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MATKMAT.CKO-KYZIKAL .NY C A S O P I s SAY. Hi. 1. .<>r.<. 

THE REPRESENTATION OF INERTIAL PARTICLES IN THE 
LIE ALGEBRA OF THE LORENTZ GROUP 

JURAJ V1RSIK. Bratislava 

Some Lie proper t ies of t he general Lorentz group are invest igated and an 

appl icat ion of t h e m to the space-t ime s t ruc tu re of t he special re la t iv i ty theor \ 

is given. 

All t he mat r ices deal t with are supposed to be real. The Lie g roup of regular 

(/! X H)-matrices X .- |.r'A] is denoted by GL(n, E). Let G \(/ab] b ^ a fixed 

regular diagonal (?t x H)-matrix. rPhe matr ices .V with e lements .r//V satisfying 

n(n + 1 ) 
t h e - equat ions 

9 

(1) / w gabvah'xbl <rl -~- 0: k ; / (M 

form a subgroup (S)(G) of GL (D, /?). This can be easily establ ished observing 

t h a t (1) is equiva len t to X*GX ----- G, where X* denotes t he t ranspose of X. 

[n o ther words, i$)(G) is t he general Lorentz group of matr ices X which leave-

inva r i an t t he quadra t i c form 

(2) £ - £*<?£ 

on E". No t e t h a t (V)(K) (K t he un i ty matr ix) is the or thogonal g roup Co l ) 

a n d (5(F). wi th L, t he diagonal ma t r ix of the form 

( » ) f i 1 £ •!- S!i - <^"f< (<" -- <>), 

is t h e usual full Lorentz group. 

N e x t we shall explicit ly show t h a t (f)(G) is a Lie subgroup of (1L (». /Vi 

a n d poin t ou t a concrete local char t of (f>(G) containing the uni ty element K 

Lemma, The Jacobian of ( I) , i. e. 

(^Summation over repeated indices. No ..geometrical" difference is made between 
upper and lower indices. 
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ldFn\ 
(4) de t with k < I, i < j 

\?xu) 

taken at the point E, is non-zero. 

P r o o f . Direct differentiation of (1) gives 

dFki 
(«">) (F) (jndjk -1 - (J kid j i 

rV-l' 

" I " + 1) 
(-) is t he usual Kronecker symbol) . This is a m a t r i x of order lot 

/ /. k 1. Let us suppose the re exists a non-tr ivial system of numbers , 

n(n -f I) 
ykl (k I) sa t isfying the linear equa t ions 

(<'») ^(Utifijk -I- (JkiOjj)ykl ----- 0; i g j . 

II* we define ykl 0 for k > / and deno te Y \ykl] t h e n (()) asserts t h a t t he 

mat r ix G(Y* -f Y) has zero e lemen ts on its ])rincipal diagona l and above it . 

Fu r the rmore it is also symme t r i c and hence G(Y* -|- Y) — 0 i. e. Y 0. 

Thus the d e t e r m i n a n t (4) is necessarily non-zero. 

Applying the implici t func t ion theorem one can find a ne ighbourhood J//{) 

( w(w- - 1 ) \ 
of the origin C- in Rs N , a ne ighbourhood °//(F) of t he mat r ix E 

in ($)(G) (ib(G) ])rovided with t h e to])ology induced by t h e na tu ra l topology 

in R'r) and a homeomorphism (/():
 J//(E)-> ,J//$. This r/o has the propert ies: 

("0 <>.! "fvo ' ^ ) J w = A , ^ ) f o r y f c g ? / 

where hkl (k < /) are the (analytic) functions ob ta ined by ,,solving The equa

tions (1) with respec t to xkl (k < l)L\ and 

(7b) (fo(F) = (°. 

rfhus the paii' (J//(F). </o) defines a local cha r t on (fy(G). It can be easily shown 

that the family of char t s (A . J//(E). </,,) for all A e (v}((7). where (/<A(X) 

(/o(A ]X). provides (f)(G) with the s t ruc tu re of an ana ly t ic submanifold of 

GL(v. R). Moreover (S)(G) is a topological g roup with the topology induced 

by the topology in GL(n. R). Hence it is an N-dimensional Lie subgroup of 

(!L(n. R). 

Lemma. The functions in (7a) satisfy the equations 



dhqb 

((f) <lntj}n 
dxU 

1 
for a • b. i > j , ihith g(i>> ~- 0 for a b, gan - jor a 1 . 2 . . . . / / , 

tin; ' 
P r o o f . Differentiation of (I) j)rovides 

Wki v . t)W dh«b 

(E) \ x (E) (() 0: k I. i > j . 
c\v'-> „ 7 7 (iv"h r\r''1 

i. e. using (5) 

ch"h 

(8) gn0]k ! f/AiAl T Y(g<nt>bk ! f/A-,A/) ( O <>. 
a£b fa''-* 

N o t e h e r e t h a t O/-/O// <> for all k /. / > y. ( l i v e n a f ixed p a i r (/ - ,') 

. ' » ( " ' l ) . 

(8) is a system of equa t ions possessing aun ique solution (eh t lie lemma 

above) Heneo it suftioes to show 

(9) > (gaiObkgif/jja -|- gkabbigiughi) f / t rV-

(77 
This, ho\ve\r(T, is evident : The first s u m m a n d in the bracke t is zero for each 

k r: I and a < b. The second one is non-zero only if / /. k / with both 

a I, b -_-. k and its value is gu. The same, of course, is t rue abou t the right 

hand side. T h u s the lemma is proved . 

The Lie a lgebra gL(n, R) of GL(n. R) consists of all the (n \ //)-matrictus 

and t h e p roduc t is given by (A, H) > A H HA (mult ipl icat ion of matr ices) . 

Each A c=gL(n. R) can be wri t ten in the vector form 
A X a" C (E). 

77 w 
Let Q(0) be the Lie algebra of ($((J). I t is a subalgehra of gL(n. R) a n d the 
homeomorphism </{) defines a canonical basis 

(io) [jtj=y^ / (F), i>j 
77 ' ^kl 

where Ca are the vectors in g(r7) associated with the coordinates given by the 

mapp ing a()? i. e. 

0 ( / . ^ » ') 
<W)(K)- . • (n -/>.; 

CKV'J 

foi' each function / differentiable in a ne ighbourhood of E in GL(n. R). 
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Applying (7a) a n d t h e preceding l e m m a one finds 

cf x - 8f dh^ 

ru(f)(E) --- '..(F) f Z,'l?(
E)--.:(&) 

! . . ~~ ^guftj* ' \(f)(E), i>j. 

cxfJ j ~ f c.rJ'1 J 

Comparison with (10) gives 

u'i) dty for k> I, 

"!•'; ~ gnfjfr' for k ^ /. 
T h e e lements T [t'1| e i}(<7) can he expressed in t h e form 
(Ш 

fki , , v ^ y v //*' for k > l 

V gng}ki)V for k < /. 

Note t h a t the last expression is zero if/j - l7. 

Proposition. The matrix T e gL (n. II) is an element of the Lie algebra cj/7) 

/'/ and onlfi if 

(!-') r* -; r/Jү; O. 

P r o o f . Let T e C\(G). Then t h e (r/, b) e lement of t h e m a t r i x on t h e left 

h a n d side of (12) is 

(V>) tba - r <JaitiJ<]jb = - **'-« "I gaJab<Jbb- ( 2 ) 

If b r c! this is equal t o 

l,b" gaagb!>(JaaVba<Jbb =- 0 . 
b .. rt. (13) gives 

gaa(Jhl>í)nb ! gaaOabgbb = 0. 
'IK* ease O b is ev ident . 

Conversely let fah satisfy (13). A similar considerat ion yields (11) q. e. d. 

Lach (Moment T of t he Lie a lgebra gL(n, R) genera tes a one-paramete r 

d 
subgroup Fr II Y(fl)!,,,- n of GL(n, R) with 

(10 
П0) T, i. o./>(')) e'". 

Part icular ly T c (\(G) induces crn e (Q(Y?) for ah 0 e R. T h e basis Uu(i ;- j) 

" ( " • ] ) 

of 0,'/') generates o n e - p a r a m e t e r subgroups F/j --• (r "°!^/,>. 

(-') X o suiinii i i l ion af)pl iod in t h e r e s t of t h e proof. 
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T h e exponent ia l m a p p i n g exp: q((7) -*i$)(G) given by exp T IV(1) rT 

provides a h o m e o m o m o r p h i s m of a ne ighbourhood of t h e origin in cj(C) o n t o 
a neighbourhood of E in 05(C) (of. [!)). 

For t h e sake of s imp l icity a n d physical i n t e r p r e t a t i o n wo shall restrict our 
following considerat ions t o t h e case G •— L . 05 ' will d e n o t e t h e proper Lorentz. 
group, i. e. t h e c o m p o n e n t in 0)(L) containing E. It consists of space a n d t ime 
or ientat ion preserving Lorentz t rans format ions . T h e matr ices J)j(O) can be 
given now an explicit form. We have Fij(0) --- rl "° or, after having solved 
the corresponding differential equat ions, 

I2l(0) 

cos 0 sin 0 0 °\ 
-s in 0 

0 

cos 0 

0 
0 
1 

; ; 

O ľ 

0 0 0 >/ 

COř m 0Ì< o 0 r s i n h Oir 

i) 1 0 0 

0 0 1 0 

1/c . SІll ih ()j< o 0 c o s h ()!<: 

Л i ( ) 

respectively, with similar explosions for J\>\(0)> J\i(0), or for T\-2{0). J'\:}{0) 

respectively. Hence t h e one-parameter g roup J)j (4 > / - j) represents all 

t h e space r o t a t i o n s in t h e (i, /')-ooor(linate plane while T\j (j 1 .2. 3) cor

respond t o parallel frames moving along t h e j-th axis. (:v) 

T h e s u b g r o u p of 05 ! consisting of matr ices of t h e t y p e 

(f ;•). 
whei'e P3 is a (3 / 3)-orthogonal m a t r i x with dot P3 > 0, is d e n o t e d by C . 

It is clearly a Lie s u b g r o u p of 05 ! its Lie algebra being t h e vector subspaoe r 

of C\(L) generated by t h e vectors / 21, <'•*!. F32 • T h e vectors Fn, ; ' jL>. lV. 

generate a vector subspaoe m <= q(L) so t h a t c\(L) r t m. Clearly r 

is a subalgebra of c\(L) b u t this is not t r u e a b o u t m. Nevertheless t h e r e is 

a (local) homoomorphism of a ne ighbourhood of t h e origin in m o n t o a noigh-

bourhood of t h e u n i t y class in t h e space 05 /O of right cosets C . X . Thi> 

h o m e o m o r p h i s m is a restr ict ion of t h e m a p p i n g 

(14) 7T e x p : in — 05 7 O , 

where u is t h e projection in 05+/O and 05 ! / D is prov ided with t h e induced 

coset topology (of. [ 1 | Ch. I I . L e m m a 4.1). 

(:i) ...Parallel" means here always including orientation. 
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Our next task is to show t h a t in this special case t h e m a p p i n g (14) is a h o m e o -

morphism on t h e whole of m o n t o ( f t /O. We shall first p rove t h a t (14) is 

a one-to-one m a p p i n g of m o n t o (f>'/O. 

One can give a physical in terpre ta t ion to t h e sj>ace (5 f / 0 - T h e matr ices of 

0") represent inertial observers of t h e special r e l a t i v i t y theory, one observer 

being pointed out as corresponding to t h e u n i t y m a t r i x E. We shall call him 

the original observer. F a c h coset of 03 7 O r e p r e s e n t s a class of observers 

moving with a common 3-velocity vector b u t t h e i r f rames (of or thogonal space 

coordinates) a rb i t rar i ly t u r n e d . T h u s a coset of © + / 0 can be character ized b y 

inertial observers w i t h o u t frames: we shall identify t h e m with inert ia l m a t e 

rial particles a n d call t h e m simply particles. A r ight coset of 05+/O will be 

called an I P-coset. 

An inertial part icle can be equipped with a canonical f rame a frame with 

its axes parallel t o those of t h e original observer. This canonical frame of t h e 

particle defines a Lorentz m a t r i x of special k ind. Let us call i t a n I P - m a t r i x . 

From t h e intu i t ive point of view it is qui te n a t u r a l t h a t t h e correspondence 

between I P-eosets a n d I P - m a t r i c e s is a one-to-one. Never the less we shall give 

a m a t h e m a t i c a l l y s t r ict proof of th i s s t a t e m e n t (cf. t h e j)roj)osition bellow). 

It is known t h a t each X e: 05 ' can be w r i t t e n as X = P . 8, where P e O 

and 8 is an I P - m a t r i x . Moreover each I P - m a t r i x ( ^ E) has t h e form (cf [2]) 

IV, q V* 
V* 

-qjv* v 

with T - - J v] -j v:2 I vz < c: q -••--• 1 — ; IV3 ~. [fyVj], 

where v\ . v2, v% are t h e c o m p o n e n t s of t h e velocity vector v of t h e part icle 

with respect to t h e coordinate sys tem of t h e original observer. 

Proposition. Each IP coset contains one and only one IP-matrix. 

P r o o f . As s t a t e d above, each coset of 0r f 7O conta ins a n I P - m a t r i x . Suj)pose 

a coset conta ins two I P - m a t r i c e s , i. e. 82 —- P8L for some I P - m a t r i c e s >S'i , 

S-2; P c-O. Then direct ca lculat ion gives 

(Щ PSt c Î) <fiз -\- Wа -~qv* 
v* v 

-qjcß q 

IP* -! q ] ' P4W3 - qP*v*\ 

\ -q\clv q J 

mpar ing the lower rows of ASri a n d of 82 one gets 8\ — 82 

8 7 



Hence there is a one-to-one correspondence between the points of the open 

hall v\ 4 v\ 4- vl < c1 and t h e IV-cosets. (15) gives an explicit expression of 

this correspondence: If X \xlj] e (fi *, t h e tr iple (vi , rL>. ?*,,) corresponding t o 

t h e class of X is given by 

Г2XAJ 

( l ( i ) ,.V - -
• 44 

Now one can find t h e explicit form of t h e m a p p i n g (14) s imply by c o m p u t i n g 

t h e e lements of t h e fourth row of t h e m a t r i x exp 7\ T G)n. Vor this purpose 

let T /1F41 | t2l
r\2 ! ^ , r . i 3 . T h e m a t r i x 

exp TO />(0) (0 e hJ) 

is t h e so lution of t h e system of differential equat ions 

d 
rT(0) rr(0) .r 

<\o 

w i t h />(<>) K. D e n o t i n g 7Y(0) \'/ik(0)\ a n d / .---• | t~ - /H -:- /H o n e g e t s 

ik 
/u-(\) - s i n h c /: /• - 4. / . 0 

(7 

;• i i( 1) -- c o s h c /, 

o r . w i t h r e s p e c t t o (Hi) a n d c() E. 

c tk 

rk - - tgh c f for / 0 
(17) f 

rf, 0 for / 0. 

Tliis formulae can he inverted in a unique way 

//,- - a r c e o s h </ lor r 0 
(IS) cr ' 

/A- 0 [or r - ^ 0 

T h u s the m a p p i n g (14) is a one-to-one. It is also a homeomorphi sm as one 

can easily see from (17) a n d (IS) realizing that t h e topology in (s*) O is such 

t h a t .T is c o n t i n u o u s a n d open. We m a y sum this up in t h e 

<SS 



Theorem. The mapping :T . exp is a ho)neomorphism of the linear subspacf 

m c-: ci(L) onto the space 05 j /O of IP-coscts. This homeomorphism is given hi/ 

(17) resp. (IS) and maps fP-cosets corresponding to particles moving along the 

k-th axis onto vectors in tit colinear with ( ' , £ . Moreover it represents the fa-

mil'// of particles moving in a given direction as a suhspace erf colinear vectors in in. 

Note t h a t in our cons iderat ions the inertial partiele is completely characteriz

ed by its --veloci ty vector a n d no a t t en t ion is payed to its position say in the 

zero moment of the original observer . So we can a lways suppose the particle 

passing the origin of the original observer (and also of t he others) at this 

moment . 

Up to this t ime we have used the one-to-one correspondence between particles 

and I P-eosets provided all the measur ings have been m a d e with respect to 

the original observer. If p denotes the particle in view and h (p, F) the cor

responding cosot of 05 7 O then h(p, U) is given by the t r iple (v: , v<>, T3) des

cribing the 3-veloeity vector components of the part iele from the point of 

view of the original observer. Calculat ing the velocity vector with respect 

to ano the r observer, say given by t h e ma t r ix X 0 e 05 : , one obta ins in general 

an o ther tr iple (r, , ?L,, v:]) defining an ano the r IP-coset . In order to get expli

citly th is now triple it suffices to calculate the lower row in the ma t r i x YX0 7 

whore y is an a rb i t r a ry ma t r i x of t h e IP-ooset given by t h e t r iple (v\ , v>, ?'.,). 

Formally it can be shown that the homeomorphism (14) defines a unique 

ana ly t ic s t ruc tu re on (V>4/0 wi th the p roper ty t h a t 05 • is a Lie t ransforma t ion 

g roup of 05 7 0 (of [1] Th . 4.2). 

Wo m a y connect wi th each par t ie le p and each observer given by Xo G 05 

an I P-cosct //(p. X 0 ) defined by 

A(p, -Vo) ,= % , & ' ) . AY1. 

In accordance with the considerat ions above the t r iple (Ej , r*, ?':J) correspond

ing to the 1 P-eoset h(p. No) is no th ing else b u t t h e 3-veloeitv componen t s of 

the particle with respect to the observer represen ted by the m a t r i x N0. 

On the o ther hand the linear suhspace m c:: C\(L) m a y bo considered as a li

near space of r ight i m a r i a n t vec tor fields on 0) 4 . Hence there is a canonical 

one-to-one correspondence T -> Xo(rT) be tween t h e vectors of m a n d the 

vectors o{" a linear suhspace Ut(A\>) of t he t a n g e n t space to 05 { a t No. Let 

log: 05-70 v nt denote the inverse of the homeomorphism (14). (*ivon a fixed 

part ie le p one can define a con t inuous vector field on 05 < by 

A V - F p ( X 0 ) (No log) h(p, No). 

It is not difficult to see t h a t th is is oven an ana lv t ic vector held on 05 f . 

The field AV v F p ( N o ) is uniquely defined by FP(K) = log //(p, K) a n d f< or 
a fixed Xo c 05 ' the correspondence p > Fp(X0) is a one-to-one. rfhe physical 

SI) 



meaning of this field can be found in t h e following: Given Fp(X{)) one calculates 

its c o m p o n e n t s /,v with respect to t h e basis Xo (V-u) (k V ~, 3), uses (17) 

and gets t h e c o m p o n e n t s of the 3-velocitv of t h e particle m e a s u r e d by t h e 

observer connected with t h e m a t r i x Xo- I n par t icular F (Xo) 0 m e a n s t h a t 

the part icle p is in rest with respect to X ( ) . 
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