Matematicko-fyzikálny časopis

Miroslav Fiedler; Vlastimil Pták
Some Inequalities for the Spectrum of a Matrix

Matematicko-fyzikálny časopis, Vol. 10 (1960), No. 3, 148--166
Persistent URL: http://dml.cz/dmlcz/126652

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1960

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

SOMEINEQUALITIES FOR THE SPECTRUM OF A MATRIX

miroslav fiedíer, VLAstimil PTÁK, Praha

Introduction. It is the purpose of the present paper to prove several results which enable us to associate with every matrix a region of the complex plane which contains the spectrum of the matrix considered. All known results of this type consist in formulas which use absolute values of the elements of the given matrix (see below). In distinction to these theorems, our results are based on the use of a norm of the whole non-diagonal part of the matrix. Our results are valid for a fairly wide range of norms, including especially all l_{p}-norms.

Further, the results of the present paper are proved for matrices partitioned into blocks and make clear the different role played by the diagonal and nondiagonal blocks.

The paper is divided into eight sections. In the first one, some auxiliary results and definitions are collected. The second and third paragraph contain sufficient conditions for the regularity of a matrix. In sections four and five, these conditions are applied to matrices $\lambda E-A$ to obtain inequalities for the proper values of A. In the sixth section we apply tensor products of linear spaces to obtain some auxiliary inequalities.

The seventh and eighth sections contain several corollaries of the main results in the most important special cases.

The starting point of all previous investigations of this type was the result of Hadamard on matrices with "dominant diagonal elements" stating that a matrix $\left(a_{i k}\right)$ is regular if $\left|a_{i i}\right|>\sum_{k \neq i}\left|a_{i k}\right|$ for each i. Applied to the matrix $\lambda E-A$ this yields the fact that the whole spectrum of A is contained in the union of the "Cershgorin circles" $\left|a_{i i}-\lambda\right| \leqq \sum_{k \neq i}\left|a_{i k}\right|$. There is an extensive literature on questions of this type; a good bibliography may be found in the monograph of Householder [4]. As for norms of matrices and tensor product, the reader may consult [1], [2] and [3].

1. Notations and lemmas

Let X be the linear space of all vectors x with complex coordinates x_{1}, \ldots, x_{n}. We denote by G the set of all real functions g defined on X which fulfil the following conditions:
(1) $g\left(x_{1}+x_{2}\right) \leqq g\left(x_{1}\right)+\dot{g}\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$;
(2) $g(\lambda x)=|\lambda| g(x)$ for all $x \in X$ and every complex number λ;
(3) $g(x)=0$ implies $x=0$.

The functions $g \in G$ are called norms on X. To every norm $g \in G$ there corresponds an associated norm of n-rowed square-matrices as follows: for such a matrix

$$
g(A)=\sup _{\substack{x \in X \\ g(x) \leqq 1}} g(A x) .
$$

- It is easy to verify that this matrix norm satisfies the relations

$$
\begin{aligned}
& g(A+B) \leqq g(A)+g(B) \\
& g(A B) \leqq g(A) g(B) \\
& g(\lambda A)=|\lambda| g(A)
\end{aligned}
$$

for any matrices A, B and complex numbers λ.
We shall denote by N the set $\{1,2, \ldots, n\}$. With every subset $K \subset N$ we associate a projector $P(K)$ in X transforming a vector x with coordinates x_{i} into the vector y with the coordinates $y_{i}=x_{i}$ for $i \in K$ and $y_{j}=0$ for j non $\in K$.

Definition. Let L denote the subset of those norms $g \in G$ which fulfil the following conditions:
$\left(L_{1}\right) \quad$ If $K \subset N$, then $g(P(K)) \leqq 1 ;$
$\left(L_{2}\right) \quad$ If K_{1}, \ldots, K_{r} is a partition of N and $P_{i}=P\left(K_{i}\right), i=1, \ldots, r$, then

$$
g\left(\sum_{i=1}^{r} P_{i} A P_{i}\right) \leqq \max _{i} g\left(P_{i} A P_{i}\right)
$$

for every matrix A;

$$
\left(L_{3}\right) \quad \text { Let } K \subset N, P=P(K), Q=P(N-K)
$$

if A is a matrix with $P A P=0$, then

$$
g(P A Q+Q A P) \leqq g(A)
$$

$(1,1)$ Let $g \in G$ be a norm which fulfills $\left(L_{1}\right)$ and the following condition:
$\left(L_{4}\right) \quad$ If $K \subset N, P=P(K), Q=P(N-K)$, then $g(A) \leqq \max \{g(P A Q)$, $g(Q A P)\}$ for every matrix A satisfying $P A P=Q A Q=0$.
Then g has the property $\left(L_{3}\right)$.

Proof. Suppose that a matrix \boldsymbol{A} fulfills $P A P=0$. Let us put $B=A-$ $-Q A Q$. It follows that $P B P=Q B Q=0, \quad P B Q=P A Q, Q B P=Q A P$, $P A Q+Q A P=B$. Assuming $\left(L_{4}\right)$, we see that $g(P A Q+Q A P)=g(B) \leqq$ $\leqq \max \{g(P B Q), g(Q B P)\}=\max \{g(P A Q), g(Q A P)\} \leqq g(A)$; the last inequality is a consequence of $\left(L_{1}\right)$. This proves (L_{3}).
$(1,2)$ If x is a vector with coordinates x_{1}, \ldots, x_{n}, put $g_{\infty}(x)=\max _{i}\left|x_{i}\right|$ and $g_{(p)}(x)=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{n}}$ for $p \geqq 1$. Then $g_{\mathrm{oo}} \in L$ and $g_{(p)} \in L$.

Proof. It is a well known fact that $g_{\infty}(A)=\max _{i} \sum_{k}\left|a_{i k}\right|$ for every matrix A. Using this expression, the conditions (L) may be verified immediately. Now let $p \geqq 1 .\left(L_{1}\right)$ and $\left(L_{2}\right)$ being evident, it is sufficient according to $(1,1)$ to prove $\left(L_{4}\right)$.

Let $K \subset N, P=P(K), Q=P(N-K)$, and let A be a matrix with $P A P=Q A Q=0$. Is is easy to see that

$$
\left[g_{(p)}(P y)\right]^{p}+\left[g_{(p)}(Q y)\right]^{p}=\left[g_{(p)}(y)\right]^{p}
$$

for every vector $y \in X$. From this fact and from $P^{2}=P, Q^{2}=Q$ it follows that, for every vector $x \in X$,

$$
\begin{gathered}
{\left[g_{(p)}(A x)\right]^{p}=\left[g_{(p)}(P A x)\right]^{\prime}+\left[g_{(p)}(Q A x)\right]^{p}=} \\
=\left[g_{(p)}(P A(P+Q) x)\right]^{p}+\left[g_{(p)}(Q A(P+Q) x)\right]^{p}= \\
=\left[g_{(p)}(P A Q x)\right]^{p}+\left[g_{(p)}(Q A P x)\right]^{p} \leqq \\
\leqq\left[g_{(p)}(P A Q)\right]^{p}\left[g_{(p)}(Q x)\right]^{p}+\left[g_{(p)}(Q A P)\right]^{\prime \prime}\left[g_{(p)}(P x)\right]^{p} \leqq \\
\leqq\left(\left[g_{(p)}(Q x)\right]^{p}+\left[g_{(p)}(P x)\right]^{p} \max \left\{\left[g_{(p)}(P A Q)\right]^{\prime},\left[g_{(p)}(Q A P)\right]^{p}\right\}=\right. \\
=\left[g_{(p)}(x)\right]^{p} \max \left\{\left[g_{(p)}(P A Q)\right]^{p},\left[g_{(p)}(Q A P)\right]^{p}\right\} .
\end{gathered}
$$

Hence

$$
g_{(p)}(A x) \leqq g_{(p)}(x) \max \left\{g_{(p)}(P A Q), g_{(p)}(Q A P)\right\}
$$

so that $g_{(p)}(A) \leqq \max \left\{g_{(p)}(P A Q), g_{(p)}(Q A P)\right\}$. The proof is complete.
It will be convenient to introduce some further notations and conventions. Let $K \subset N$ and $P=P(K)$ and put $Z=\boldsymbol{P} \boldsymbol{X}$. Let $g \in L$ and let T be a linear operator which transforms Z into itself. We intend to show that the norm of T, associated with g on Z, is equal to the norm of $T P$, associated with g on X. To see that, let us denote by g_{1} the norm induced on Z by g. The associated norm $g_{1}(T)$ is equal to

$$
g_{1}(T)=\sup _{\substack{x \in Z \\ g(x) \leqq 1}} g(T x)=\sup _{\substack{x \in Z \\ g(x) \leqq 1}} g(T P x) \leqq \sup _{\substack{x \in X \\ g(x) \leqq 1}} g(T P x)=g(T P)
$$

Conversely,

$$
\begin{aligned}
& g(T P)=\sup _{g(x) \leqq 1} g(T P x)=\sup _{g(x) \leqq 1} g_{1}(T P x) \leqq \\
& \leqq g_{1}(T) \sup _{g(x) \leqq 1} g_{1}(P x)=g_{1}(T) g(P) \leqq g_{1}(T)
\end{aligned}
$$

Thus $g_{1}(T)=g(T P)$. It will lead to no misunderstanding we if agree to write $g(T)$ instead of $g_{1}(T)$.

Finally, if B is a matrix, we define $\hat{g}(P ; B)=0$ if $P B P$ is singular on Z, $\hat{g}(P ; B)=[g(W)]^{-1}$ if $P B P$ is a regular operator on Z and W is its inverse operator on Z. For $P=E$ we write $\operatorname{simply} \hat{g}(B)$ instead of $\hat{g}(E ; B)$. It is easy to verify that

$$
g(P ; B)=\inf _{\substack{x \in P X, x \neq 0}} \frac{g(B(x)}{} g(x)
$$

2. A regul rity condition for a matrix

In this paragraph we derive a generalization of the well known Hadamard regularity condition for matrices with dominant principal diagonal.
$(2,1)$ Theorem. Let A be a matrix, K_{1}, \ldots, K_{r} a partition of $N, P_{i}=P\left(K_{i}\right)$. Let us denote by B the matrix $B=A-\sum_{i=1}^{r} P_{i} A P_{i}$ and let g be a norm $g \in G$ fulfilling conditions $\left(L_{1}\right)$ and $\left(L_{2}\right)$. Let $\hat{g}\left(P_{i} ; A\right)>g(B)$ for $i=1, \ldots$, r. Then A is regular.

Proof. Let us put $R=\sum_{i=1}^{r} \sqrt{g\left(W_{i}\right)} P_{i}, W=\sum_{i=1}^{r}\left[g\left(W_{i}\right)\right]^{-1} W_{i} P_{i}$, where W_{i} are operators on $P_{i} X$, inverse to $P_{i} A P_{i}$; the operators W_{i} exist since $\hat{g}\left(P_{i} ; A\right)>$ >0. According to $\left(L_{1}\right)$ and $\left(L_{2}\right)$, we have $g(R) \leqq \max \sqrt{g\left(W_{i}\right)}$ and $g(W) \leqq 1$.

Now, $R A R=R\left(\sum_{i=1}^{r} P_{i} A P_{i}+B\right) R=\sum_{i=1}^{r} g\left(W_{i}\right) P_{i} A P_{i}+R B R$. It is easy to see that the matrices $\sum_{i=1}^{r} g\left(W_{i}\right) P_{i} A P_{i}$ and W are inverse to each other. Consequently, $R A R=\left(\sum g\left(W_{i}\right) P_{i} A P_{i}\right)(E+W R B R)$. But $g(W R B R) \leqq g(R B R) \leqq$ $\leqq[g(R)]^{2} g(B) \leqq g(B) \max _{i} g\left(W_{i}\right)=\frac{g(B)}{\min _{i} \hat{g}\left(P_{i} ; A\right)}<1$, so that the series $\sum_{i=0}^{\infty} H^{i}$ is convergent for $H=-W R B R$ to the matrix $(E+W R B R)^{-1}$. Hence $R A R$ is regular, and so is A.

3. Another regularity condition for a matrix

The results of the present paragraph are based on some inequalites for norms of matrices. These inequalities will enable us to prove a general criterion for the regularity of a matrix.
(3,1) Let $K \subset N, P=P(K), Q=P(N-K)$. Let A be a matrix with $P A P=$ $=0$; if $\sigma \geqq 0$ and $\tau \geqq 0$, put $B=\sigma(P A Q+Q A P)+\tau Q A Q$. Then $g(B) \leqq$ $\leqq \max (\sigma, \tau) g(A)$ for every norm $g \in L$.

Proof. Let us put $\xi=\min (\sigma, \tau)$. Since $A=(P+Q) A(P+Q)=P A Q+$ $+Q A P+Q A Q$, we have $B=(\sigma-\xi)(P A Q+Q A P)+(\tau-\xi) Q A Q+\xi A$. According to $\left(L_{1}\right)$ and $\left(L_{3}\right)$, both $g(Q A Q) \leqq g(A)$ and $g(P A Q+Q A P) \leqq g(A)$ are fulfilled, so that $g(B)=g[(\sigma-\xi)(P A Q+Q A P)+(\tau-\xi) Q A Q+\xi A] \leqq$ $\leqq[(\sigma-\xi)+(\tau-\xi)+\xi] g(A)=\max (\sigma, \tau) g(A)$.
$(3,2)$ Let K_{1}, \ldots, K_{r} be a partition of $N, P_{i}=P\left(K_{i}\right)$, and let $\alpha_{1} \geqq \alpha_{2} \geqq$ $\geqq \ldots \geqq \gamma_{r} \geqq 0$. Let A be a matrix with $P_{1} A P_{1}=0$. Then for every norm $g \in L$

$$
g\left(\sum_{i, j=1}^{\prime} \alpha_{i} x_{j} P_{i} A P_{j}\right) \leqq \alpha_{1} \chi_{2} g(A)
$$

Proof. Let us put $B=\sum_{i, j=1}^{r} \kappa_{i} \kappa_{j} P_{i} A P_{j}$. For $r=1$ or $x_{2}=0$ we have $B=0$ and the assertion is valid. Thus, let $\alpha_{2}>0$. We put $H=\sum_{i, j=2}^{r} \alpha_{i} \alpha_{j} R_{i} A R_{j}$ where $R_{2}=P_{1}+P_{2}, R_{3}=P_{3}, \ldots, R_{r}=P_{r}$. It is easy to verify that $P_{1} H P_{1}=0$ and

$$
B=\frac{\chi_{1}}{\alpha_{2}}\left(P_{1} H Q_{1}+Q_{1} H P_{1}\right)+Q_{1} H Q_{1}
$$

where $Q_{1}=P_{2}+\ldots+P_{r}$. It follows from $(3,1)$ that

$$
g(B) \leqq \max \left(\frac{x_{1}}{x_{2}}, 1\right) g(H)=\frac{x_{1}}{x_{2}} g(H)
$$

Now $H=D A D$ where $D=\sum_{i=2}^{r} \alpha_{i} R_{i}$, so that $g(D) \leqq \alpha_{2}$ according to $\left(L_{3}\right)$. Hence $g(H) \leqq g^{2}(D) g(A)$ and

$$
g(B) \leqq \frac{x_{1}}{x_{2}} g(H) \leqq \frac{x_{1}}{x_{2}} x_{2}^{2} g(A)=\alpha_{1} x_{2} g(A) .
$$

This completes the proof.
$(3,3)$ Let K_{1}, \ldots, K_{r} be a partition of $N, P_{i}=P\left(K_{i}\right)$. Let A be a matrix with $P_{i} A P_{i}=0$ for $i=1,2, \ldots$, r, let D be a matrix with $D=$
$=\sum_{i=1}^{r} P_{i} D P_{i}$. Then $g(D A D) \leqq \max _{\substack{i, j \\ i \neq j}}\left\{g\left(P_{i} D P_{i}\right) g\left(P_{j} D P_{j}\right)\right\} g(A)$ for every norm $g \in L$.

Proof. If $D=0$, the assertion is true. Let $D \neq 0$, so that $P_{t} D P_{t} \neq 0$ for at least one t. Let us put $\alpha_{i}=g\left(P_{i} D P_{i}\right)$ and $\sigma_{i}=\frac{1}{\alpha_{i}}$ for $\alpha_{i} \neq 0, \sigma_{i}=0$ for $\alpha_{i}=0$. For the matrix $M=\sum_{i=1}^{r} \sigma_{i} P_{i} D P_{i}$, we get $g(M) \leqq 1$ by $\left(L_{2}\right)$, and it is easy to verify that

$$
D A D=M\left(\sum_{i, j} \alpha_{i} x_{j} P_{i} A P_{j}\right) M
$$

From $(3,2)$ it follows that

$$
g(D A D) \leqq g\left(\sum_{i, j} \alpha_{i} x_{j} P_{i} A P_{j}\right) \leqq \max _{\substack{i, j \\ i \neq j}}\left(x_{i} x_{j}\right) g(A)
$$

which completes the proof.
$(3,4)$ Theorem. Let $r \geqq 2$, let K_{1}, \ldots, K_{r} be a partition of $N, P_{i}=P\left(K_{i}\right)$. Let us denote, for a given matrix $A, B=A-\sum_{i=1}^{r} P_{i} A P_{i}$. Let $g \in L$ and suppose that

$$
\hat{g}\left(P_{i} ; A\right) \hat{g}\left(P_{j} ; A\right)>g^{2}(B)
$$

for each pair $i, j(i, j=1, \ldots r), i \neq j$. Then A is regular.
Proof. Since $\hat{g}\left(P_{i} ; A\right)>0$, it follows that $P_{i} A P_{i}$ is regular on $P_{i} X$ for $i=1, \ldots, r$. Let us denote by W_{i} the operator on $P_{i} X$, inverse to $P_{i} A P_{i}$. Put $R=\sum_{i=1}^{r} \sqrt{g\left(W_{i}\right)} P_{i}, W=\sum_{i=1}^{r} \frac{1}{g\left(W_{i}\right)} W_{i} P_{i}$. According to $\left(L_{1}\right)$ and $\left(L_{2}\right)$, we have $g(W) \leqq 1$. In the same way as in the proof of $(2,1)$,

$$
\begin{gathered}
R A R=R\left(\sum_{i=1}^{r} P_{i} A P_{i}+B\right) R=\sum_{i=1}^{r} g\left(W_{i}\right) P_{i} A P_{i}+R B R= \\
=\left(\sum_{i=1}^{r} g\left(W_{i}\right) P_{i} A P_{i}\right)(E+W R B R)
\end{gathered}
$$

From $(2,3)$ we get $g(W R B R) \leqq g(R B R) \leqq$

$$
\leqq \max _{i, j, i \neq j}\left(\sqrt{\overline{g\left(W_{i}\right)}} \sqrt{g\left(W_{j}\right)}\right) g(B)=\frac{g(B)}{\min _{i, j, i \neq j}\left\{\hat{g}\left(P_{i} ; A\right) \hat{g}\left(P_{j} ; A\right)\right\}}<1
$$

Hence $R A R$, as well as A, is regular.

4. The spectrum of a matrix

In this section, we shall use the criterion of regularity given in $(2,1)$ to obtain an estimate of the spectrum of a matrix.
$(4,1)$ Let K_{1}, \ldots, K_{r} be a partition of $N, P_{i}=P\left(K_{i}\right)$. Let A be a matrix, $B=A-\sum_{i=1}^{r} P_{i} A P_{i}$. Let g be a norm $g \in G$ which fulfills the conditions $\left(L_{1}\right)$ and $\left(L_{2}\right)$. Let us denote by $M_{i}(i=1,2, \ldots, r)$ the region of those complex numbers z, for which

$$
\hat{g}\left(P_{i} ; A-z E\right) \leqq g(B)
$$

Then, every eigenvalue of A lies at least in one M_{i}.
Proof. Let λ be a complex number outside every M_{i}. It follows that

$$
\hat{g}\left(P_{i} ; A-\lambda E\right)>g(B)
$$

for $i=1,2, \ldots, r$. Consequently, the matrix $A-\lambda E$ is regular by $(2,1)$.

5. Second theorem on the spectrum of a matrix

In this paragraph we use theorem $(3,4)$ to obtain regions in the complex plane, containing all the eigenvalues of a given matrix.
$(5,1)$ Let $K_{1}, \ldots, K_{r}(r \geqq 2)$ be a partition of $N, P_{t}=P\left(K_{i}\right)$. Let A be a given matrix, $g \in L$ a norm, and let us denote by $M_{i j}(i, j=1 \ldots, r, i \neq j)$ the region of those complex numbers z, for which

$$
\hat{g}\left(P_{i} ; A-z E\right) \hat{g}\left(P_{j} ; A-z E\right) \leqq g^{2}\left(\sum_{\substack{k, l=1 \\ k \neq l}}^{r} P_{k} A P_{l}\right),
$$

Then every eigenvalue of A lies at least in one of the regions $M_{i j}(i, j=1, \ldots, r$; $i \neq j$).

Proof. Let λ be a complex number such that λ non $\in M_{i j}$ for $i, j=1, \ldots, r$ and $i \neq j$;i. e.

$$
\hat{g}\left(P_{i} ; A-\lambda E\right) \hat{g}\left(P_{i} ; A-\lambda E\right)>g^{2}\left(\sum_{\substack{k, l=1 \\ k \neq l}}^{r} P_{k} A P_{l}\right)
$$

Since $\sum_{\substack{k, l=1 \\ k \neq 1}}^{r} P_{k} A P_{l}=A-\lambda E-\sum_{i=1}^{r} P_{i}(A-\lambda E) P_{i}$, it follows immediately from theorem $(3,4)$ that $A-\lambda E$ is regular.
$(5,2)$ Theorem. Let $K_{1}, \ldots, K_{r}(r \geqq 2)$ be a partition of N, k_{j} the number of elements of $K_{j}, P_{j}=P\left(K_{j}\right)$. Let us define for $0<\xi<1$ the function $v(\xi)=$ $=\frac{1}{\xi}\left(1-\sqrt{1-\xi^{2}}\right), \quad v(0)=0$. Let A be a matrix, $B=A-\sum_{j=1}^{r} P_{i} A P_{j}, g \in L$ a norm. If i is a given index $(1 \leqq i \leqq r)$, let

$$
c_{i}=\min _{k \neq i}\left\{\inf _{\lambda}\left[\hat{g}\left(P_{i} ; A-\lambda E\right)+\hat{g}\left(P_{k} ; A-\lambda E\right)\right]\right\} .
$$

If $c_{i}>0$ and

$$
\sigma_{i}=\frac{2 g(B)}{c_{i}}<1
$$

then the region H_{i} of all complex numbers z such that

$$
\hat{g}\left(P_{i} ; A-z E\right) \leqq g(B) v\left(\sigma_{i}\right)
$$

contains exactly k_{i} eigenvalues of A (each of them considered with the corresponding multiplicity).

All remaining eigenvalues are contained in the region $H=\bigcup_{\substack{j=1 \\ j \neq i}}^{+} H_{j}^{*}$ where H_{j}^{*} is the set of all complex numbers for which $\hat{g}\left(P_{j} ; A-z E\right) \leqq g(B)$. We have $H_{i} \subset H_{i}^{*}$ and H_{i}^{*} is disjoint from H.

Proof. It is easy to see that the assertion is valid if $B=0$. Hence let $B \neq 0$. Then $0<\sigma_{i}<1$ and consequently $0<\boldsymbol{v}\left(\sigma_{i}\right)<1$.

We shall prove first, that H_{i}^{*} is disjoint from each H_{j}^{*} for $j \neq i$. If, on the contrary, $\lambda_{0} \in H_{i}^{*} \cap H_{j}^{*}(j \neq i)$, then $c_{i} \leqq \hat{g}\left(P_{i} ; A-\lambda_{0} E\right)+\hat{g}\left(P_{j} ; A-\lambda_{0} E\right) \leqq$ $\leqq 2 g(B)=\sigma_{i} c_{i}<c_{i}$. This is a contradiction.

Further, all the regions H_{j}^{*} and the region H_{i} are bounded: if $z \neq 0$, $\frac{\hat{g}\left(P_{j} ; A-z E\right)}{|z|}=\hat{g}\left(P_{j} ; E-z^{-1} A\right) \rightarrow \hat{g}\left(P_{j} ; E\right)$ for $|z| \rightarrow \infty$. But $\hat{g}\left(P_{j} ; E\right)=$ $=\left[g\left(P_{j}\right)\right]^{-1} \geqq 1$ according to $\left(L_{1}\right)$, so that

$$
g\left(P_{j} ; A-z E\right)>\frac{|z|}{2}
$$

for all sufficiently large z.
Now, let $G=H_{i} \cup \underset{\substack{j=1 \\ j \neq i}}{r} H_{j}^{*}$. We shall prove that all eigenvalues of A are contained in G. This will follow from theorem $(3,4)$ if we prove that for λ non $\in G$ and each pair $k, l(k, l=1, \ldots, r, k \neq l) g\left(P_{k} ; A-\lambda E\right) \hat{g}\left(P_{l} ; A-\lambda E\right)>$ $>g^{2}(B)$, since then $A-\lambda E$ is regular.
To prove this inequality, we shall distinguish two cases:
(1) λ non $\in H_{k}^{*}$ and λ non $\in H_{l}^{*}$. Then

$$
\hat{g}\left(P_{k} ; A-\lambda E\right)>g(B)
$$

and

$$
\hat{g}\left(P_{l} ; A-\lambda E\right)>g(B)
$$

which implies the inequality considered.
(2) $\lambda \in H_{k}^{*}$, so that $k=i$. Further,

$$
\hat{g}\left(P_{l} ; A-\lambda E\right) \geqq c_{i}-\hat{g}\left(P_{i} ; A-\lambda E\right)
$$

which gives

$$
\hat{g}\left(P_{i} ; A-\lambda E\right) \hat{g}\left(P_{l} ; A-\lambda E\right) \geqq \xi\left(c_{i}-\xi\right)
$$

for $\xi=\hat{g}\left(P_{i} ; A-\lambda E\right)$. Since $\lambda \in H_{i}^{*}$ and λ non $\in H_{i}$, we have clearly $g(B) v\left(\sigma_{i}\right)<\xi \leqq g(B)$. The function $x\left(c_{i}-x\right)$ is increasing for $x<\frac{c_{i}}{2}$, and, consequently, in the interval $\left\langle g(B) v\left(\sigma_{i}\right), g(B)\right\rangle$. Hence

$$
\begin{gathered}
\xi\left(c_{i}-\xi\right)>g(B) v\left(\sigma_{i}\right)\left(c_{i}-g(B) v\left(\sigma_{i}\right)\right)= \\
=g(B) v\left(\sigma_{i}\right)\left[\frac{2 g(B)}{\sigma_{i}}-g(B) v\left(\sigma_{i}\right)\right]=g^{2}(B) v\left(\sigma_{i}\right)\left[\frac{2}{\sigma_{i}}-v\left(\sigma_{i}\right)\right]=g^{2}(B) .
\end{gathered}
$$

This proves the desired inequality in the second case. Now, let us denote by $A(\xi), 0 \leqq \xi \leqq 1$, the matrix

$$
A(\xi)=\sum_{j=1}^{r} P_{j} A P_{j}+\xi \sum_{\substack{j, k=1 \\ j \neq k}}^{r} P_{j} A P_{k}
$$

If we define, in a similar way as in the theorem,

$$
B(\xi)=A(\xi)-\sum_{j=1}^{r} P_{j} A(\xi) P_{j}
$$

and the numbers $c_{i}(\xi)$ and $\sigma_{i}(\xi)$, we obtain

$$
B(\xi)=\xi B, c_{i}(\xi)=c_{i}, \sigma_{i}(\xi)=\xi \sigma_{i}
$$

It is easy to see that the assumptions of the preceding considerations are fulfilled for every $\xi \in\langle 0,1\rangle$ so that, for every $\xi \in\langle 0,1\rangle$, the matrix $A(\xi)-\lambda E$ is regular, if λ lies in the complement C of G. The region C separates H_{i} from
$\cup_{j=1}^{r} H_{j}^{*}$. Since the roots of a polynomial of a given degree depend continuously $\underset{\substack{j=1 \\ j \neq i}}{ }$
on its coefficients, the matrix $A=A(1)$ has the same number of eigenvalues
in H_{i} as the matrix $A(0)$. But the matrix $A(0)-\lambda E=\sum_{j=1}^{r}\left(P_{j} A P_{j}-\lambda P_{j}\right)$ is singular if and only if at least one summand $P_{j} A P_{j}-\lambda P_{j}$ is singular in $P_{j} X$. The summand $P_{i} A P_{i}-\lambda P_{i}$ is singular in $P_{i} X$ for k_{i} numbers (each considered with its multiplicity), all of them lying in H_{i}. If $j \neq i$, then $P_{j} A P_{i}-\lambda P_{j}$ is regular in $P_{j} X$ for λ non $\in H_{j}^{*}$, hence for $\lambda \in H_{i}, H_{j}^{*}$ being disjoint from H_{i}. It follows that H_{i} contains exactly k_{i} eigenvalues of $A(0)$, and consequently, of A (with corresponding multiplicities). The proof is complete.
$(5,3)$ Theorem. Let $K_{1}, \ldots, K_{r}(r \geqq 2)$ be a partition of N, k_{j} the number of elements of $K_{j}, P_{j}=P\left(K_{j}\right)$. Let A be a matrix, $B=A-\sum_{j=1}^{r} P_{j} A P_{j}$, let $g \in L$. Let i be a given index and suppose that

$$
0<c_{i}^{\prime} \leqq \min _{k \neq i}\left\{\inf _{i}\left(\hat{g}\left(P_{i} ; A-\lambda E\right)+\hat{g}\left(P_{k} ; A-\lambda E\right)\right)\right\}
$$

and

$$
\sigma_{i}^{\prime}=\frac{2 g(B)}{c_{i}^{\prime}}<1
$$

Then the region H_{i}^{\prime} of all complex numbers z such that

$$
\hat{g}\left(P_{i} ; A-z E\right) \leqq g(B) v\left(\sigma_{i}^{\prime}\right)
$$

contains exactly k_{i} proper values of A (each considered with the corresponding multiplicity).

All remaining proper values of A are contained in the region $H=\underset{\substack{j=1 \\ j \neq i}}{r} H_{j}^{*}$
where H_{j}^{*} is the set of all complex numbers z for which $\hat{g}\left(P_{j} ; A-z E\right) \leqq g(B)$. We have $H_{i}^{\prime} \subset H_{i}^{*}$ and H_{i}^{*} is disjoint from H.

Proof. It follows from our assumption that $0<c_{i}^{\prime} \leqq c_{i}$, where c_{i} is the number defined in theorem (5,2). It follows that $1>\sigma_{i}^{\prime} \geqq \sigma_{i}$. Since v is increasing in the interval $\langle 0,1\rangle$, we have $v\left(\sigma_{i}^{\prime}\right) \geqq v\left(\sigma_{i}\right)$. If H_{i} is the region defined in $(5,2)$, we have the inclusions

$$
H_{i} \subset H_{i}^{\prime} \subset H_{i}^{*}
$$

Let us show now that $H_{i}^{*} \cap H$ is empty. Indeed, suppose that $\lambda \in H_{i}^{*} \cap H_{j}^{*}$ for some $j \neq i$. Hence

$$
c_{i}^{\prime} \leqq \hat{g}\left(P_{i} ; A-\lambda E\right)+\hat{g}\left(P_{j} ; A-\lambda E\right) \leqq 2 g(B)=\sigma_{i}^{\prime} c_{i}^{\prime}<c_{i}^{\prime}
$$

which is a contradiction. According to (5,2), the region $H_{i} \subset H_{i}^{*}$ contains exactly k_{i} proper values of A (each considered with its multiplicity) and the region H contains the remaining ones. It follows that H_{i}^{\prime} contains exactly k_{i} proper values. The proof is complete.

6. An application of tensor products

In this paragraph we shall recall some notions of the theory of tensor products. This theory will enable us to find a theorem similar to $(5,2)$ but more convenient for applications.

Let Z be a given linear space. We denote by Z^{\prime} the adjoint space of Z, i. e. the space of all linear functionals on Z. For $z^{\prime} \in Z^{\prime}$ and $z \in Z$ we denote by $\left\langle z, z^{\prime}\right\rangle$ the value of the functional z^{\prime} at the point z.

Let X and Y be two finite-dimensional linear spaces, $B(X, Y)$ the linear space of all bilinear functionals defined on the pair X, Y. The adjoint space to $B(X, Y)$ will be called the tensor product of X and Y and will be denoted by $X \otimes Y$. For $x \in X$ and $y \in Y$, the tensor product $x \otimes y$ of x and y is defined as that element of $X \otimes Y$, for which

$$
\langle b, x \otimes y\rangle=b(x, y)
$$

for all $b \in B(X, Y)$. It is easy to see that every element of $X \otimes Y$ can be written in the form $\sum_{i=1}^{n} x_{i} \otimes y_{i}$ where $x_{i} \in X$ and $y_{i} \in Y$ and n is the smaller of the dimensions of X and Y.

Further, let $L(X, Y)$ denote the linear space of all linear transformations of X into Y. We shall show that there is a natural isomorphism between the spaces $L(X, Y)$ and $X^{\prime} \otimes Y$. In fact, it is not difficult to verify that the mapping β of $X^{\prime} \otimes Y$ into $L(X, Y)$, which transforms the element $t=\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i} \in X^{\prime} \otimes Y$ into the element $\beta(t) \in L(X, Y)$ such that $\beta(t) x=\sum_{i=1}^{n}\left\langle x, x_{i}^{\prime}\right\rangle y_{i}$ for all $x \in X$, is an isomorphism between $X^{\prime} \otimes Y$ and $L(X, Y)$.

In the sequel, we shall need the notion of the tensor product of linear transformations. Let X, Y, V and W be linear spaces. Let us define a linear mapping x of $L(X, Y) \otimes L(V, W)$ into $L(X \otimes V, Y \otimes W)$ in the following manner: if $A \in L(X, Y), B \in L(V, W)$, let $\alpha(A \otimes B)$ be the element of $L(X \otimes V$, $Y \otimes W)$ defined by the relation $\alpha(A \otimes B)(x \otimes v)=A x \otimes B v$ fulfilled for each $x \in X$ and each $v \in V$. It is easy to see that x is onto and an isomorphism. We shall use this fact in the case $X=Y=X_{1}, V=W=X_{2}$, so that the transformations considered are operators in X_{1}, X_{2} respectively. If e_{1}, \ldots, e_{m} is a basis of $X_{1}, f_{1} \ldots, f_{n}$ a basis of X_{2}, we define the matrix of the operator $A \otimes B$ in these bases as the matrix of the operator $\alpha(A \otimes B) \in L\left(X_{1} \otimes X_{2}\right.$, $X_{1} \otimes X_{2}$) in the basis $e_{i} \otimes f_{j}$. It will be denoted by $[A] \otimes[B]$ where $[A]$ and [B] are matrices of A and B in the respective bases.

Finally, let us define a mapping γ of $L\left(X_{1}, X_{1}\right) \otimes L\left(X_{2}, X_{2}\right)$ into $L\left[L\left(X_{1}^{\prime}, X_{2}\right)\right.$,
$\left.L\left(X_{1}^{\prime}, X_{2}\right)\right]$ where X_{1}, X_{2} are linear spaces. This mapping γ will transform an element $t \in L\left(X_{1}, X_{1}\right) \otimes L\left(X_{2}, X_{2}\right)$ into the element $\gamma(t) \in L\left[L\left(X_{1}^{\prime}, X_{2}\right)\right.$, $\left.L\left(X_{1}^{\prime}, X_{2}\right)\right]$ such that

$$
\gamma(t) \xi=\beta x(t) \beta^{-1} \xi
$$

for each $\xi \in L\left(X_{1}^{\prime}, X_{2}\right)$. Here β is the isomorphic mapping of $X_{1} \otimes X_{2}$ onto $L\left(X_{1}^{\prime}, X_{2}\right)$ and a the isomorphic mapping of $L\left(X_{1}, X_{1}\right) \otimes L\left(X_{2}, X_{2}\right)$ onto $L\left(X_{1} \otimes X_{2}, X_{1} \otimes X_{2}\right)$ defined above. It is easy to see that γ is an isomorphism.

Now, let us turn to the case when normed spaces are considered. Let g and h be norms in X and Y respectively; we define a norm $p=\tau(g, h)$ in $L(X, Y)$ in the following manner. If $A \in L(X, Y)$, we put

$$
p(A)=\sup (h(A x) ; \quad g(x) \leqq 1) .
$$

This is the usual norm of a linear transformation. If $X=Y$, we have the case of linear operators in X; it is then customary to write simply g for $\tau(g, g)$. If Y is the real line E_{1}, we have the case of linear functionals on X. The norm $\tau(g,||$.$) on L\left(X, E_{1}\right)=X^{\prime}$ is called the adjoint norm of g and will be denoted by g^{\prime}. Thus

$$
g^{\prime}\left(y^{\prime}\right)=\sup \left(\left|\left\langle x, y^{\prime}\right\rangle\right| ; \quad g(x) \leqq 1\right)
$$

If X and Y are linear spaces with norms g and h, we define a function $\hat{g}=$ $=\hat{\tau}(g, h)$ in the following manner: if $A \in L(X, Y)$, we put

$$
\hat{g}(A)=\inf (h(A x) ; \quad g(x) \geqq 1) .
$$

Clearly we have $g(A)=0$ if A is singular. If A is regular, it is easy to show that $q(A)=\left(p\left(A^{-1}\right)\right)^{-1}$, where $p=\tau(h, g)$ on $L(Y, X)$. If $X=Y$, we write simply \hat{g} for $\hat{\tau}(g, g)$ in conformity with the convention already introduced for matrices.

Further, it will be necessary to introduce a norm into tensor products. There are many ways of defining a reasonable norm in $X \otimes Y$. A norm ϑ in $X \otimes Y$ is said to be a crossnorm of g and h if

$$
\vartheta(x \otimes y)=g(x) h(y)
$$

for all $x \in X$ and $y \in Y$. Let ϑ be an arbitrary crossnorm of g and h and let $u \in X \otimes Y$. If $u=\sum x_{i} \otimes y_{i}$, we have

$$
\vartheta(u) \leqq \sum \vartheta\left(x_{i} \otimes y_{i}\right)=\sum g\left(x_{i}\right) h\left(y_{i}\right) .
$$

Hence $\vartheta(u) \leqq \gamma(u)$ where $\gamma=\gamma(g, h)$ is given by

$$
\gamma(u)=\inf \left(\sum g\left(x_{i}\right) h\left(y_{i}\right) ; \sum x_{i} \otimes y_{i}=u\right)
$$

It is not difficult to show that γ is a crossnorm of g and h; it follows that $\gamma(g, h)$ is the greatest crossnorm of g and h. Another crossnorm may be obtained in the following manner. There is an isomorphic mapping β of $X \otimes Y$ on $L\left(X^{\prime}, Y\right)$. We shall define a norm $\lambda=\lambda(g, h)$ on $X \otimes Y$ by $\lambda(u)=k(\beta(u))$ where k is the norm $\tau\left(g^{\prime}, h\right)$ on $L\left(X^{\prime}, Y\right)$. Let us show that λ is a crossnorm of g and h. Indeed, we have $\lambda(x \otimes y)=k\left(\beta(x \otimes y)=\sup \left(h\left(\beta(x \otimes y) x^{\prime}\right) ; g^{\prime}\left(x^{\prime}\right) \leqq\right.\right.$ $\leqq 1)=\sup \left(h\left(\left\langle x, x^{\prime}\right\rangle y\right) ; g^{\prime}\left(x^{\prime}\right) \leqq 1\right)=g(x) h(y)$.

Let us consider now a special case where the norms in question may be easily computed. Let p be a real number $p \geqq 1$. Suppose that X and Y are spaces with bases e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{n}, respectively and that the norms g and h are given by

$$
g(x)=\left(\sum_{1}^{m}\left|\xi_{i}\right|^{p}\right)^{\frac{1}{p}} \text { and } h(y)=\left(\sum_{i}^{n}\left|r_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

the numbers ξ_{i} and η_{j} being coordinates of x and y in the given bases. Let $e_{1}^{\prime} \ldots e_{m}^{\prime}$ be the dual basis of X^{\prime}. If $a_{i k}$ is the matrix of an $A \in L\left(X^{\prime}, Y\right)$ in the bases $e_{1}^{\prime} \ldots e_{m}^{\prime}$ and f_{1}, \ldots, f_{n}, put $G_{(p)}(A)=\left(\sum_{i, k}\left|a_{i i}\right|^{p}\right)^{\frac{1}{p}}$. We have the following lemma.
$(6,1)$ Let p be a real number $\geqq 1$. Let X and Y be linear spaces with l_{p}-norms g and h. If $u \in X \otimes Y$, put

$$
n_{(p)}(u)=G_{(p)}(\beta(u))
$$

where $\beta(u) \in L\left(X^{\prime}, Y\right)$. Then $n_{(p)}$ is a crossnorm of g and h.
Proof. Take an $x \otimes y$ and put $A=\beta(x \otimes y)$. Take an $x^{\prime} \in X^{\prime}$ and put $z=A x^{\prime}$. Since $z=A x^{\prime}=\left\langle x, x^{\prime}\right\rangle y$ we have $\zeta_{i}=\eta_{i} \sum \xi_{k} \xi_{k}^{\prime}$, the numbers $\zeta_{i}, \eta_{i}, \xi_{i}, \xi_{i}^{\prime}$ being coordinates of z, y, x, x^{\prime} in the given bases. It follows that $a_{i k}=\eta_{i} \xi_{k}$ whence $\left(\sum_{i, k}\left|a_{i k}\right|^{p}\right)^{\frac{1}{p}}=g(x) h(y)$. The proof is complete.
$(6,2)$ Let $K_{i} \subset N, P_{i}=P\left(K_{i}\right)$ and $X_{i}=P_{i} X$ where $i=1,2$. Let g be a norm on X and let p be a crossnorm of g_{1} and g_{2} where g_{i} are the norms induced on X_{i} by g. Let $A \in L(X, X)$ and let λ be a complex number. If we write simply p for $\tau(p, p)$ in $L\left(X_{1} \otimes X_{2}, X_{1} \otimes X_{2}\right)$, then

$$
\hat{p}\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\right) \leqq \hat{g}\left(P_{1} ; \quad A-\lambda E\right)+\hat{g}\left(P_{2} ; \quad A-\lambda E\right)
$$

where $A_{i}=P_{i} A P_{i}$ (considered on X_{i}) and E_{i} is the identity operator on X_{i}.

Proof. For $i=1,2$ there exist non-zero vectors $y_{i} \in X_{i}$ such that

$$
\frac{g\left(A_{i} y_{i}-\lambda y_{i}\right)}{g\left(y_{i}\right)}=\hat{g}\left(P_{i} ; A-\lambda E\right) .
$$

We have, by definition of \hat{p}

$$
\hat{p}\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\right)=\inf _{\substack{t \neq 0 \\ t \in X_{1} \otimes X_{2}}} \frac{p\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right) t\right)}{p(t)}
$$

Now the last expression is majorized by the analogous quotient with $t=$ $=y_{i 1} \otimes y_{2}$, where $y_{i} \in X_{i}$ are defined above. This quotient is, with respect to the definition of x, equal to

$$
\begin{gathered}
\frac{p\left(A_{1} y_{1} \otimes y_{2}-y_{1} \otimes A_{2} y_{2}\right)}{p\left(y_{1} \otimes y_{2}\right)}=\frac{p\left(\left(A_{1} y_{1}-\lambda y_{1}\right) \otimes y_{2}-y_{1} \otimes\left(A_{2} y_{2}-\lambda y_{2}\right)\right)}{p\left(y_{1} \otimes y_{2}\right)} \leqq \\
\leqq \frac{p\left(\left(A_{1} y_{1}-\lambda y_{1}\right) \otimes y_{2}\right)}{p\left(y_{1} \otimes y_{2}\right)}+\frac{p\left(y_{1} \otimes\left(A_{2} y_{2}-\lambda y_{2}\right)\right)}{p\left(y_{1} \otimes y_{2}\right)}
\end{gathered}
$$

Since p is a crossnorm of g_{1}, and g_{2}, the last sum is equal to

$$
\frac{g\left(A_{1} y_{1}-\lambda y_{1}\right)}{g\left(y_{1}\right)}+\frac{g\left(A_{2} y_{2}-\lambda y_{2}\right)}{g\left(y_{2}\right)}=\hat{g}\left(P_{1} ; A-\lambda E\right)+\hat{g}\left(P_{2} ; A-\lambda E\right)
$$

and the proof is complete.
$(6,3)$ Theorem. Let $K_{1}, \ldots, K_{r}(r \geqq 2)$ be a partition of $N, P_{j}=P\left(K_{j}\right)$, $X_{j}=P_{j} X, k_{j}$ the number of elements of K_{j}. Let A be a matrix and put $A_{j}=$ $=P, A P_{j}$ on X_{j}. Let $g \in L$ and let g_{j} be the norms induced on X_{j} by g. Let $p_{r s}$ be crossnorms of g_{r} and g_{s} and let us write simply $p_{r s}$ for $\tau\left(p_{r s}, p_{r s}\right)$ on $L\left(X_{r} \otimes X_{s}\right.$, $X_{r} \otimes X_{s}$). Suppose that, for some index i,
and

$$
c_{i}^{\prime}=\min _{\substack{j=1, \ldots, r \\ j \neq i}} \hat{p}_{i j}\left(x\left(A_{i} \otimes E_{j}-E_{i} \otimes A_{j}\right)\right)>0
$$

$$
\sigma_{i}^{\prime}=\frac{2 g(B)}{c_{i}^{\prime}}<1
$$

for $B=A-\sum_{j=1}^{r} P_{j}, A P_{j}$.
Then, the region H_{i}^{\prime} of those complex numbers z satisfying the inequality

$$
\hat{g}\left(P_{i} ; A-z E\right) \leqq g(B) v\left(\sigma_{i}^{\prime}\right)
$$

$\left(v(x)\right.$ defined in (5,2)) contains exactly k_{i} eigenvalues of the matrix A, each of them considered with the corresponding multiplicity.

All remaining eigenvalues of A are contained in the region $H=\underset{\substack{j=1 \\ j \neq i}}{r} H_{j}^{*}$ where H_{j}^{*} is the region of those complex numbers z, for which

$$
\hat{g}\left(P_{j} ; A-z E\right) \leqq g(B)
$$

The regions H and H_{i}^{\prime} are disjoint.
Proof. The present theorem is an immediate consequence of theorem (5,3). It is sufficient to show that the number c_{i}^{\prime} fulfills the assumptions of $(5,3)$; this, however, follows from $(6,2)$.

Remark. Lemma (6,1) enables us to compute $p_{i j}\left({ }^{(}\left(A_{i} \otimes E_{j}-E_{i} \otimes A_{j}\right)\right)$ in the most important case when g is the l_{p}-norm. Then, if $\omega=\tau\left(G_{(p)}, G_{(p)}\right)$ $\dot{p}_{i j}\left(\chi\left(A_{i} \otimes E_{j}-E_{i} \otimes A_{j}\right)\right)=\hat{\omega}\left(\left[A_{i}\right] \otimes\left[E_{j}\right]-\left[E_{i}\right] \otimes\left[A_{j}\right]\right)$, where $\left[A_{i}\right], \ldots$ are matrices of the operators A_{i}, \ldots in the given bases. This last expression can be easily computed for $p=1,2$ or ∞ (see, e.g. [3], p. 62-63).

7. Special cases

In this paragraph we shall spezialize some of the results obtained. First, consider the case when the sets K_{1}, \ldots, K_{r} contain only one element each, so that r is equal to the order of the matrices, $r=n$.

It is easy to see that for every norm $g \in L$ and every matrix A

$$
\begin{gathered}
\hat{g}\left(P_{i} ; A-\lambda E\right)=\left|a_{i i}-\lambda\right|, \\
\hat{p}\left[火\left(A_{i} \otimes E_{j}-E_{i} \otimes A_{j}\right)\right]=\left|a_{i i}-a_{i j}\right| .
\end{gathered}
$$

If A is a given matrix, let $M(A)$ be the matrix with elements $m_{i i}=0$ and $m_{i j}=a_{i j}$ for $i \neq j$.

The theorems $(3,4),(5,1)$ and $(6,2)$ have the following consequences:
$(7,1)$ Let $A=\left(a_{i j}\right)$ be a matrix, let $g \in L$. Suppose that

$$
\left|a_{i i} a_{j j}\right|>g^{2}(M(A))
$$

for all $i, j=1, \ldots, n, i \neq j$. Then A is regular.
$(7,2)$ Let us denote, for a matrix $A=\left(a_{i j}\right)$ and a norm $g \in L$, by $M_{i j}(i \neq j$, $i, j=1, \ldots, n)$, the region of all complex numbers z such that

$$
\left|a_{i i}-z\right|\left|a_{j j}-z\right| \leqq g^{2}(M(A)) .
$$

Then, each eigenvalue of A lies at least in one of the regions $M_{i j}$.
(7,3) Let $A=\left(a_{i j}\right)$ be a matrix, let $g \in L$. Let i be a given index. Suppose that

$$
c_{i}=\min _{j \neq i}\left|a_{i i}-a_{j j}\right|>0 .
$$

If $0<\sigma_{i}=\frac{2 g(M(A))}{c_{i}}<1$, then the circle

$$
\left|a_{i i}-z\right| \leqq g(M(A)) \cdot \frac{1-\sqrt{1-\sigma_{i}^{2}}}{\sigma_{i}}
$$

contains exactly one eigenvalue of A.
Finally, we shall specialize the theorem $(6,2)$ for the case when $r=2$ and one of the sets K_{i} contains a single element only.
$(7,4)$ Let $A=\left(a_{i j}\right)$ be a matrix. Let $g \in L$ and suppose that g fulfills $\left(L_{4}\right)$ as well. Put

$$
\begin{aligned}
& \varrho=g(1,0, \ldots, 0), \varrho^{\prime}=g^{\prime}(1,0, \ldots, 0), \\
& \omega=g\left(0, a_{21}, a_{31}, \ldots, a_{n 1}\right), \omega^{\prime}=g^{\prime}\left(0, a_{12}, a_{13}, \ldots, a_{1 n}\right) .
\end{aligned}
$$

Let $K=\{2,3, \ldots, n\}, P=P(K)$. Let us assume that

$$
c=\hat{g}\left(P ; A-a_{11} E\right)>0
$$

and that

$$
\sigma=\frac{2 \max \left(\varrho \omega^{\prime}, \varrho^{\prime} \omega\right)}{c}<1
$$

Then the circle $\left|a_{11}-z\right| \leqq v(\sigma) \max \left(\varrho \omega^{\prime}, \varrho^{\prime} \omega\right)$ contains exactly one eigenvalue of A. All remaining eigenvalues of A are contained in the region

$$
\hat{g}(P ; A-z E) \leqq \max \left(\varrho \omega^{\prime}, \varrho^{\prime} \omega\right)
$$

which is disjoint from the above circle.
Proof. The present theorem will be an immediate consequence of " $(6,3)$ if we prove that

$$
\begin{aligned}
c= & p\left(\alpha\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\right), \\
& g(B)=\max \left(\varrho \omega^{\prime}, \varrho^{\prime} \omega\right),
\end{aligned}
$$

with $\quad A_{i}=P_{i} A P_{i} \quad$ and $B=P_{1} A P_{2}+P_{2} A P_{1} \quad$ where $\quad P_{2}=P$ and $P_{1}=$ $=P\left(K_{1}\right), K_{1}=\{1\}$. In the first formula, we write p for $\tau(p, p)$ where p is a crossnorm of g_{1} and g_{2}.

Take $g(B)$ first. Put $R=P_{1} A P_{2}, S=P_{2} A P_{1}$, so that $g(B) \leqq \max (g(R), g(S))$ by $\left(L_{4}\right)$. According to $\left(L_{1}\right)$, we have $g(R)=g\left(P_{1} A P_{2}\right)=g\left(P_{1} B P_{2}\right) \leqq g(B)$ and similarly, $g(S) \leqq g(B)$. It follows that $g(B)=\max (g(R), g(S))$. Let a_{1} be the vector with coordinates $\left(0, a_{21}, \ldots, a_{n 1}\right)$, let a_{1}^{\prime} be the functional with coordinates
$\left(0, a_{12}, \ldots, a_{1 n}\right)$. Similarly, let e_{1} be the vector $(1,0, \ldots, 0)$ and e_{1}^{\prime} the functional $(1,0, \ldots, 0)$. We have, for each $x \in X$

$$
\begin{aligned}
R x & =\left\langle x, a_{1}^{\prime}\right\rangle e_{1}, \\
S x & =\left\langle x, e_{1}^{\prime}\right\rangle a_{1}
\end{aligned}
$$

whence $g(R)=g^{\prime}\left(a_{1}^{\prime}\right) g\left(e_{1}\right)=\omega^{\prime} \varrho$ and $g(S)=g^{\prime}\left(e_{1}^{\prime}\right) g\left(a_{1}\right)=\varrho^{\prime}(\omega$.
Further, consider $p\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\right)$. We have, the dimension of X_{1} being 1,

$$
\begin{gathered}
p\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\right)=\inf _{\substack{t \neq 0 \\
t \not x_{1} \otimes x_{2}}} \frac{p\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\right)}{p(t)}= \\
=\inf _{x_{1} \otimes x_{2} \neq 0} \frac{p\left(x\left(A_{1} \otimes E_{2}-E_{1} \otimes A_{2}\right)\left(x_{1} \otimes x_{2}\right)\right)}{p\left(x_{1} \otimes x_{2}\right)}= \\
=\inf _{x_{1} \otimes x_{2} \neq 0} \frac{p\left(A_{1} x_{1} \otimes x_{2}-x_{1} \otimes A_{2} x_{2}\right)}{p\left(x_{1} \otimes x_{2}\right)}=\inf _{x_{1} \otimes x_{2} \neq 0} \frac{p\left(x_{1} \otimes\left(a_{11} x_{2}-A_{2} x_{2}\right)\right)}{p\left(x_{1} \otimes x_{2}\right)}= \\
=\inf _{x_{2} \neq 0} \frac{g\left(a_{11} x_{2}-A_{2} x_{2}\right)}{g\left(x_{2}\right)}=\hat{g}\left(P ; a_{11} E-A\right) .
\end{gathered}
$$

8. An application to normal matrices

In this paragraph we shall specialize the preceding results in the case that the matrices considered are normal and the norm $g \in L$ is the Euclidean one. First, we shall prove two lemmas.
(8,1). Let M_{1}, M_{2} be two closed non-void sets of the complex plane C. Let $z \in C$.
Then

$$
\varrho\left(M_{1}, M_{2}\right) \leqq \varrho\left(z, M_{1}\right)+\varrho\left(z, M_{2}\right)
$$

where ϱ denotes the distance in C.
Proof. There exist points $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ such that $\varrho\left(z, M_{i}\right)=\varrho\left(z, m_{i}\right)$ $(i=1,2)$. Now $\varrho\left(M_{1}, M_{2}\right) \leqq \varrho\left(m_{1}, m_{2}\right) \leqq \varrho\left(z, m_{1}\right)+\varrho\left(z, m_{2}\right)=\varrho\left(z, M_{1}\right)+\varrho\left(z, M_{2}\right)$ which completes the proof.
$(8,2)$. Let A be a normal matrix, let h denote the Euclidean norm $g_{(2)}$ in X. Let z be a complex number, M the set of all eigenvalues of A.

Then

$$
\hat{h}(A-z E)=\varrho(z, M)
$$

Proof. Since the matrix A is normal, there exists a unitary matrix U such that $U A U^{*}$ is diagonal. According to the definition of \hat{h} it is easy to see that

$$
\hat{h}(A-z E)=\hat{h}\left(U A U^{*}-z E\right)=\min _{i}\left|\lambda_{i}-z\right|
$$

where λ_{i} are the diagonal elements of $U A U^{*}$, consequently the eigenvalues of A. Thus, $\hat{h}(A-z E)=\varrho(z, M)$ and the proof is complete.
$(8,3)$ Theorem. Let A be a matrix, K_{1}, \ldots, K_{r} a partition of $N, P_{j}=P\left(K_{j}\right)$, k_{j} the number of elements in K_{j}. Let the linear mappings $A_{j}=P_{j} A P_{j}$ be normal for $j=1, \ldots$, . Let $M_{j}(j=1, \ldots, r)$ be the spectrum of A_{j} in $P_{j} X$, let $c_{i}^{\prime}=$ $=\min _{j \neq i} \varrho\left(M_{i}, M_{j}\right)$ for a given index i. If $c_{i}^{\prime}>0$ and

$$
\sigma_{i}^{\prime}=\frac{2 h(B)}{c_{i}^{\prime}}<1
$$

where $B=A-\sum_{j=1}^{r} P_{j} A P_{j}$,
then the spherical neighbourhood R_{i} of M_{i} consisting of those complex numbers z, fulfilling

$$
\varrho\left(M_{i}, z\right) \leqq h(B) v\left(\sigma_{i}^{\prime}\right)
$$

$\left(v(x)\right.$ was defined in $(5,2)$ and h is the Euclidean norm), contains exactly k_{i} eigenvalues of A, each considered with its multiplicity. The remaining eigenvalues are contained in the region

$$
\varrho\left(\cup_{j \neq i} M_{j}, z\right) \leqq h(B)
$$

disjoint from the preceding one.
Proof. This is an immediate consequence of theorem $(5,3)$ since

$$
c_{i}^{\prime} \leqq \min _{j \neq i}\left[\inf _{z}\left(\hat{h}\left(P_{i} ; A-z E\right)+\hat{h}\left(P_{j} ; A-z E\right)\right]\right.
$$

according to $(8,1)$ and $(8,2)$.
Remark. The number $\varrho\left(M_{i}, M_{j}\right)$ is equal to $\hat{\omega}\left(\left[A_{i}\right] \otimes\left[E_{j}\right]-\left[E_{i}\right] \otimes\left[A_{j}\right]\right)$ where $\omega=\tau\left(G_{(2)}, G_{(2)}\right)$ (cf. the remark following (5,3)). This follows easily from the fact that $A_{i}=U_{i} D_{i} U_{i}^{*}, A_{j}=U_{j} D_{j} U_{j}^{*}$ where U_{i}, U_{j} are unitary and D_{i}, D_{j} diagonal with elements from M_{i}, M_{j} respectively.

BIBLIOGRAPHY

[1] Day M. M., Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Berlín 1958.
[2] Mac Duffee C. C., The theory of matrices, Ergebnisse der Mathematik und ihrer Grenzgebiete 5, Berlín 1933.
[3] Фадцеева B. І., Вычислительыые методы линейиой алеебрыи, Москва 1950.
[4] Householder A. S., Principles of numerical analysis, New York 1953.
Received March 10, 1960.

Matematický ústav
Československé akademie věd v Praze

ШЕКОТОРЫЕ ПЕРАВЕНСТВА ДЛऽІ СПЕКТРА МАТРИЦЫ

МНРОСЈАВ ФИДетЕРи ВЈАСТИМИЛ ПТАК

Bы!

В настоящеї работе рассматривается сяедующая задача: Пуеть будет А матрица поряцка n с комнтексными элементами $a_{i k}$. Нужно определить такую область G компетексной нлоскости, чтобы вес спектр матрицы A содержался в G. Результаты этого типа вытекают из псследований условиіі регулярности матриц. Так, например, основный результат о кругах Гернгорина вытекает из классического условия регулярности Адамара. Все известные результаты этого типа исноньзуют абсолютные величинь элементов рассматриваемой матрицы. Оцеши нолученные в этой работе содержат только нормы недиагональной части матрицы A, при чем недиагональная часть матрицы понимается в болсе обыем смысле, а именно так, что допускаются и матрицы разделенные в клетки.

