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Matematický časopis 17 (1967). No. 2 

REMARKS ON THE ERGODIC THEORY 
OF THE CONTINUED FRACTIONS 

TIBOR SALAT, Bratislava 

The applications of the ergodic theory to the metric theory of the continued 
fractions are based on the following theorem of C. R y l l — - N a r d z e w s k L 

x 
([u] denotes the integral 

1 
Theorem I. For each x e (0, 1) let 8(x) = — 

part of the number [u]). Let f be a Lebesgue integrable function on the interval 
(0, 1). Then for almost all x e (0, 1) (in the sense of the Lebesgue measure) the 
following holds: 

n-l 1 

lim - > f(Щx)) = - ^ -
n-»oo n ^ / / v i o g 2 J 1 +t 

ѓ=0 0 

dí.(i) 

(See [1]). 
Several applications of the above theorem to the metric theory of the 

continued fractions may be found in [1] and also in [2]. In [2] it is proved 
by means of Theorem I — the result, which will be used in what follows. 

Theorem II. If f is a measurable, non-negative and non-integrable function 
on (0, 1), then for almost all x e (0, 1) 

n-\ 

lim^r >/(*(*)) = + °°-
n->oo n / 

i=0 

We shall study in this paper from the metric point of view the behaviour 
of the sequences 

f c"(x) )°° 
hrrr -; areal; i\^ix)-G^(x)\a)t^ a ^ ° 
K+i(*)]*-i 

( SЦx) = Щ(x)), ЪҢx) = (ЩЩ), ... 
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(the notation see in what follows) and we shall give a new proof of a certain 
well-known result of the metric theory of continued fractions (see Theorem 1). 

DEFINITIONS AND NOTATIONS 

1. The expansion of the number x e (0, 1) into the continued fraction 
(the continued fraction of the number x) will be denoted in this paper as 
follows 

1 

ci{x) -\ 
{1) «2(«) + . 

1 
+ 

cъ(x) + 

CK(X) (k = 1, 2, 3, ...) are natural numbers (so called quotients of the continued 
fraction of x). If the above expansion is finite and cjc(x) is the last quotient 
of the continued fraction of x, then Cjc(x) > 1. Further if (1) has more than 
one quotient (or in other words if x -j-= l/p, p = 2, 3, 4, . . . ) , then evidently 

SO) = - — 

c2(x) + 
cг(x) + . 

+ --Ck(x) + 

{as to the meaning of S(x) see Theorem I) . 
2. If A is (any) set of natural numbers, we put for a natural n A(n) -= ]T 1. 

A(n) a<n,aeA 

The number h(A) = lim , if it exists, is called the asymptotic density 
n+oo n 

of the set A. 

3. The sequence of numbers {an}n=1 is said to be summable by the method 
ai + a2 + . . . + an 

{C, 1) to the number a e (— oo, + oo) if lim = a. 
n->co n 

U i + a2 + . . . + an 
If the limit of the sequence j is improper or if it does 

)n=l 

not exist, then we say that {an}™=1 is not summable by the method (C, 1). 
The sequence of functions {gn}n=sl is said to be almost everywhere in (0, 1) 
(for almost all x e (0, 1)) summable by the method (C, 1), if there exists a set 
M C (0, 1) of measure 1 such that for each x e M the sequence {gn(x)}n=1 
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is summable by the method (C, 1) to any finite number s = s(x). The sequence 
{gn}nLi -s s a id t ° be almost everywhere in (0, 1) (for almost all x e (0, 1)) 
non-summable by the method (C, 1) if there exists a set P C (0, 1) of measure 1 
such that for each xeP the sequence {gn(x))n=1 is non-summable by the 
method (C, 1). 

By means of Theorem I we shall easily prove the following result of A. 
C h i n 8 i n (see [4]) which we shall use. 

Lemma 1. Let a < 1. Then for almost all x e (0, 1) the following holds: 
The sequence {cl(x)}^=1 is summable by the method (C, 1) to the number (which 
does not depend on x): 

c«(í) 

log 2 J 1 + t 
dí 

1 

log2 
palog 

(P + l)2 

p(p + 2) 
p-i 

R e m a r k 1. I t is proved in [2] that for almost all x e (0, 1) the sequence 

{cfr(̂ )}jfc°=i *s n o ^ summable by the method (C, 1). 
T h e p r o o f of t h e l e m m a . Let a < 1. Pu t in Theorem I f(t) = c\(t) > 0. 

Since Ci(t) = 
; 

the above defined function has in the interval (0,1) at most 

•a countable number of points of discontinuity (in the case of a ^ 0 these 
points of discontinuity are of the foim \jp, p = 2, 3, 4, . . . ) . From the funda
mental properties of the Lebesgue integral we have 

1 1 
For < t < — cЛt) = 

p + \ p 

J7(0 d* = J c\{t) at = 2 j ciW dt-
V=l i 

2? + l 

p holds, so we have 

Л0 љ = 
rpOL 

P(P + 1) 
< + oo. 

2 > = 1 

Thus / is integrable on (0, 1) and in view of Theorem I for almost all x e (0, 1) 
the following holds: 

2_ 
oo p 

l i m - r ø x ) + . . . + c » ) = 
Ю->-oo П Ь g 2 J 

ci«(t) 1 
dř = 

1 + t log 2 1 + ř 
dř = 

p - i ì 
г> + i 
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(P + 1)2 
P* Jog # 

.P(P+2) 
p=l 

Lemma 2. £e£ aw = 0, fw -> + oo, sup — — < + oo. Put A = {n; an ^ 
n n 

= tn}. Then h(A) = 0. 
Proof. A can be supposed to be infinite. Put Vn = ^h, where the sum

mation is taken over all k e A for which k ^n. The last sum has A(n) sum-
Vn 

mands, from which fact it easily follows that -> + oo. If we put 
A(n) 

» A(n) A(n) sn 
sn = 2, aic, then clearly sn ^ Vn and consequently ^ -> 0. 

*=i n Vn
 n 

Now we shall give a new proof of the following result belonging to the 
fundamental results of the metric theory of the continued fractions. The 
original proof of this result is based on Levy's well—known theorem on the 
frequency of quotients in the continued fraction expansions of the numbers 
x s (0, 1) (see [2]). According to Levy's theorem, for almost all x e (0, 1) the 
following holds: each of the numbers^ (p = 1, 2, 3, ...) appears in the sequence 

1 (p + 1)2 
{ck(%)}kLi with the frequency log (see [3] p . 110). Not& 

log 2 p(p + 2) 
that the frequency of the number p in the sequence {ck(%)}%Li means the 
asymptotic density of the set of all such k for which ck(x) = p. 

The proof of the following theorem is based on Lemma 2. We shall illustrate 
the usefulness of Lemma 2 also in the proofs of Theorems 3, 5. But note t h a t 
these theorems follow also easily from Theorem 1. 

Theorem 1. Let rn -> + oo. Then for almost all x e (0, 1) h({n; cn(x) = rn}) =-
= 0 holds. 

Proof . We can already suppose that rn = 0 (n = I, 2, 3, . . . ) . Put tn = yrn 

(n = 1, 2, 3, ...) and further let gn(x) = \lcn(x) for all irrational x, x e (0, 1). 
In view of Lemma 1, the sequence of functions {gn}n^\ is almost everywhere 
summable by the method (G, 1). There exists a set M C (0, 1) of measure 1 

n 

2^(x) 
i. l 

such that for x e M sup < + oo. From Lemma 2 it follows that. 
n n 

for x e M h({n; gn(x) = tn}) = 0 holds*, consequently h({n; cn(x) ^ rn}) = 0. 
In [2] S. H a r t m a n studies the question of summability (by the method 

(G, 1)) of the sequences 
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[ Ck(x) )°° (ck+i(x)Y° 

\ct-hi(x))M

9 { ck(x) ) k = 1 

defined for each irrational x e (0, 1). He shows by means of Theorem I I that 
for almost all x e (0, 1) the above mentioned sequences are non-summable 
by the method (C, 1). I n what follows an analogical question concerning 
the sequences 

( cl(x) )~ 
(a real number) 

ЧH-1 (X) fc=l 

will be solved and a result (see Theorem 3) similar to the one in Theorem 1 
will be proved. 

Theorem 2. If |a| < 1 then for almost all x e (0, 1) the following holds: 

' <(x) s~ 
The sequence 

^k+l И. 
is summable by the method (C, 1) to the number 

k=l 

(which does not depend on x): 

Ь g 2 j 

- i 

1 + * 
dť. 

If |a| Jg; 1, then for almost all x e (0, 1) 

1 (c\(x) cl(x) \ 
l i m - + . . . + 
— n \ cftx) Cn+1(x)) 

holds. 

Proof . For t irrational, t e (0, 1) let xp(t) -

the construction of the continued fractions that 

= + 00 

ci(t) 

c2(t) 
> 0. I t follows from 

Cl(t) = c2(t) = 
- 1 

hence if a is real and t irrational, t e (0, 1), we have 

v(t) 
" l " 

t п —a " l " 

t 

The function ip01 is evidently measurable. Let us examine ipa(t) dt. We get 
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_. oo p 

ţy>«(t)dt=^Ip, Ip = jr(t)dL 
P-I 1 

29 + 1 

Further, if t is irrational, t e 
i3» + - ' PJ 

we have p, hence Ip = 

= p* 

i 
P + i 

[ l - t ø 
d£. Since the interval i r 

-j — is a union of the ^ + i P 

countable system of pairwise disjoint intervals 
\ 

1 \ 
/ (n = 1, 2, 3, . . . ) , we get on the basis of the simple 

1 / 1 I / 
X1^ n n + 1 ' 

properties of the Lebesgue integral 

lp — У łpn> J-pn — 

n = l 
1 — tp 

dŕ. 

*+ł 
By means of a simple computation we find that if t is irrational, 

1 
te 1 1 

, - P + — P + 

i , then 
č 

1 — tp 
= n holds, hence 

n+ ІJ 

p(X 

Lpn 
ft_+l.(ft + l) l\( 1 ' 

lp+Up+—— 
\ n\ n+1. 

From the last we get by means of a simple estimation 

pOL 

(p + l ) 2 n"+Ңn + 1) 
= 'vn = " 

• p2-oí w a+l ( w _ |__l ) 
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If |a | < 1, then 

0 < <т(a) = > < + co 
/ fn«+Чn + l) 

and thus 

y>Ңt) dt < a(oc) 
P ,2-a. 

< + 00. 

2 > = 1 

With respect to Theorem I we get the correctness of our affirmation. 
If |a| = 1, then two cases will be distinguished. 

1. a = 1. Clearly Iv = Iv\ = 

I 

f y<* (t) dt = + oo. 
o 

2. a = — 1. Then 

1 o 

hence y)a(t) dt = + oo. 

Pa ST 
, hence y Iv = + oo and thus 2(p + I ) 2 

yP(t) dt = Fi 

P=I 

hn^ 
22 ^ ^+Ҷтг + 1) 

ю=i 

+ oo, 

According to Theorem I I we get in both cases for almost all x e (0, 1) 

1 jcl(x) c"n(x) \ 
hm — h . . . H = + oo. 
n+°° n\ca

2(x) Cn+l(x)J 

Theorem 3. Let rn -> + oo. Then for almost all x e (0, 1) 

Л I \n; = тw 

U cn+i(x) 

a ҡl\ Cn^x) ^ = 0, h \[n; = 1 
U c4*) 

= o 

holds. 

Proof . We may already suppose that rn = 0 (n = 1, 2, 3,...). P u t ^ = yrn 

(n = 1, 2, 3, ...) and <7W(#) = ]/cn(x)lcn+i(x) for each irrationals G (0, 1). With 

respect to Theorem 2, the sequence {g^}ҷ^ is almost everywhere summablo 

by the method (C, 1). Consequently, there exists a set M C (0, 1) of measure 1 
n 

^9k(x) 

such that for x e M sup 
&=i 

< + oo holds. I t follows from Lemma 2 
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t ha t for x E M h({n; gn(x) ^ tn}) = 0 takes place, hence 

M ^ ; — ^ « l l = o. 
cn+i(x) 

I n a quite similar way the existence of M' C (0, 1) of measure 1 may be proved 
such that for 

*ejf »((»;77-?4) = 0 

is true. The set M C\ M' is of measure 1 and for xe M C\ M' the following 
holds simultaneously 

h U; 
cn(x) 

cn+i(x) 
tn 

n 7 /[ cn+í(x) \ 
0, h\\n;——- ^ T „ 

\ l c»{x) ) 
0. 

This completes the proof. 
In connection with Theorem 2 the problem arises to examine the 

behaviour of the differences of two subsequent quotients of the continued 
fraction of x. Such a question is discussed in Theorem 4, Theorem 5 is a con
sequence of Theorem 4 and Lemma 2. 

Theorem 4. Given 0 5^ a < 1 then for almost all x e (0, 1) the following holds: 
The sequence {\cjc(x) — Cfc+i(#)|a}~=1 is summable by the method (C, 1) to the 
finite number (which does not depend on x): 

l o g 2 j 

- i 

1 + í 
•dí. 

If oc^i 1, then for almost all x e (0, 1) 

lim— (\ci(x) — c2(x)\* + . . . + \cn(x) — c„+i(3)|a) = + oo 
n+oo n 

holds. 
R e m a r k 2. For a < 0 the sequence {|Cfc(#) — CA,-fi(#)|a})ui *s n o ^ defined 

on a set of positive measure. In fact it can be easily found out that for each 
irrational x belonging to the interval 

1 1 

(2) 1 1 
P+— P+ 

P p+l 
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ci(x) = 
1 

x ъ 1 

X 

. - 1 1 

= c2(x) 

liolds and the set of all the irrational numbers contained in the union of the 
intervals (2) is of positive measure. 

P r o o f of T h e o r e m 4. P u t for t irrational, t e (0, 1) f(t) = \d(t) — c2(0l-

Xet us examine fa(t) dt. Evidently 

/«(*) dř = y Ip, ip = faЏ) dí 

1 
P+l 

p 

p -
t ] 

p 

p - 1 — 1P\ 
dt. 

i 
p+i 

.Further 

P-\ 
oo * n+1 

Ip = 2.1pn, Ipn = \ \P — n\« dt = 
71=1 1 

\p — n|« 

n(n + 1) \p H \\p + 
P+- n, n+ 1 

Trom the last, with 0 ^ a < 1, we get by means of a simple estimation 

p 

iv<\ 
pi 

y j ^ = ± / y + ү \ _L( y _ ^ + 
Z , »(»+-) PЛЛ __J P2{ Z^n(n+l) 

71=1 71=1 7 1 = 0 + 1 71=1 

+ 
П* 

П(П + 1 ) J 

(P ~ l ) a , *(*) , ч 

i — , o(oc) = 
p* pá 

n* 

n(n + 1) 
< + 00. 

71=1 

J. 00 

Hence it is evident that fa(t) dt = y Iv < + oo. 
0 p=l 

(P - l ) a 

In the case of a ^ l we have Ip = Iv\ ^ and consequently 
2(p + l )2 

1 oo 

j f*(t) at = ^ip = + co. 
0 p=l 

The correctness of the affirmation follows immediately from Theorems I, I I . 
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Theorem 5. Let rn->+ oc. Then for almost all x e (0, 1) h({n\ \cn(x) — 

— cnn(x)\ ^ Tn}) -= 0 holds. 

The author wishes to express his thanks to J . M a r i k for the valuable 

suggestions improving the original version of the paper. 
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