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TRANSLATIONS IN IDEMPOTENT GROUPOIDS 

JOZEF POCS 

A mapping X of a semilattice H into itself is called a translation if X(xy) = 
= X(x)y for any elements x, y of H. 

The papers [1]—[4] deal with translations in semilattices or lattices. 
G. Szasz [1] has proved that the image of a semilattice H in a translation X. 
is an ideal in H; a translation of a semilattice is an idempotent endomorphism 
(i.e. for any x,y e H, X(x) = X[X(x)] and X(xy) = X(x)X(y) hold true). 

Szasz and S z e n d r e i [2] have proved that the set of all translations 
of a semilattice forms a semilattice with respect to the superposition of 
mappings. 

S z a s z [3] has investigated mappings of a lattice into itself which are trans­
lations with respect to the lattice operation of join. He found that the image 
of a lattice in such a mapping is a dual ideal; further, he showed that the 
equality of two dual ideals corresponding to two translations implies the 
equality of these two translations. 

K o l i b i a r [4] has investigated a connection between translations in a lattice 
and relations of congruence on a lattice which preserve the operation of join. 
He found also a necessary and sufficient condition under which to a dual 
ideal J) of a lattice L there exists a translation X on L such that X(L) = D. 

Szasz [5] has defined a translation in a general groupoid as follows: a trans­
lation X in the groupoid is a mapping of the groupoid into itself with the 
property X(xy) = X(x)y = xX(y) for any elements x, y of the groupoid. He also 
investigated a connection between translations and endomorphisms. 

Some analogical questions concerning translations in universal algebras 
were investigated in [6]. 

In this note the notion of translation will be used in the sense of the paper [5]. 
We shall show that the results from the papers [1] — [4] cited above can be 
generalized for idempotent groupoids. Further, there is investigated the 
connection between ideals and translations, or translations and congruence 
relations, respectively. 
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1. Definitions and notations 

Definition 1. A mapping Xofa groupoid G into itself with the property X(xy) = 
= X(x)y = xX(y) for any x, y e G is called a translation of the groupoid G. 

Definition 2. A mapping X with the property X[X(x)] = X(x) for each x e G 
is called idempotent. 

Definition 3. A nonvoid subset I of a groupoid G is said to be an ideal of the 
groupoid G if xa e I, ax e I for any a e I and x e G. 

Definition 4. A groupoid G will be called idempotent if x2 = xx = x for 
each x e G. 

The superposition of two mappings X and ju will be considered in the usual 
sense. 

Clearly, the identical mapping £ is a translation too. We denote the set 
of all translations of a groupoid G by T(G). The set of all ideals and congruence 
relations of a groupoid G are denoted by 1(G) and 0(G), respectively. Let c 
be a fixed element of a semilattice S; the mapping x -> xc is a translation 
and is called a special translation of S. 

Let A and B be nonvoid subsets of a groupoid G, then we put AB = 
= {ab:aeA,b e B} and if X e T(G) then X(A) = {X(a) :aeA}. 

The set theoretical intersection and inclusion are denoted by n and Q, 
respectively. The join operation in the lattice 0(G) will be designated by V-
A principal ideal of a groupoid G generated by an element a is denoted by 1(a). 

2. Properties of translations 

The following Theorem 1 and its Corollary generalize the part of the ne­
cessary condition of Thm. 2 from [1] and the first part of Thm. 3 from [2]. 

Theorem 1. Let G be an idempotent groupoid. Then for any X, /u e T(G) 
and for all x, y e G there holds: 

(A) X2 = X; 
(B) X(xy) = X(x)X(y); 
(C) Xju = JUX; 

(D) XJU(X) = X(x)/u(x); 
(E) X(x) = X(x)x; 
(F) V £T(G). 
Proof . First we prove the property (D). Let X, /u eT(G) and x EG, then 

we have 

XJU(X) = X/u(x2) = X[/u,(xx)] = X[x/u(x)] = X(x)/u(x) . 
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The condition (C) follows from (D) and from the following identity 

/uX(x) = juX(x2) = ju[X(xx)] = JU[X(X)X] = X(x)/u(x) . 

Put X = ju or /u = s in (D); then we obtain both properties (A) and (E). 
Let x, y e G and X G T(G). From (A) we have 

X(xy) = X2(xy) = X[xX(y)] = X(x)X(y) T 

i.e. the property (B). 
Nowr we prove the condition (F). Assume that X, /u eT(G) and x,y eG. 

Then we have 

X[*(xy) = X[[i(xy)] = X[/u(x)y] = X/u(x)y 

and similarly X/u(xy) = xX/u(y); therefore Xju eT(G). 

Corollary. Let G be an idempotent groupoid. Then T(G) is a semilattice, 
where the semilattice operation is a superposition of translations. 

The properties (A), (B) and (E) are necessary conditions for a mapping X 
of an idempotent groupoid into itself to be a translation. Now we investigate 
one necessary and sufficient condition. 

Theorem 2. Let X be a mapping of an idempotent groupoid G into itself. 
Then X eT(G) if and only if the following three conditions are satisfied: 

(A) X2 = X; 
(B) X(xy) = X(x)X(y); 
(A') X(x)y = xX(y); 

for all x, y e G. 

Proof . The necessary condition follows from Theorem 1. 
Conversely, assume that for some mapping X of the idempotent groupoid G 

into itself the conditions (A), (B) and (A') are satisfied. Then by the con­
secutive application of the properties (A), (A') and (B) we obtain 

xX(y) = xX2(y) = xX[X(y)] = X(x)X(y) = X(xy) 

for all x,y e G and analogously X(x)y = X(xy). The proof is complete. 
R e m a r k . In the proof of the sufficient condition it could be easily seen 

that the assumption of the idempotency of the groupoid G was not used. 
We may put the question whether one of the assumptions (A), (B), (A!) can 
be omitted in the proof of the suffici3nt condition. The following three examples 
show that the conditions (A), (B), (A') are independent. 

E x a m p l e 1. Let us consider the S3t of reals G = {x : 0 < x < oo} with 

the operation ° defined by the formula x ° y = \/xy. Then evidently the 
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algebra (G; °) is an idempotent groupoid. Put X(x) = ex for some c _/• 1 
c e C7. Then the mapping X fulfills (B), (A') but (A) is not satisfied-

E x a m p l e 2. Let us take the set of reals G = {x : — 1 < a; < 1} with 
the operation * defined in the following way: 

x * y = 

If we put X(x) = \x\, then it can be verified that the conditions (A). (B) 
are satisfied but (A') does not hold. 

E x a m p l e 3. Let G = {a, b, a', b'} with the multiplication defined by the 
following table: 

I a b a' b' 

xy for \x\ ф \y\ , 
X for x = y , 
\x\ for x = —y . 

a a a' V 
a Ъ V Ъ' 

a' V a' Ъ' 

V Ъ' V Ъ' 

a 
b 
a' 
b' 

Let us define a mapping X in the following way: X(a) = X(a') = a' and 
X(b) = X(b') = b'. Then it can be verified that the conditions (A), (A') are 
satisfied but (B) does not hold. 

3. Translations and ideals 

In paper [5] it is proved that the image of any groupoid G under a mapping X, 

where X e T(G), is an ideal in G. The ideal X(G) for X e T(G) is called the ideal 

corresponding to the translation X. Denote X(G) = I& for X eT(G). 

The following theorem generalizes Thm. 3 from [3]. 

Theorem 3. Let G be an idempotent groupoid and let I;. = 1^ for some X, /u e 
eT(G). Then X = /u. 

Proof . I t follows from the property (A) of Thm. 1 that X(x) = x for all 
x eli. Choose any element x from G. Then X/u(x) = /u(x), because of /u(x) e I*. 
Analogously we obtain that juX(x) = X(x). Then according to (C) of Thm. 1 
we have X(x) = JU(X) ; i.e. X = JU. 

R e m a r k . The set 1(G) of all ideals of an idempotent groupoid G can 
be partially ordered by inclusion. Clearly, this partially ordered set is a semi-
lattice with respect to the intersection. Moreover Ii n I2 = I1I2 holds for 
any two ideals Ii, I2 e I(6r). 

The following theorem gives the answer to the question of the connection 
between the superposition of translations and the meet operation in the semi-
lattice 1(G). 
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Theorem 4. Let G be an idempotent groupoid. Then Ixu = I& n 1^ for any 
X,jueT(G). 

Proof. I t is easy to show that X(AB) = AX(B) = X(A)B holds for any 
nonvoid subsets A, B of the groupoid G and G = GG. Then we have 

hn= ^(G) = Xfx(GG) = X[GfA(G)] = X(G)ju(G) = hh = h n h -

Corollary 1. The set of all ideals of an idempotent groupoid G corresponding 
to all its translations is a subsemilattice of the semilattice 1(G). 

In the semilattice T(G) for any X and /u put X ^ /u if and only if X/u = X. 

Corollary 2. Let G be an idempotent groupoid. Then X ^ JJL for X, /u GT(G) 
if and only if Ix Q 1^. 

Proof . The statement follows from Thm. 3 and Thm. 4. 

Corollary 3. If G is an idempotent groupoid, then the mapping X -> Ix is 
a monomorphism of the semilattice T(G) into the semilattice 1(G). 

The following theorem concerns a representation of translations by special 
translations. 

Theorem 5. Let G be an idempotent groupoid. Then there exists a semilattice H 
such that the semilattice T(G) can be embedded into T(H) so that to each X e T(G) 
there corresponds some special translation of the semilattice H. 

Proof . Put H = 1(G). Now we define a mapping F of the semilattice T(G) 
into T[I(G)] as follows: F(X) = 1, where 1(1) = I C\IX for any I e 1(G). 
Clearly A is a special translation of the semilattice 1(G). Next we prove that F 
is one-one and a morphism. 

Let 1 = fx i.e. 1(1) = fl(I) for any / e 1(G). Hence I n 1% = I n 1^ for all 
/ G 1(G). Put I = IA and / = 1^. Then we obtain Ii = Ix n 1^ = 1^. An appli­
cation of Thm. 3 yields X = ju. 

According to Thm. 4 we have 

Xu(I) = Inhtl = InIxnIti = 1(1 n Iju) = l(fi(I)) = l/u(I), 

hence the mapping F is a morphism. 
The following Theorem generalizes the necessary condition from Thm. 4 [4]. 

Theorem 6. Let G be an idempotent groupoid and X eT(G). Then the inter­
section of any principal ideal of G with the ideal Ix is a principal ideal of the 
groupoid G. 

Proof. We shall prove that for any a e G, 1(a) n Ix = I[X(a)] holds. 
According to (E) Thm. 1 X(a) = X(a)a is true. Since X(a)a e 1(a) and X(a) e I},, 
X(a) G 1(a) n Ix. Further I[X(a)] g 1(a) n Ix, because 1(a) n Ix is an ideal. 

Now let x e 1(a) n Ix. Then x = p(a±, ...,a%-\, a, at, ..., an) where p is 
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some word constructed from the elements a\, ..., a4-, a, ..., an e G and X(x) = x 
because of a; e Ix- We may write x = X(x) = X[p(a±. ..., a*-i , a, a« + i, . . . , aw)] = 
= p(a\, ..., ai-i, X(a), ai, ..., an) e I[X(a)]. The last equality is easy to prove 
using the definition of the translation. 

R e m a r k . In the cass of lattices the ideals corresponding to translations 
are dual ideals. In this cass the following theorem is valid: If D is a dual ideal 
of a lattice V such that the intersection of any dual principal ideal with D 
is a dual principal ideal, then there exists a translation X of a lattice V such 
that X(V) = D (see [4]). For an idempotent groupoid we cannot prove an ana­
logical assertion; this is shown by the following example. 

E x a m p l e 4. Let G = {a, b, c}. Define the multiplication in G by the 
following table: 

a b c 

a a a a 
b b b a 
c b a c 

Consider the ideal / = {a, b}. This ideal has a property that the intsrsection 
of any principal ideal with I is a principal ideal, but there does not exist 
any translation X satisfying the condition X(G) = / . 

4. Translations and congruence relations 

Using (B) of Thm. 1 we get that any translation in an idempotent groupoid 
is an endomorphism. Therefore to any X e T(G) there corresponds some con­
gruence relation Ox which is defined as follows: 

xOxy if and only if X(x) = X(y). 
R e m a r k . I t is well known that the congruence relations in any algebra A 

form a complete lattice, where 0 ^ & if and only if x 0 y implies x&y for each 
x, y eA. The following lemma is analogous to Thm. 2 [4]. 

Lemma 1. Let G be an idempotent groupoid and X,/u eT(G). Then X ^ /u 
if and only if 0^ ^ Ox. 

Proof . Let X ^ ju; i.e. X/u = X, and let xQ^y for some x,y sG. Then /u(x) = 
= /u(y). Hence X(x) = X/u(x) = X/u(y) = X(y). Therefore xOxy. 

Conversely, assume that O^ ^ Ox. Choose an arbitrary element x e G. 
The idempotency of the translation /u implies xO^^x). Since 0^ ^ Ox, we have 
x 0x/u(x). From the definition of the congruence relation Ox we obtain X(x) = 
= X/LI(X), i .e . X ^ /u. 
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Theorem 7. Let G be an idempotent groupoid. Then 0^\J 0^ = 0^/u for any 
X,/UET(G). 

Proof . Since X/u g X and Xju ^ //, from Lemma 1 we obtain ©A ̂  0^ 
and 0n ^ 0m, respectively. Thus 0x \J 0^ ^ 0x^L. Assume that x0^juy. 
The element t = X/u(x) = X/u(y) belongs to Ixu- Further, in view of Thm. 4, 
t e J^and t EI^. By the idempotency of translations we have X(t) = t, i.e. 
X(t) = XJU(X). Then t0^(x). Because of /u(x)0juX we get t0& \J 0^x. Analogously 
t0i V 0/uy- Then by the transitivity of congruence relations we obtain 
x0i V 0»y-

Corollary. The set of all congruence relations corresponding to all translations 
of an idempotent groupoid is a subsemilattice with respect to the join operation 
of the lattice 0(G). 

Lemma 2. Let G be an idempotent groupoid. If x0xy and x,y eIx, then 
x = y for any A G T(G). 

Proof. Assume that x,yel^ and x0^y. Then X(x) = x and X(y) = y. 
Since X(x) = X(y), we have x = y. 

Let 0 e 0(G). Denote [x]0 = {y : y G G, x0y}. 
The following Theorem generalizes Thm. 1 [4]. 

Theorem 8. Let G be an idempotent groupoid and I e 1(G). Then there exists 
a translation of the groupoid G such that X(G) = I if and only if the following 
condition is fulfilled: (1) There exists a congruence relation 0 on G such that 
In [x]0 is a one-element set for every x e G. 

Proof. Let X be the translation of the groupoid G such that X(G) = I. 
We shall prove that [x]0p, n / ^ 0 for any x e G. From the idempotency 
of the translation X we get X(x) = X2(x). Hence x0^X(x), i.e. X(x) e [x]0^. 
Therefore X(x) e [x]0x n I. According to Lemma 2 we obtain that [x]0x n I 
contains only one element. 

Conversely, define a mapping X of G into G as follows: X(x) = xf e I n [x]0. 
Let x, y belong to G. Then X(xy) e I n [xy]0. Further X(y)0y, in this case 
xX(y)0xy. But xX(y) E I because / is an ideal in G. Hence xX(y) E I n [xy]0. 
From condition (1) we get X(xy) = xX(y). Similarly it can be proved that 
X(xy) = X(x)y. The proof is complete. 
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