_{1} \otimes f_{2}: S_{1} \times S_{2} \rightarrow R$ is given by $(s, t) \rightarrow f_{1}(s) f_{2}(t)$.
(d) If $I_{i} \subseteq c a\left(\mathbb{V}_{i}\right)$ is uniformly absolutely continuous with respect to the positive measure $\lambda_{i} \subset c a\left(\Sigma_{i}\right)$, then $\Gamma_{1} \times I_{2} \subseteq c a\left(\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)\right)$ is uniformly absolutely contimuous with respect to $\lambda_{1} \times \lambda_{2}$.

Pıoof: For (a), note the bilinear map $\left(\mu_{1}, \mu_{2}\right) \rightarrow \mu_{1} \times \mu_{2}$ from $c a\left(\Sigma_{1}\right) \times$ $\left(a\left(\Sigma_{2}\right) \rightarrow c a\left(\sigma\left(\grave{L}_{1} \times \Sigma_{2}\right)\right)\right.$ is rontinuous since $v\left(\mu_{1} \times \mu_{2}\right)\left(S_{1} \times S_{2}\right)$
$v\left(\mu_{1}\right)\left(S_{1}\right) v\left(\mu_{2}\right)\left(S_{2}\right)([10]$, III. 1 . 11). The result now follows from [14], Pro porition l.2.2 or |ll], 9.4.3 (c) and the Smulian-Eberlein Theorem ([10], V. (6.1) since $c a\left(\Sigma_{i}\right)$ has the Dunford-Pettis property ([14], 1.4 or [11], 9.4.6 (d)).
('ondition (b) can be establish ex exactly as part (a) above (recalling IV. 9.11 of [10]) once the continuity of the bilinear map $\left(\mu_{1}, \mu_{2}\right) \rightarrow \mu_{1} \times \mu_{2}$ is entablished. Theorem III. 11.11 of |10] cannot be used directly here since the set functions involved are only finitely additive (the proof of this result in [10] uses the Radon-Nikodym Theorem). Suppose $E \bigcup_{i}^{n} A_{i} \times B_{i}$ belongs to $a\left(\sigma_{1} \lambda \Omega_{2}\right)$ with the union disjoint and also $\left\{A_{i}\right\}_{1}^{\prime \prime}$ pairwise disjoint. Then $\left.\mu_{1} \times \mu_{2}(E)^{\prime} \leqslant v\left(\mu_{2}\right)\left(S_{2}\right) \sum_{i=1}^{n}\left|\mu_{1}\left(A_{i}\right)\right| \leqslant v\left(\mu_{1}\right)\left(S_{1}\right) v \mu_{2}\right)\left(S_{2}\right)$. By [10], III. 1.5, $v\left(\mu_{1} \times \mu_{2}\right)\left(S_{1} \times S_{2}\right) \leqslant 4 v\left(\mu_{1}\right)\left(S_{1}\right) v\left(\mu_{2}\right)\left(S_{2}\right)$ which implies that the bilinear map above is continuous.

Part (c) is established exactly as part (a) using the fact that $L^{1}\left(\lambda_{i}\right)$ has the Dunford-Pettis property ([11], 9.4.4).

For (d), let $\Gamma_{:}^{\prime}\left\{\begin{array}{l}\mathrm{d} \mu \\ \mathrm{d} \lambda_{i}\end{array}: \mu \in \Gamma_{i}\right\} \subseteq L^{1}\left(\lambda_{i}\right)$. By [10], IV. 8.11, Γ_{i}^{\prime} is condi-
tionally weakly compact in $L^{1}\left(\lambda_{i}\right)$. By (c), $\Gamma_{1}^{\prime} \otimes \Gamma_{2}^{\prime}$ is conditionally weakly compact in $L^{1}\left(\lambda_{1} \times \lambda_{2}\right)$. The result now follows from [10], IV. 8.11 and [17], 21.29.

Remark 2. In [8], part (c) is established first and then (a) follows as a corollary. The result in (c) is also an easy consequence of part (a) and Theorem IV. 9.2 of [10]. Part (b) does not appear in [8], and the proof of part (a) presented in [8] cannot be adapted to derive (b) since the countable additivity of the measures in question is used at several points. It may be possible to derive (b) from (a) by using a ,,Stonespace technique", [10], IV. 9.10.

2. Countable Additivity

In this section we consider the question of countable additivity for the product $\mu_{1} \times \mu_{2}$ of two vector measures. The basic assumption made on the map b is essentially that it be an integral-type bilinear map. Thi apperr to be the difference between the results for the inductive and projective tenoor product as given in [8] and [4]. Recall a scalarvalued bilinear map f on λ_{1}
X_{2} is an integral map iff there exist weak*-closed equicontinuous sub t, $A_{i} \subseteq X_{i}^{\prime}$ and a regular probability measure m on the Borel sts of $A_{\quad} A_{-}$ (equipped with the weak* topologies) such that
(1) $f(x, y) \quad \int_{A, \cdots, 1=} x^{\prime}, x \quad \not y^{\prime}, y>\mathrm{d} m\left({ }^{\prime}, y \prime\right)$
(see [29], §49 and [27], §7 and 16 for the properties of integral map). The space of all scalar-valued integral maps on $X_{1} \times X_{2}$ is denoted by $J \Lambda_{1}, X_{2}$: $J\left(X_{1}, X_{2}\right)$ is the dual of $\mathrm{X}_{1} \otimes_{\varepsilon} X_{2}([29], \S 49$ and [27], §7). Throushout thipaper we consider the following two fundamental assumptions on the hlinear map $b: X_{1} \times X_{2} \rightarrow Z$:
$(\alpha) z^{\prime} b$ is an integral bilinear form for each $\imath^{\prime} \curvearrowright Z^{\prime}$
(β) for each equicontinuous subset $D \subseteq Z^{\prime},\left\{z^{\prime} b: z^{\prime} \quad D^{\prime}\right\}$ is an erquicortinuous subset of $J\left(X_{1}, X_{2}\right)$ (considered as the dual of $X_{1} \otimes_{\varepsilon} Y_{2}$).

Of course, when Z is the scalar field, (α) and (β) are equivalent. Examples are presented following Theorem 3 illustrating crrcumstances when (x) and (,) are valid

Theorem 3. Let $\mu_{i}: \Sigma_{i} \rightarrow X_{i}$ be countably additive (ir 1, 2).
(a) If condition (α) is satisfied, then $\mu_{1} \quad \mu_{2}$ is weakly countably additire on $a\left(\Sigma_{1} \times \Sigma_{2}\right)$.
(b) If condition (β) is satisfied, then $\mu_{1}, ~ \mu_{2}$ is countably additive on $a\left(\Gamma_{1} \vee \Sigma_{2}\right)$ and has a countably additive extension from $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)$ to \tilde{Z}, the completion of Z.

Proof: Let $z^{\prime} \in Z$ and $H-\bigcup_{i}^{\prime \prime} E_{i}<F_{i} \in a\left(\Sigma_{1} \times \mathscr{L}_{2}\right)$ with the union disjoint and $E_{i} \in \Sigma_{1}, F_{1} \in \Sigma_{2}$. Since $z^{\prime} b$ is integral, there exist weak ${ }^{*}$-cloned equicontinuous subset. $A, \subseteq X^{\prime}$, and a reqular probability measure $m\left(m_{z}\right)$ on $A_{1} \times A_{2}$ such that $z^{\prime} b(x, y)=\int_{A_{1}, \ldots} \quad x, x \quad y^{\prime}, y \operatorname{dm}\left(x^{\prime}, y^{\prime}\right)$ for $r X_{1}$, $y \in X_{2}$. Hence,

$$
\begin{equation*}
\left\langle z^{\prime}, \mu_{1} \vee \mu_{2}(I I), \quad \sum_{1}^{\prime} f_{1}, A, r^{\prime}, \mu_{1}\left(E_{2}\right) \cdot y^{\prime}, \mu_{2}\left(F_{i}\right) \quad \mathrm{d} m\left(x^{\prime},!^{\prime}\right)=\right. \tag{2}
\end{equation*}
$$

$\left.\leqslant f_{A_{1}} A_{2} \sum_{1}^{\prime \prime} r\left(1 \mu_{1}\right)\left(E_{i}\right) r^{\prime \prime}, \mu_{2}\right)\left(F_{i}\right) \mathrm{d} m\left(x^{\prime}, y^{\prime}\right) \leqslant$

$$
\begin{aligned}
& <\Gamma_{1} \quad, r\left(x^{\prime} \mu_{1}\right) \times v\left(y^{\prime} \mu_{2}\right)(H) \mathrm{d} r\left(x^{\prime}, y^{\prime}\right) \leqslant \\
& <\sup _{, \Lambda_{1} A_{2}} v\left(x^{\prime} \mu_{1}\right) \times v\left(y^{\prime} \mu_{2}\right)(H) m_{z^{\prime}}\left(A_{1} \times A_{2}\right) .
\end{aligned}
$$

Now $\left.,^{x^{\prime} \mu_{1}}: r^{\prime} \in A_{1}\right\}$ and $\left\{y^{\prime} \prime_{2}: y^{\prime} \in A_{2}\right\}$ are conditionally weakly compact in $c a\left(\Sigma_{1}\right)$ and $c a\left(\Sigma_{2}\right)$ ([30], Coroll ury of Theorem 2) so $\left\{v\left(x^{\prime} \mu_{1}\right): x^{\prime} \in A_{1}\right\} \quad \Gamma_{1}$ and $\left\{v\left(y^{\prime} \mu_{2}\right): y^{\prime} \in A_{2}\right\} \quad \Gamma_{2}$ are also conditionally weakly compact ($[10\rceil$, IV. S.I0). By Lemma 1, $\Gamma_{1} \times I_{2}$ s conditionally weakly compact in $c a\left(\sigma\left(\Sigma_{1} \times\right.\right.$ $\times \Sigma_{2}$), and therefore $\Gamma_{1} \times \Gamma_{2}$ is uniformly countably additive ([10], IV 9.1). If $\left\{H_{n}\right\}$ is a sequence in $a\left(\Sigma_{1} \times \Sigma_{2}\right)$ which decreases to \emptyset, then (2) implies $\left.z^{\prime}, \mu_{1} \times \mu_{2}\left(H_{n}\right)\right\rangle \rightarrow 0$ so that $\left\langle\approx^{\prime}, \mu_{1} \times \mu_{2}().\right\rangle$ is countably additive on $a\left(\Sigma_{1} \times\right.$ $\left.\wedge \Sigma_{2}\right)$. Hence $\mu_{1} \times \mu_{2}$ is weakly countably additive on $a\left(\Sigma_{1} \times \Sigma_{2}\right)$ and (a) follows.

To establish (b), let p be a continuous semi-norm on Z. Set $U-\{z \in Z$ $p(z)<1\}$ and let U be the polar of U in Z^{\prime}. Since U° is equicontinuous, $\left.' z^{\prime} b: z^{\prime} \in C^{\prime}\right\}$ is equicontinuous in $J\left(X_{1}, X_{2}\right)$ so there exist weak*-closed equicontinuous sets $A_{i} \subseteq X_{i}^{\prime}$ and a bounded family of positive regular meacures $\left.{ }^{(} m_{z}: z^{\prime} \in C^{\prime}\right\}$ on $A_{1} \times A_{2}$ such that $z^{\prime} b(x, y) \quad \int_{A_{1} \times A_{2}}\left\langle x^{\prime}, x\right\rangle\left\langle y^{\prime}, y \quad \mathrm{~d} m_{z^{\prime}}\right.$ (x, y) for $x \in X_{1}, y \in X_{2}$ ([29], p .502 and [27], remark following 7.11). The estimate in equation (2) becomes $\left.z^{\prime}, \mu_{1} \times \mu_{2}(H)\right\rangle \leqslant M \sup v\left(x^{\prime} \mu_{1}\right) \times$ $\times r\left(y^{\prime}!_{2}\right)(H)$, where $I I$ is the brund for $\left\{m_{z^{\prime}}: z^{\prime} \in U\right\}$ and $z^{\prime} \in U$. Hence

$$
\begin{equation*}
p\left(\mu_{1} \vee \mu_{2}(H)\right) \leqslant M \sup _{\left(. \mu^{\prime}, \mu^{\prime}\right)=A_{1}} v\left(A_{2}\right) \tag{3}
\end{equation*}
$$

for $H \in a\left(\Sigma_{1} \times \Sigma_{2}\right)$. Now as in the first part of the proof $\Gamma_{i} \quad\left\{v\left(x^{\prime} \mu_{i}\right): x^{\prime} \in A_{i}\right\}$ is conditionally weakly compact so there exists a positive measure $\hat{\lambda}_{i} \in c a\left(\Sigma_{i}\right)$ such that Γ_{i} is uniformly absolutely continuous with respect to λ_{i} ([10], IV. 9.2). By Lemma 1, $\Gamma_{1} \times \Gamma_{2}$ is uniformly absolutely continuous with respect to $\lambda_{1} \times \lambda_{2} \in c a\left(\sigma\left(\Sigma_{1} \backslash \Sigma_{2}\right)\right)$. Thus, equation (3) and Corollary 1 of [3] imply that $\mu_{1} \times \mu_{2}$ has a countably additive extension from $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)$ to \tilde{Z}, and (b) is established.

Remark 4. Note equation (2) y elds Axiom A of Duchon ([7]), and equation (3) is similar to condition (B) of |19]. In part (a) it can also be asserted that $\mu_{1} \times \mu_{2}$ has a unique extension from $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)$ to $Z^{\prime \prime}$ which is countably additive with respect to the topology $\sigma\left(Z^{\prime \prime}, Z^{\prime}\right)$ (see [2l] and also [7], Th. 1). In part (b) if Z is sequentially complete, the extension of $\mu_{1} \times \mu_{2}$ will actually have values in Z (see [3]).

Note also the equality in (1) is not actually required but only the inequality $f(x, y) \leqslant \int_{A, \lambda 1_{2}}\left|\left\langle x^{\prime}, x\right\rangle y^{\prime}, y\right\rangle \mid \mathrm{lm}\left(x^{\prime}, y^{\prime}\right)$; such bilinear maps could be considered to be the bilinear analogue of the quasi-integral operators of [23].

We now present some examples illustrating conditions under which th assumptions (α) and (β) hold.

Example 5. Take $Z=X_{1} \hat{\otimes}_{\varepsilon} X_{2}$. Then condition (β) is clearly satinf ed so part (b) of Theorem 3 holds. This gives the result of M. Duchon and I. Kluvanek ([8], Theorem) concerning the existence of a countably addit ve extension of $\mu_{1} \times \mu_{2}$ from $\sigma\left(\Sigma_{1} \times \Sigma_{2}\right)$ into Z.

Example 6. Let Z be sequentially complete. Suppose $A_{i} \subseteq X^{\prime}$, is weak゙ closed and equicontinuous and let m be a Z-valued regular countably udditise vector measure defined on the Borel sets of $A_{1} \times A_{2}$. Define $b: X_{1} \quad \Lambda_{2}-Z$ by $\left.b(x, y)-\int_{1_{1} \backslash A_{2}} x^{\prime}, x\right\rangle y^{\prime}, y>\mathrm{d} m\left(x^{\prime}, y^{\prime}\right)$, where the integral in taken in the vense of $[20]$. (Note the integral exists by Theorem 2.2 of [20].) That condition (β) is satisfied follows from Tweddle [30] and the characterization of the equicontinuous subsets of $J\left(X_{1}, X_{2}\right)$ noted in the proof of Theorem 3 b . Bilinear maps of this type furnish a vector generalization of the integral bilinear forms of Grothendieck.

Example 7. Let Z be sequentially complete. A special subclas, of the maps in Example 6 is given as follows. Let $\left\{t_{k}\right\} \in l^{1},\left\{\rho_{h}^{\prime}\right\}$ and $\left\{f_{k}^{\prime}\right\}$ be ec uicontinuous sequences in X_{1}^{\prime} and $X_{\underline{2}}^{\prime}$ respectively, and $\left\{z_{k}\right\}$ be a bounded - t in Z. Let $b: X_{1} \times X_{2} \rightarrow Z$ be given by $b(x, y) \quad \sum_{k} t_{k} e_{k}^{\prime}, x \quad f^{\prime}, y \quad z_{r}$, such bilinear maps furnish a vector generalization of nuclear bilinear form, ([$\because 4$ 7.4).

3. Strong Boundedness

In this section we discuss the strong boundedness of the product of two strongly bounded vector-valued set functions. Recall that if.$/$ is an aloebra of sets and if $\mu: \Omega \rightarrow Z$ is finitely additive, then μ is strongly bounded if for each continuous semi-norm p on Z there is a positive finitely additive net function λ on Ω such that $\lim _{\lambda(1) \rightarrow 0} p(\mu(A)) \quad 0$ (this is the locally convex ocne ralization of the notion of strong boundedness as discussed for B-space, by Brooks, [2]; see also [3], Theorem 1). The methods and results of this section are quite similar to those of section 2 so we only outline the proofs

Theorem 8. Let $\mu_{i}: \mathscr{A}_{i} \rightarrow X_{i}$ be strongly bounded ($i \quad 1,2$). If condition (p) is satisfied, then $\mu_{1} \times \mu_{2}$ is strongly bounded on $a(\kappa / 1 \times r / 2)$.

Proof: Let p be a continuous semi-norm on Z and set $C^{*} \quad\left\{\sim: p(z) \quad 1{ }^{\prime}\right.$ Then l° is equicontinuous and with the notion as in the proof of part (b) of Theorem 3 we obtain the inequality in (3). Since μ_{i} is strongly bounded there exists a positive $\hat{\lambda}_{i} \in b a\left(\alpha_{i}\right)$ (depending on A_{i}) such that $\lim r^{\prime} \prime_{i}(B)$

$$
j(l ; \rightarrow 1
$$

$=0$ uniformly for $x^{\prime} \in A_{i}$ ([29], Prop. 36.1). As in Theorem 3, $\Gamma_{i} \quad\left\{v\left(x^{\prime} \mu_{i}\right)\right.$: $\left.x^{\prime} \in A_{i}\right\}$ is conditionally weakly compact in $b a\left(\mathscr{A}_{i}\right)$ ([10], IV. 9.12) and by Lemma $1, \Gamma_{1} \times \Gamma_{2}$ is conditionally weakly compact in $b a\left(a\left(\Omega_{1} \times \mathscr{L}_{2}\right)\right)$. By IV. 9.12 of [10], there exists a positive $v \in b a\left(a\left(\mathscr{A}_{1} \times \mathscr{A}_{2}\right)\right)$ such that $\lim _{,(H) \rightarrow()} v\left(x^{\prime} \mu_{1}\right) \times v\left(y^{\prime} \mu_{2}\right)(H) \quad 0$ miformly for $x^{\prime} \in A_{1} \cdot y^{\prime} \in A_{2}$. Thus equation (3), which still holds in this situation, implies that $\mu_{1} \times \mu_{2}$ is strongly bounded on $a\left(\mathscr{A}_{1} \times \mathscr{A}_{2}\right)$.

The examples presented following Theorem 3 are likewise applicable to the situation in Theorem 8. In particular, Example 5 shows that Theorem 8 is applicable to the ε-product of two strongly bounded set functions.

4. Regularity

In this section we consider the regularity of the product of two regular vector measures. Because of the many and varied notions of regularity (see, for example, [3]), we will not attempt to discuss all of the possible types of reqularity in detail or even consider the difficulties which arise between using Baire and Borel sets ([1], Lemma 57.2 and Exercise 57.16). We consider two different situations in Theorems 9 and 11: after seeing the basic ideas employed the reader can supply the details pertaining to the various types of regularity, etc.

Let S be a locally compact Hausdorff space and let \mathscr{A} be a ring of subsets of S. A finitely additive set function $\mu: \mathscr{A} \rightarrow Z$ is regular if for each $A \in \mathscr{A}$ and each neighborhood of zero in Z, U, there exist a compact $K \in s /, K \subseteq A$, and an open $G \in \Omega, G \supseteq A$, such that whenever $D \in \mathscr{S}$ and $D \subseteq G K$, $\left.{ }^{\prime}(I)\right) \in U$. (This is regularity of type R_{1} in [3]; see also [22].)

In order to avoid rephrasing the previous material for rings and σ-rings, we assume that each S_{i} is σ-compact ([10], XI. 3). Let \mathscr{B}_{i} denote either the σ algebra of Baire sets or Borel sets of S_{i}. Again the methods employed in this section are similar to those used in Theorem 3 so we do not write out complete details.

Theorem 9. Let $\mu_{i}: \mathscr{ß}_{i} \rightarrow X_{i}$ be regular. If condition (β) is satisfied, then $\mu_{1} \quad \mu_{2}$ is regular on $a\left(\mathscr{B}_{1} \times \mathscr{B}_{2}\right)$ and has a regular extension to $\sigma\left(\mathscr{H}_{1} \times \mathscr{B}_{2}\right)$.

Proof: Let U be a closed absolutely convex neighborhood of 0 in Z and let p be the Minkowski functional of ${ }^{I}$. With notation as in the proof of Theorem 3(b), we again obtain equation (3). Now earh μ_{i} is regular so there exists a positive regular measure $\lambda_{i} \in \operatorname{rcu}\left(\mathscr{B}_{i}\right)$ such that $\Gamma_{i}-\left\{v\left(x^{\prime} \mu_{i}\right): x^{\prime} \in A_{i}\right\}$ is uniformly absolutely continuous with respect to λ_{i} ([22]). By Lemma 1 , $\Gamma_{1} \lambda \Gamma_{2}$ is uniformly absolutely continuous with respect to $\lambda_{1} \times \lambda_{2}$, and
$\lambda_{1} \times \hat{\lambda}_{2}$ is regular on $\sigma\left(\mathscr{B}_{1} \quad \mathscr{B}_{2}\right)([1]$, Theorems $56.3,60.1$ and Exercise 62.10 Thus, equation (3) implies $\mu_{1} \quad \mu_{2}$ is regular on $a\left(\mathscr{H}_{1} \times \mathscr{B}_{2}\right)$ and also th it $\mu_{1} \quad \mu_{2}$ has a regular extension to $\sigma\left(\mathscr{B}_{1} \times \mathscr{\mathscr { B }}_{2}\right)([22]$, Theorem 3).

Remark 10. In particular, Theorem 9 contains Theorem 1 of [6], and the technigue used in the proof of Theorem 3 of [6] can be used to show thit if each μ_{i} is a regular Borel measure, then $\mu_{1}<\mu_{2}$ can be extended to a re,ulu Borel measure on $S_{1} \times S_{2}$.

If the weak topology on a locally convex space Z is used and a ve tor measure " with values in Z is regular with respect to the weak topolos. we say that μ is weakly regular. Using the methods of part (a) of Theorer i we can obtain

Theorem. 11. Let $\mu_{i}: \mathscr{M}_{i} \rightarrow X_{i}$ be weakly regular. If condition (x) is sat $\mathrm{sf} d$ then $\mu_{1} \times \mu_{2}$ is weakly regutar on $a\left(\mathscr{B}_{1} \times \mathscr{B}_{2}\right)$.

Proof: As in the proof of part (a) of Theorem 3, we obtain equation 2 and is above this equation yields the decired conclusion.

5. Necessity

In this concluding section we make son e remarks pertaming to the necen-it! of the assumptions $((\alpha)$ and $(\beta))$ made in the previous theorems. Takin_ into consideration the counter-examples presented in $[9]$ and [25$]$, it is ceit uml! desirable that some necessary conditions for the existence of product me inute be given. We consider the Hilbert space situation as in [9] and [25] Le+ H be a real Hilbert space and $A: H \rightarrow H$ be a bounded linear operator. Define a bilinear map b on $H \times H$ by $b(x, y) \quad(x, A y)$, where (, $)$ is the inner pro duct on H. According to Theorem 3 if b is an integral form, the product of any two H-valued vector measures has a countably additive exten-ion to the σ-algebra generated by the measurable rectangles. Recall that $b \mathrm{i}$ an integral form iff the operator A is a nuclear operator ([29], 49.6). These rem• 1 k , lead to the following conjecture:

Conjecture 12. Suppose b has the property that the product of any two H-valued vector measures has a countably additive extension to the σ-al_ebra generated by the measurable rectangles (as in the conclusion of Theorem 3 b)) Then A is a nuclear operator.

We have not been successful in establishing this conjecture. We do however present an example which illustrates that the operator A must indeed satiffy some restrictive conditions if b satisfies the condition set forth in Conjectur $\sim 1 \supseteq$

Let $A: l^{2} \rightarrow l^{2}$ be a compact operator with spectral representation A. $=\sum_{h} \lambda_{k}\left(x, \delta_{k}\right) \delta_{k}$, where $\left\{\lambda_{k}\right\} \in c_{0}, \quad \lambda_{k} \geqslant \lambda_{k+1}$, and $\delta_{k} \quad\left\{\delta_{k}, j\right\}_{j 1}^{\infty} \in l^{2}(12 \mid$
19.3; [29$], 48$: the sequence $\left\{\delta_{k}\right\}$ is used only for convencience, any complete on thonormal sequence will do). To show that A is nuclear amounts to showing that $\left\{\wedge_{k}\right\} \in l^{1}([12], 21.2 ;[29], 48)$. We have not been successful in establishing 1l is fact (which would essentially prove the conjectare for compact operators). but we do show that $\left\{\lambda_{k}\right\} \in l^{P}$ for every $p>2$ whenever b satisfies the conditions of the conjectur ${ }^{-}$. This at least shows that the operator A must satisfy some fairly stringent conditions if the condition of the conjecture is satisfied ([24], 8.3).

Let A_{1} be the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and for each $n>1$, let A_{n} be the $2^{n} \times 2^{n}$ matrin $A_{n}\left[A_{i j}\right]$, where $A_{11}=A_{12}=A_{22}=-A_{21}=A_{n-1}$. Let B the unitary operator on l^{2} defined to be the direct sum of $\left\{2^{-n \bullet} A_{"}\right\}_{1}^{\infty}$ as in [13]. and let $\left[b_{i j}\right]$ be the matrix of B with respect to $\left\{\delta_{j}\right\}$.

For $n \geqslant 1$, define $x_{n}-\left\{a_{n j}\right\}_{j}^{\alpha} \in l^{2}$ by $a_{n j}-0$ for $0 \leqslant j \leqslant 2\left(2^{n-1}-1\right)$, $a_{j} \quad 1$ for $2^{n}-1 \leqslant j \leqslant 2\left(2^{n}-1\right)$, and $a_{n j}=0$ for $j>2\left(2^{n}-1\right)$. For $1<1<\infty$ define a sequence $\left\{t_{j}\right\}$ (depending on r) belonging to l^{2} by $\left\{t_{j}\right\}$
$\sum_{/} \geq "^{-2} x_{n}$. (Note $\left.\Sigma t_{j}\right|^{2}-\Sigma\left(2 / \mathscr{2}^{r}\right)^{j}<\infty$.) The series $\Sigma t_{j} \delta_{j}$ and $\Sigma t_{j} B \delta_{j}$ are unconditionally convergent in l^{2} so we may define two l^{2}-valued measures μ and μ on the σ-algebra. I^{\prime} of all subsets of the positive integers by $\mu(\{n\})$
$t_{n} B \delta_{n}$ and $\nu(\{n\})-t_{n} \delta_{n}$. If the product measure $\mu \times \nu$ (with respect to b) has a (finite) countably additive extension to the σ-algebra qenerated by $.1<.1$, then $\left.\sum_{\mu, \ldots \prime}(\mu\{n\}), A v(\{m\})\right)=\sum_{\mu, \ldots \prime \prime} \lambda_{m} t_{n, l} t_{n}\left(B \delta_{n}, \dot{o}_{m}\right)=\sum_{\mu, \mu \prime} \lambda_{, n} t_{m} t_{n} b_{n, n}<$
 $1<r<32$, we have $1 /(3 / 2-r)>1$ (recall $r>1$ so $\left.\left\{t_{j}\right\} \in l^{2}\right)$ which implies $\sum_{n=1}^{\infty} \mathbf{2}^{n} \lambda_{2, n} 1^{1(32-1)}<\infty$. Hence $\left.\sum_{n}^{\infty} \lambda_{n}\right|^{1(3,2 r)}<\infty \quad$ ([26], 3.27).
That is, $\left\{\lambda_{j}\right\}$ belongs to $l^{1(32-1)}$ for $1<r<3 / 2$. But $1 /(3 / 2-r) \rightarrow 2$ as $r \rightarrow 1$ so that $\left\{\lambda_{j}\right\} \in l^{p}$ for each $p>2$.

This example falls far short of establishing the conjecture (even for compact operators), but even this example does show that the operator A must satisfy come restrictions in order to fulfill the hypothesis of the conjecture ([24], 4.3). If the conjecture can be established as stated, this would show that the theorems of sections 2, 3 and 4 are essentially the best general results that can be expected.

REFERENCES

11］BERBERTAN．S．：Measure and Tutegratıon．Macmillan．Nen York．196．）．
｜2｜BROOKS．J．K．：On the Existence of a Control Measure for Strongly Bomeded Vector Measures．Bull．Amer．Math．Soc．ici．1971， 999 1001．
L：3｜DINCULEANU，N．KLUVANEK，I．：On vector measures．Proe Lomdon Mati Soc．， 1 に． $1967,50.5$ ．512．
4］DUCHON，M．：On the projective tensor product of vector－vabaed mara－ume．Mat Čas．， $1 \sim, 1967,113120$.
［5］DUCHON．M．：On the projectise tensor poduct of vector－valued mea－uren TI Mat．Čas．， $19,1969,228$ 2：34．
［6｜DUCHON．M．：On tensor product of vector measures m localis compact－pacen Mat．Čas．．19，1969，324－329．
17｜DUCHON．M．：On vector measures in Cartestan product－Wat．Čan．．$\because 1.1971$. $241-247$ ．
［8｜DUCHON，M．KLCVANEK，I．：Inductaretensor product of vector－valued mean res，Mat．Čas．，1\％，1967，108－111．
［9］DUDLEY．R．M．－PAKULA，L．：A Comer－Example on the Immer Poduct of Measures．Indiana Univ．Math．Jour．，？ $1,1972.843$ 84．）．
 1958.
［11］EDWARDS，R．E．：l＇unctional Analysis Holt，Rinchart and Winston．New Y̌u， 1965.
［12〕 FLORET．K．WLOKA．J．：Einführung in die Theore der lokalkomexen Rame Springer－Verlag，Borlin， 1968.
113｜GELBALM．B．（ilL DE LAMADRID J．：Bases of temor prochuct of Banteh －paces．L＇acif．J．Math．．1／．1961，1281 1286.
114］（iROTHENDTECK．A．：Sur les applications lméaires fablement compact derpace detrpe C＇（K）．C＇an．J．Math．． 5.1953 .129173 ．
［1．5］HALMOs．P．：Introduction to Hilbert Space and the Theory of seretral Mult plicit！．（＇helsea．New York． 1951.
［16］HALMos．P．：Measume Theory．Vim Nontrand．New York．1950．
 New York． 1965.
｜18｜KLUVANEK，L．：An example concerning the projective tennor produe of vector valued measures．Mat．Čas．， 20,1970 ．st 8．3．
［19］KLUVANEK．T．KOVARIKOVA．M．：Product of spectral meanuren．C＇tecl Math．Jour．．1i，1967，241－255．
［ 20$]$ LEWIS．D．R．：Integration with Respect to Vector Measures．Pacif．J．Math．． 3 ． 1970，157 16．）．
［2 $1 \mid$ MÉTIVIER．M．：Limites projectives de mesures．Martingales．Applicatom Amal di Matem．puta ed appl．（IV）LXILI．1963．295 352．
$\lceil 2 . j$ OHBA．S．：On Vector Measures II．Proc．Japan Acad．，46．1970．130 13：3
$|\because: 3|$ PERSONN゙．A．PIETSC＇H．A．：p－nucleare and p－integrale Abbldungen in Ba nachräumen．Studia Math．．33．1969． 19 60．
［24］P1ETS（＇H．A．：Nukleare lokakonvexen Räume．Akarlemie Verlaw．Berhm．196．5
「25］RAO．M．：Countable Additivity of a Set Function Fudueed b？Two Vector－Val med Measures，Indiana Unir．Math．Jour．，21．1972． 847848.
［26｜RUDIN，W．：Principles of Mathematica Analysis．Kictiraw－Hill．Neい York． 1964

 - , , 197:3. :3.59 366.

 4

$$
\begin{aligned}
& \text { I) '. Mat (thateral くa (a) } \\
& \text { \\
, 1/tionstatr l , , ! }
\end{aligned}
$$

$$
\begin{aligned}
& l \text { i } 1
\end{aligned}
$$

