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MATEMATICKY CASOPIS
ROCENIK 23 1973 ¢fsLo 4

CHAINS OF DECOMPOSITIONS AND n-ARY RELATIONS

IVAN ZEMBERY, Bratislava

In some theorems of universal algebra (e. g. in the Schreier and the Jordan—
Holder theorems) the notion of a chain of congruences is used. The aim of this
paper is to show how a chain of congruences of an algebra can be described
by using an n-ary relation on the same algebra.

First we shall show the description of the finite chain of equivalences
on a set by means of an n-ary relation.

Throughout the paper the following symbols are used: The letters z, y, 2
with and without indexes always stand for the elements of a set 3. Decom-
positions and the corresponding equivalences are identified in the well-known
way. The letter 7 denotes an element of the standard set {1,...,n — 1}. If
« is an arbitrary symbol, then a’ denotes the same as a.

Definition 1. Let R be an n-ary relation on a set M.

Risn-reflexiveif (z, ..., x)R holds for every x and (x1, ..., %1, %, Ti+1,--.,%n) R
implies (X1, ..., Ti—1, Titl, Titls ---, Tn)R.

Risn-symmetricif (x1,...,%i-1,2%, Y, ..., y)Rimplies (x1, ..., 2,9, %, ...,%)R.

R is n-transitive if (x1,...,%-1,2,9, ..., y)B, (@1, ..., %1,9,2,...,2)R
wmply (x1, ..., 21, 2,2, ...,2)R and (x1, 22, ..., x2)R, (%2, 22, 23, ..., X3)R, ...,

(Xn—1, -+ Zn-1, Tn)R imply (21, ..., xa)R.

Definition 2. 4 decomposition of degree n on a set M is a sequence of decom-
positions Ry, ..., BRy_1 on the set M with R > Ry > ... > Ry

Theorem 1. Let Ry, ..., Rp1 be a decomposition of degree n on a set M.
Then the relation R defined by (x1, ..., zn)R < xiRixi+1 for each © is n-reflexive,
n-eymmetric and n-transitive. Conversely, let S be an n-reflexive, n-symmetric
and n-transitive relation on a set M. Then Si, ..., Sn—1 with xSy < (24, ...,
xi, Y, ..., y) S is a decomposition of degree m on a set M. Moreover, if
F(Ry, ..., Ry—1) denotes the corresponding m-ary relation and G(S) denotes
the corresponding decomposition of degree n, then G(F(Ri, ..., Bn-1))
=R,..., Rp1 and F(G(S)) = 8.
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Proof. Let Ry, ..., Ry-1 be a decomposition of degree » on a set 1. Let
R be defined as above. Since R; is a decomposition, xRz holds for all i, «.
The relation R can be readily verified to be n-reflexive. Suppose (21, ..., xi-1,
Z, Y, ..., y)R, this means x;Rjx;41 for j =1, ...,7 — 2, ;1 Riqx, «Rsy. Since
R; © Ry, xR; 1y holds. This and x;1 B;1x give x;1R;1y by the transitivity
of R;—1. The symmetry of R; gives yR;x. Both shown for each ¢ prove R to be
n-symmetric. Next suppose (21, ..., %i-1, %, ¥, ..., ), (b1, ..., %1, 9, 2,...,2)ER.
Hence xRy, yRiz, which implies #R;z. This holds for each ¢. The second part
of the definition of n-transitivity can be readily verified.

Conversely, let S be an n-ary relation on a set M satisfying the assumptions
of the theorem and the S; relations constructed as in the theorem. All the S;
are evidently reflexive. Suppose xS;y, that is (21, ..., 2% ¥y, ..., y)S, by the
n-symmetry (zt,...,2% 1, y,x,...,x)S holds and the mn-reflexivity follows
@, ..., ¥4 x, ..., x)S. This means yS;x, hence all relations S; are symmetric.
Suppose xSy, ySiz, that is (!, ..., x5, y, ..., y)S, W, ..., ¥%, 2, ..., 2)S. Since S;
have been shown symmetric, (42, ..., %, z, ..., 2)S holds. By the n-symmectry
we get (yl, ...,y L2, y,...,y)S and by the n-transivity (yt,..., yi 1, a,
2, ...,2)8. From the n-reflexivity we get («!,..., 2% 2,...,2)S, that means
28z, This shows S; to be transitive. Now we shall prove S; > S;41 for each s.
Suppose xS;11y, hence (21, ..., 2%, x, ¥, ..., y)S, from this by the n-symmetry
there follows that («!,...,2% y,,...,x)S, by the n-transitivity (a!, ...,
iy, ..., y)S, that is S;y. Hence S;, ..., Sy is a decomposition of degree n on
the set .

Let Ry, ..., Ry—1 be a decomposition of degree » and let G(F(Ry, ..., Ry-1))
=81, ..., 8z1. If xSy, then (21, ..., 2% y,...,y)F(Ry, ..., Ry) and so xRy
for each ¢. If xRy, then (21, ..., 2% y, ..., y)F (B, ..., Ryp-1) and xS;y. Let S be
an n-reflexive, n-symmetric and n-transitive relation and let F(G(S)) — R.
If (21, ..., 2)R then x;G4(S)x;+1 for each ¢ where G(S) = G1(S), ..., Gn-1(S).
It follows that (a}, 2%, ..., %, 2441, ..., 2i51)8 for each ¢ and (xy, ..., 2,)S.
Similarly we get that if (x1,...,2,)S, then (21, ..., x,)R. This completes
the proof of the theorem.

Now we shall describe the chain of the congruences of the algebra by means
of the n-ary relation. Let M be an algebra.

Definition 3. The n-ary relation R on the algebra M is said to be compatible
with an m-ary operation f if (X1, ..., Ti-1, Y1, Ti41, .-, Tn)R, (X1, ..., 25 1,
Yo, Titls - Tp)By oo, (@1, ooy Tic1, Ym, Tial,s ..., T)R oimply (21, ..., 251,
fy1, oo ym), Tiv1, .., u)R for all 5.

Theorem 2. Let Ry, ..., Rn-1 be a non-ascending chain of congruences on
the algebra M. Let R be the n-ary relation defined as (x1, ..., 2u)R < i Rixip
Jor all i. Then R s n-reflexive, n-symmetric, n-transitive and compatible with
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all operations. Conversely, let S be an n-reflexive, n-symmetric and n-transitive
relation on M, compatible with all operations. Then G(S) is a non-ascending
chain of congruences on M.

Proof. To prove the first part of the theorem it is sufficient to show that
R is compatible with all operations. The rest follows by Theorem 1. Let f be
an m-ary operation on M and let (x1,...,%i-1, Y1, Tss1, ..., To) B, (21, ...,
i1, Y2, Litls o5 L)y ooy (X1, o o5 Xic1, Ymy Xi41, --., Tu)B. Then xR 1y,
xi-1Ri1ye, ..., i-1Riy, hold. Since R;—1 is a congruence, zi—1Ri—1f(y1, ..., Ym)
holds. Similar arguments prove f(yi, ..., ym)Biir1. Clearly z;R;x;.q for all
jF4—1, 1 thus (21, ..., %-1, fW1, ..., Ym), Ti+1, ..., Xp)R. It shows the
compatibility of R with all operations. To prove the second part, let S be
a relation as it is assumed in the theorem. Let xGi(S)y1, ..., 2Gi(S)ym, that

means (21, ..., 2% y1, ..., y)S,..., (@, ..., X% Ym, ..., Yn)S. The n-symmetry
follows (xt, ..., 2" y1, 2, ..., 2)S, ..., (@, ..., 2 yp, , ..., 2)S. The com-
patibility of S gives (zt, ..., 2% 1, f(y1, ..., Ym), %, ..., x)S. Using the n-sym-
metry we get (zl, ..., 2% f(y1, --os Ym)s oo f(Y1, o, ym))S, that is

xG(S)f(y1, ..., ym). The theorem is proved.

The Schreier and the Jordan—Holder theorems use the notion of a refine-
ment of a chain of congruences. We shall give the definition of this notion
in terms of n-ary relations.

Definition 4. Let R be a decomposition of degree n on an algebra M. If all
Gi(R) are congruences, R is sard to be a congruence of degree n.

Definition 5. Let 1 < n1 < ne < ... < ng-1 < n. A congruence R of degree n
on an algebra M is called the ni, ..., ng-1 — refinement of a congruence S of
degree 'k on M if (x1,...,2.)R implies (xn , Zn,, ..., T, > Tn,_+1)S and
(1, ..., @x)S implies (a1, ..., &%, '+l .., wp2, .., L L af)R.

Theorem 3. A congruence R of degree n on an algebra M is the ni, ..., ng—y-
refinement of a congruence S of degree k on M if and only if Gh(S) = G.,(R),
Ga(S) = Guy(R), ..., Gr-1(S) = Gy, (R).

Proof. We shall write R; instead of G;(R) and S; instead of G4(S). To prove
the necessity, let Sy, that is («1, ..., 2%, y, ..., y)S. Because R is the n,, ...,
ng 1-refinement of S, (21,...,2",y, ..., y)R holds, thus zRy,y. Let xRy,
that is (21, ..., 2", y,...,y)R. Because R is the ni, ..., ng—,-refinement of
S, (@™, 2™, ..., 2", y,...,y)S holds, thus xS;y. To prove the sufficiency,
let Sy =Ry, S2=Ry,, ..., Sk—y = Ru,_,. If (x,,..., 24)R holds, it means
that x,R,xs, xsRoxs, ..., ¥n—yRu_y¥n. From R; > Ry > ... 2 R, it follows
Xn,BnZn,, TnLnZng, .-, X, Bn,_2n,_ .+, that gives xnSixn , X SoXn s -,
a‘nk_sz—zxnk-,, Tn, Sk—1n, 415 and so (Tu,, ®ny, ---» Tay,s Tn,,+1)S. Con-
versely, (x1,...,2x)S means 2,812z, ..., ¥k-1Sk12%. From the assumption
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it follows w1 Ry 2, ..., xg-1Rys,_xr. This by the reflexivity gives iRy, ...,
lenl_lxl , wanlxz , x2Rn1+lx2 s eeey sznz_lxz N .’L’anaa';,: 3  eeey .l'/;_lli)nk Uk,
XpRn,_ 1%k, ..., TxRy_12%, which implies (2], ..., a7, a3, ... 2%, ., a1,
., 23)R. The theorem is proved.
Definition 6. Let R be a congruence of degree n on an algebra 1 and let e € ).
Then we denote
ei() = {x | there are elements 241, Xita, ..., Xn-1 such that

(2, ..., 2% @441, Tivz, ..o, X1, €)R for all i},
Finally we formulate the Schreier and the Jordan—Holder theorems.

The Schreier theorem. Let M be any algebra with a one-element subalgebra {e}
and permutable congruences. Let B and S be congruences on M of degrees n and m,
respectively such that Gi(R) = G1(S) = I, Gp-1(R) = Gu-1(S) = O. Then there
exist congruences R’ and 8" on M of degree (n — 1)(m — 1) + 1 such that
R isthe 1, m, 2m — 1, 3m — 2, ..., (n — 2)m — n + 3-refinement of R, S’ is
th¢1,m,2n — 1,3n — 2, ..., (m — 2)n — m + 3-refinement of S and e;(R)/R;.1
are pairwise isomorphic with ex(S)/Sgq for j, k=1,2,..., (n — 1)(m — 1).

The Jordan—Hoélder theorem. Let M be any algebra with a one-element
subalgebra {e} and permutable congruences. Let R, S be unrefinable congruences
on M of degrees n and m, respectively, such that Gi(R) = G1(S) = I, Gn-1(R)
= Gpu-a(S) = 0. Then m =n and e¢;(R)[R;11 are pairwise tsomorphic with

ex(S)/Sk+1 for j, k=1,2,...,n — 2.
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