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M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 23 1973 Č Í S L O 4 

CHAINS OF DECOMPOSITIONS AND n-ARY RELATIONS 

IVAN ZEMBERY, Bratislava 

In some theorems of universal algebra (e. g. in the Schreier and the Jordan— 
Holder theorems) the notion of a chain of congruences is used. The aim of this 
paper is to show how a chain of congruences of an algebra can be described 
by using an w-ary relation on the same algebra. 

First we shall show the description of the finite chain of equivalences 
on a set by means of an w-ary relation. 

Throughout the paper the following symbols are used: The letters x, y, z 
with and without indexes always stand for the elements of a set M. Decom­
positions and the corresponding equivalences are identified in the well-known 
way. The letter i denotes an element of the standard set {1, . . . , n — 1}. If 
a is an arbitrary symbol, then a1 denotes the same as a. 

Definition 1. Let R be an n-ary relation on a set M. 
R is n-reflexive if(x,..., x)R holds for every x and (x\,..., Xi-\, Xi, Xi+i,..., xn)R 

implies (x\, ..., Xi-i, xi+i, Xi+i, ..., xn)R. 
R is n-symmetric if (x\,..., Xi-i, x, y,..., y)R implies (xi,..., Xi-i, y, x,..., x)R. 
R is n-transitive if (xi, . . . , Xi-\, x, y,..., y)R, (xi, ..., Xi-i, y, z, . . . , z)R 

imply (xi, ..., Xi-i,x,z, ..., z)R and (xi,x2, ..., x2)R, (x2,x2,xz, ..., xz)R, ..., 
(xn-i, ..., xn-i, xn)R imply (x\, ..., xn)R. 

Definition 2. A decomposition of degree n on a set M is a sequence of decom­
positions Ri, ..., Rn-i on the set M with Ri => R2 -̂  • •. -̂  Rn-i. 

Theorem 1. Let Ri, ...,Rn-i be a decomposition of degree n on a set M. 
Then the relation R defined by (xi, ..., xn)R o XiRiXi+i for each i is n-reflexive, 
n-symmetric and n-transitive. Conversely, let S be an n-reflexive, n-symmetric 
and n-transitive relation on a set M. Then Si, ...,Sn-i with xSiy o (xl, ..., 
xl, y, ..., y) S is a decomposition of degree n on a set M. Moreover, if 
F(Ri, ..., Rn-i) denotes the corresponding n-ary relation and G(S) denotes 
the corresponding decomposition of degree n, then G(F(Ri, ..., Rn-i)) 
= Ru ...,Rn-i and F(G(S)) = S. 
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Proof . Let Ri, ..., Rn-i be a decomposition of degree n on a set M. Let 
R be defined as above. Since Ri is a decomposition, xRiX holds for all i, x. 
The relation R can be readily verified to be w-reflexive. Suppose (xi, ..., xt-^, 
x,y, ..., y)R, this means XjRjXj+i for j = 1, . . . , i — 2, xt-iRt-ix, xRiy. Since 
Ri c 22$ _-, xRi-iy holds. This and xi-iRi-ix give Xi-iRi-iy by the transitivity-
of -Ri-i. The symmetry of Ri gives Hi^x. Both shown for each i prove R to be 
^-symmetric. Next suppose (xi, ..., xt-i ,x,y, ..., y)R, (xi, ..., xt-i ,y,z,..., z)R. 
Hence xRiy, yRiZ, which implies xRiZ. This holds for each i. The second part 
of the definition of ^-transitivity can be readily verified. 

Conversely, let S be an w-ary relation on a set M satisfying the assumptions 
of the theorem and the Si relations constructed as in the theorem. All the Si 
are evidently reflexive. Suppose xSiy, that is (x1, ...,xl,y, ...,y)8, by the 
^-symmetry (x1, . . . , x1'1, y, x, ..., x)S holds and the w-reflexivity follows 
(y1, ...,yi,x, ..., x)S. This means ySiX, hence all relations St are symmetric. 
Suppose xSiy, ySiZ, that is (x1, ..., xl,y, ..., y)S, (y1, ...,yl,z, ..., z)S. Since Si 
have been shown symmetric, (y1, ...,y\x, ..., x)S holds. By the ^-symmetry 
we get (y1, ..., yl~x, x,y, ..., y)S and by the w-transivity (y1, ..., y1"1, x, 
z, ..., z)S. From the w-reflexivity we get (x1, ...,xl,z, ..., z)S, that means 
xSiZ. This shows Si to be transitive. Now we shall prove Si => Si+i for each i. 
Suppose xSi+iy, hence (x1, ...,xl,x,y, ..., y)S, from this by the ^-symmetry 
there follows that (x1, ..., xl, y, x, ..., x)S, by the n-transitivity (x1, ..., 
xl, y, ..., y)S, that is xSiy. Hence $ , , . . . , Sn is a decomposition of degree n on 
the set M. 

Let Ri, ..., Rn-i be a decomposition of degree n and let G(F(Ri, ..., Rn-i)) 
= Si, ..., Sn-i. If xSty, then (x1, ..., xl, y, ..., y)F(Ri, ..., Rn) and so xRty 
for each i. If xRiy, then (x1, ...,xl,y, ..., y)F(Ri, ..., Rn-\) and xSiy. Let 8 be 
an ^-reflexive, ^-symmetric and 7i-transitive relation and let F(G(S)) — R. 
If (xi, ..., xn)R then XiGi(S)xt+i for each i where G(S) = Gi(S), ..., Gn-i(S). 
I t follows that (x},x\, ...,x\,Xi+i, ...,Xi+i)S for each i and (xi, ..., xn)S. 
Similarly we get that if (xi, ..., xn)S, then (xi, ..., xn)R. This completes 
the proof of the theorem. 

Now we shall describe the chain of the congruences of the algebra by means 
of the w-ary relation. Let M be an algebra. 

Definition 3. The n-ary relation R on the algebra M is said to be compatible 
with an m-ary operation f if (xi, ..., x%-i, yi, xi+i, ..., xn)R, (xi,...,xi i, 
2/2, Xi+i, . . . , xn)R, . . . , (xx, ..., Xi-i, ym, Xi+i, ..., xn)R imply (x±, ...,xt i , 
f(yi, • • •, Vm), Xi+i, ..., xn)R for all i. 

Theorem 2. Let Ri, ..., Rn-i be a non-ascending chain of congruences on 
the algebra M. Let R be the n-ary relation defined as (x±, ..., xn)R o XiRiXi+i 
for all i. Then R is n-reflexive, n-symmetric, n-transitive and compatible with 
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all operations. Conversely, let S be an n-reflexive, n-symmetric and n-transitive 
relation on M, compatible with all operations. Then G(S) is a non-ascending 
chain of congruences on M. 

Proof . To prove the first part of the theorem it is sufficient to show that 
R is compatible with all operations. The rest follows by Theorem 1. Let / be 
an m-ary operation on M and let (x_, ..., xi-1, y_, x%.\ _9 ..., xn)R9 (x\9 ..., 
Xi-_, y2, xi+1, . . . , xn)R9 . . . , (xx, ..., Xi-_, ym, xi+1, ..., xn)R. Then xi-1Ri-1y1, 
Xi-_Ri-_y2, ..., Xi-iRi-iym hold. Since Rt-_ is a congruence, xi-1Ri-1f(y1, ...,ym) 
holds. Similar arguments prove f(y_, ..., ym)RiXi+1. Clearly XjR_x_+1 for all 
j ^ i - 1, i thus (xl9 ...9Xi-l9f(y_9 ...9ym)9xi+l9 ...9xn)R. I t shows the 
compatibility of R with all operations. To prove the second part, let S be 
a relation as it is assumed in the theorem. Let xGi(S)y\9 ..., xGi(S)ym, t ha t 
means (a,1, ...,xl,y_, ..., y{)S9..., (x1, ..., x\ ym, ..., ym)S. The ^-symmetry 
follows (x1, ..., x1'1, y_, x, ..., x)S, ..., (x1, ..., x^1, ym, x, ..., x)S. The com­
patibility of S gives (x1, ..., x1'1, /(Hi, ..., ym)9 x9 ..., x)S. Using the ^-sym­
metry we get (x1, ..., xl, f(y_, ..., ym), ..., /(Hi, ..., ym))S, that is 
xGi(S)f(y_, ...,ym). The theorem is proved. 

The Schreier and the Jordan—Holder theorems use the notion of a refine­
ment of a chain of congruences. We shall give the definition of this notion 
in terms of w-ary relations. 

Definition 4. Let R be a decomposition of degree n on an algebra M. If all 
Gi(R) are congruences, R is said to be a congruence of degree n. 

Definition 5. Let 1 ^ n_ < n2 < . . . < nk-_ ^ n. A congruence R of degree n 
on an algebra M is called the n_, ..., nk-_ — refinement of a congruence S of 
degree k on M if (x_,...,xn)R implies (xn_9 xn_9 ..., xUk __, xUk _1+1)S and 
(x_, ..., xk)S implies (x\, ..., x\\ ^ 1+ 1 , . . . , x1_\\ ..., x ^ 1 , . . . , x7

k
l)R. 

Theorem 3. A congruence R of degree n on an algebra M is the n_9 . . . , nk-_-
refinement of a congruence S of degree h on M if and only if G_(S) = Gn_(R), 
G2(S) = Gn_(R), ...,Gk-_(S) = GnkJR). 

Proof . We shall write Ri instead of Gi(R) and St instead of Gi(S). To prove 
the necessity, let xSj-y, that is (x1, ...9xi,y9 . . . , y)S. Because I2 is the n_, . . . , 
7ik i-refinement of S9 (x1, . . . , x>1j

9 y9...9 y)R holds, thus xRUjy. Let xRU}y, 
that is (x1, . . . , xni

9 y9 . . . , y)R. Because R is the n_9 . . . , nk-_-refinement of 
S9 (xni, x"2

9 . . . , xn}
9 y9 . . . , y)S holds, thus xSjy. To prove the sufficiency, 

let S_ = Rn_9 S2 = Rn_, . . . , Sk-_ = Rnk_x. If (xl9 ..., xn)R holds, it means 
that x_R_x_, x2R2x_, ...9xn-_Rn-_xn. From R_ => R2 ^ ... => Rn-_ it follows 
xn_RnXn_, xnRn2Xn3, . . . , xnjc_Rnk_lxnk_1+1, that gives xnS_xnt9 XnS_Xn%9 ..., 
Xnk__Sk-2xnk__, xnk_xSk-_xnk__+l9 and so (xn_9 xn_, ..., Xnk__, Xnk_1+1)S. Con­
versely, (xi, ..., xk)S means ^ 1 ^ 2 , . . . , ^ - 1 ^ - 1 ^ . From the assumption 
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it follows xiRnjX2, . . . , orjc-_Rnkixjc. This by the reflexivity gives x\R\xi, ..., 
XiRni-l%l, X\RnxX_, X2Rni+lX2, . . . , XzRn_-lX2, X_Rn%Xz, ..., Xk-iRriK Xk, 
XkRn^+iXk, . . . , XkRn-iXk, which implies (x\, ..., x\\ x^1, ..., x'_2, ..., zf l -, 
. . . , x%)R. The theorem is proved. 

Definition 6. Let R be a congruence of degree n on an algebra 21 and let e e 21. 
Then we denote 
et(R) = {x | there are elements xt+±, Xi+_, ..., xn-± such that 

(x1, ..., xl, xt+i, Xi+2, . . . , xn-i, e)R for all i}. 
Finally we formulate the Schreier and the Jordan—Holder theorems. 

The Schreier theorem. Let 21 be any algebra with a one-element subalgebra {e} 
and permutable congruences. Let R and S be congruences on 21 of degrees n and m, 
respectively such that G_(R) = G±(S) = I, Gn-i(R) = Gm-±(S) = O. Then there 
exist congruences R' and S' on M of degree (n — \)(m — 1) + 1 such that 
R' is the 1, m, 2m — 1, 3m — 2, . . . , (n — 2)m — n + ^-refinement of R, S' is 
the 1, n, 2n — 1, 3n — 2, . . . , (m — 2)n — m -f- 3-refinement of S and ej(R)jRj-ri 
arc pairwise isomorphic with ejc(S)/Sk+i for j,k — I, 2, ..., (n — l)(m — 1). 

The Jordan—Holder theorem. Let 21 be any algebra with a one-element 
subalgebra {e} and permutable congruences. Let R, S be unrefinable congruences 
on 21 of degrees n and m, respectively, such that G\(R) = G±(S) = / , Gn-i(R) 
= Gm-i(S) = O. Then m = n and ej(R)/Rj+± are pairivise isomorphic with 
ek(S)ISk+1forj,k= l,2,...,n-2. 
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