Matematicko-fyzikálny časopis

Juraj Virsik

The Representation of Inertial Particles in the Lie Algebra of the Lorentz Group

Matematicko-fyzikálny časopis, Vol. 16 (1966), No. 1, 82--90
Persistent URL: http://dml.cz/dmlcz/126719

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

THE REPRESENTATION OF INERTIAL PARTICLES IN THE LIE ALGEBRA OF THE LORENTZ GROUP

.ICRAD VIRSIK. Bratislata

Some Lie properties of the general Lorentz group are investigated and an application of them to the space-time structure of the special relativity theor: is given.

All the matrices dealt with are supposed to be real. The Lie group of regulat ($n \times n$)-matrices $\left.X: \not x^{i k}\right\rceil$ is denoted by $\left(i L(n, R)\right.$. Let $G_{i}\left|g_{a b}\right|$ be a fixed regular diagonal ($n \times n$)-matrix. The matrices X with elements $x^{i k}$ satisfyine $n(n+1)$
the - equations

2

$$
\begin{equation*}
\text { Fhl } g_{a b} x^{a l l} \cdot x^{b l}-g^{h l}-0: k: l \tag{1}
\end{equation*}
$$

form a subgroup ($0(G)$ of $(L L,(n, R)$. This can be casily established observing that (1) is equivalent to $X^{*} G X==\left(Y\right.$, where X^{*} denotes the transpose of X. In other words, $(\mathscr{5}(G)$ is the general Lorentz group of matrices X which leate invariant the quadratic form

$$
\begin{equation*}
\xi \cdots \xi^{*} G \xi \tag{2}
\end{equation*}
$$

on $R^{\prime \prime}$. Note that $(\mathscr{b}(E)$ (E the unity matrix) is the orthogonal group E(n) and $(\mathfrak{h}(L)$, with L, the diagonal matrix of the form

$$
\begin{equation*}
\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2} \quad c^{2} \xi_{1}^{2} \quad(r \therefore 1), \tag{3}
\end{equation*}
$$

is the usual full Lorentz group.
Next we shall explicitly show that $(G)(G)$ is a Lie subgroup of (il. (11. II) and point out a concrete local chart of $(\mathfrak{F}(G)$ containing the unity element E

Lemma. The Jacobian of (1), i.e.

[^0]$$
\operatorname{det}\binom{\partial F^{k l}}{\partial x^{i j}} \quad \text { with } k=l, i \leq j
$$
twhen at the point E, is non-zero.
Proof. Direct differentiation of (1) gives
$$
\frac{\partial F^{h^{\prime}}}{\partial x^{i j}}(E)-g_{i l} \delta_{j k}+g_{k i} \delta_{j l}
$$

(i) is the usual Kronecker symbol). This is a matrix of order "(w+1) for i.j. k. Let us suppose there exists a non-trivial system of numbers $l^{k+1}(k \quad l)$ satisfying the $\begin{gathered}n(n+1) \\ 2\end{gathered}$ linear equations

If we define $y^{!} \quad 0$ for $k>1$ and denote $\left.Y \quad \mid y^{k l}\right]$ then (6) asserts that the matrix ($i^{\prime}\left(Y^{*}+Y\right.$) has zero elements on its principal diagonal and above it. Futhermore it is also symmetric and hence $G\left(Y^{*}+Y\right)=0$ i. e. Y. Thus the determinant (4) is necessarily non-zero.

Applying the implicit function theorem one can find a neighbourhood ${ }^{\prime \prime}$ of the origin (c.in $R^{N}\left(N \cdots \frac{n(n-1)}{2}\right)$, a neighbourhood $\nsubseteq(E)$ of the matrix E^{*} in ($(6)(G)(6)(G)$ provided with the topology induced by the natural topology in $R^{\prime \prime \prime}$) and a homeomorphism $y_{0}: \not \|_{(}(E) \rightarrow \mathbb{N}_{0}$. This y_{0} has the properties:

$$
i>j \approx\left[\frac{10}{-1}\left(x^{i j}\right)\right]^{k \prime}=\begin{align*}
& v^{k l} \text { for } k>l \tag{7a}\\
& h^{k l}\left(x^{i j}\right) \text { for } k \leqq l
\end{align*}
$$

Where hit ($k \leqslant l$) are the (analytic) functions obtained by ,.,solving the equations (1) with respect to $x^{k \cdot l}(k \leqq l)^{\cdot *}$. and

$$
\begin{equation*}
y_{0}(E)=0 \tag{7b}
\end{equation*}
$$

Thus the pair ($\left.\not /(E) . y_{0}\right)$ defines a local chart on $(5(G)$. It can be easily shown that the family of charts $\left(A . \mathbb{M}(E)\right.$. y_{4}) for all $A \in(G)(C)$, where $Y_{A}(X)$
$y_{0}\left(A^{\prime} X\right)$. provides $(5)(G)$ with the structure of an analytic submanifold of ($L(m, R)$. Moreover ($(G)(G)$ is a topological group with the topology induced by the topology in $(i L(n, R)$. Hence it is an N-dimensional Lie subgroup of

Lemma. The functions in (7a) satisfy the equations

$$
\begin{aligned}
& \partial h^{a b} \\
& \partial x^{i j}(\mathbb{C}) \quad g_{i} i_{i} \tilde{j}_{\prime \prime}
\end{aligned}
$$

Proof. Differentiation of (1) provides
i. e. using (5)

 above) Hence it suffices to show

$$
\begin{equation*}
\sum_{a \leq b}\left(g_{a l} \delta_{b k} g_{i b} \grave{g}_{j a}+g_{k a} \delta_{b l} g_{i b} \dot{q}_{j u}\right)=\left(g_{i l}\right)_{j k} \tag{9}
\end{equation*}
$$

This, however, is evident: The first summand in the bracket is zero for eath $k \leqq l$ and $\quad=b$. The second one is non-Zelo only if $l=i . k$ ith both $\ell \quad l, b=k$ and its value is $g_{i i}$. The same. of eourse. is true about the right hand side. Thus the lemma is proved.

The Lie algebra $g L(n, R)$ of $(i L(n, R)$ eonsists of all the ($n=n$)-matrieos and the product is given by $(A, B) \rightarrow A B \cdots B A$ (multiplication of matrices). Each $A \in g L(n, R)$ can be written in the vector form

$$
A \quad \sum_{k!!}^{-1} \varepsilon^{k l l} \hat{c}^{\hat{c}}(E)
$$

Let $g(G)$ be the Lie algebra of $(5(f)$. It is a subalgehra of $g L(n$. R) and the homeomorphism q_{0} defines a canonical basis

$$
\begin{equation*}
I_{i j}=\sum_{k, l}^{\sum_{i j}^{k, l}} x_{\partial x^{k l l}}^{i}(E), \quad i \gg j \tag{10}
\end{equation*}
$$

where ${ }_{i j}$ are the vectors in $g\left({ }_{i}\right)$ associated with the roordinates given by the mapping yo, i. e.

$$
I_{i j}(f)(E)=\begin{gathered}
\left.\partial\left(f \cdot q_{1}{ }^{1}\right)(\mathbb{C}), \quad i \cdots j\right) \\
\partial x^{i j}
\end{gathered}
$$

for each function f differentiable in a neighbourhood of E in $(x)(n, R)$.

Applying (7a) and the preceding lemma one finds

$$
\begin{aligned}
& \Gamma_{i j}(f)(E) \cdots \dot{c} f \\
& \dot{c} x^{i j}
\end{aligned}(E)+\underset{l i=1}{\sum x^{k l}}(E) \frac{\partial f}{\partial x^{i j}}(\hat{O})=0
$$

Comparison with (10) gives
$u_{i}^{k i} \quad \delta_{i}^{k} d_{j} \quad$ for $k>1$,
$u_{i j}^{k,} \quad g_{i 1} \grave{y}_{j i} \quad$ for $k \leq 1$.
The elements $T \quad\left[t^{i j}\right] \in \mathfrak{g}\left(C_{i}^{i}\right)$ can be expressed in the form

$$
t_{i k}^{\sum_{j}} i^{i j} u_{i j}^{k_{i}^{\prime}}=\begin{array}{ll}
i)^{k l} & \text { for } k>l \tag{11}\\
\sum_{i} g_{i} i \check{y}_{j k} \eta^{i j} & \text { for } k \leq l .
\end{array}
$$

Note that the last expression is zero if $k=l$.
Proposition. The matrix $T \in g L(n, R) i x$ an element of the Lie alyebra g(i) if and onl!/ if

$$
\begin{equation*}
T^{*} \neq \text { ciTli } 1=0 . \tag{2}
\end{equation*}
$$

Proof. Let T ea (C). Then the (a, b) element of the matrix on the left hand side of (12) is

It $b=$ a this is cqual to

$$
i j^{b_{1}} \cdots g_{a u} g_{b} \dot{g}_{a a} y^{b a} \grave{g}_{b l}=0 .
$$

If b... u. (1:3) sives

$$
g_{a a} \check{g}_{b b} i^{a b}: g_{a a} \eta^{a b} \tilde{g}_{b b}=0 .
$$

The ease a b is evident.
Comvervely let $t^{\text {ab }}$ satisfy (13). A similar consideration yields (11) q.e. d.
Each element T of the Lie algobra $g L(m, R)$ generaten a one-parameter subgroup $\Gamma_{T} \quad\left\{I_{T}(\theta)\right\}_{0, R}$ of $C L(\pi, R)$ with $\left[\begin{array}{c}\mathrm{d} \\ \mathrm{d} 0\end{array} \Gamma^{\prime}(\theta)\right]_{\theta=0}=T$, i.e. $I_{T}(\theta) \quad e^{T \theta}$. Particularly $T \in g\left(G_{i}\right)$ induces $c^{T \theta} \in(G)$ for all $\theta \in R$. The basis $U_{i j}(i)$ j)

(-) Nosmmmation applied in the rest of the proof.

The exponential mapping exp: $\mathfrak{g}(G) \rightarrow(G)(G)$ given by exp T. $I_{T}(1)$, T provides a homeomomorphism of a neighbourhood of the origin in g(f_{i}) onto a neighbourhood of E in $(5)(i)$ (cf. $|1|)$.

For the sake of simplicity and physical interpretation we shall restrict our following considerations to the case $(G=L,(\tilde{G}$ - will denote the proper Lorent\% group. i. e. the component in $(5)(L)$ containing E. It consists of space and time orientation preserving Lorentz transformations. The matrices $I_{i j}(0)$ can be given now an explicit form. We bave $\Gamma_{i j}(\theta)==e^{r^{\prime}, \prime \prime}$ or, after having solved the corresponding differential equations,

$$
\begin{aligned}
& I_{21}(\theta)=\left(\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text {, or } \\
& I_{41}(\theta)=\left(\begin{array}{cccc}
\cosh \theta i c & 0 & 0 & r \sinh \theta_{i} c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 / c \cdot \sinh 0 / c & 0 & 0 & \cosh \theta c
\end{array}\right)
\end{aligned}
$$

respectively, with similar expresions for $\left.I_{31}(1)\right)$. $\Gamma_{32}(0)$. or for $I^{\prime} 2(1)$. $I^{\prime}: 3(1)$ respectively. Hence the one-parameter group $I_{i j}(+>i, j)$ represente all the space rotations in the (i, j)-coordinate plane while $I^{\prime}: j(j \quad 1, \ddot{2}, 3)(\ldots$, respond to parallel frames moving along the j-th axis. (${ }^{3}$)

The subgroup of (5) consisting of matrices of the type

$$
\left(\begin{array}{ll}
P_{3} & 0 \\
0 & 1
\end{array}\right) .
$$

where P_{3} is a (3×3)-orthogonal matrix with det $P_{3}>0$. is denoted by 5 . It is clearly a Lie subgroup of (5 its Lie algebra being the vector subspace r of $\mathfrak{g}(L)$ gencrated by the vectors $l_{21}, I_{3!}, I_{32}$. The vectors I_{11}, l_{12}, I_{10} generate a vector subspace $m \in g(L)$ so that $\mathfrak{g}(L)-r$ m. Clearly r is a subalgebra of $g(L)$ but this is not true about 111 . Nevertheless there is a (local) homeomorphism of a neighbourhood of the origin in mito a neighbourhood of the unity class in the space $(5) / D$ of right cosets $E . N$. Thihomeomorphism is a restriction of the mapping

$$
\begin{equation*}
x \text { exp: } 11 \mathrm{~m} \tag{14}
\end{equation*}
$$

where π is the projection in $(5+/ D$ and $(5) / D$ is provided with the indued roset topology (rf. $11 \mid$ Ch. II. Lemma 4.1).
(3) ., Parallel" means here always including oriontation.

Our next task is to show that in this sperial case the mapping (14) is a homeomorphism on the whole of mt onto $51 / 2$. We shall first prove that (14) is a one-to-one mapping of m onto ($5: 10$.

One can give a physical interpretation to the space $(5) / D$. The matrices of (i) represent inertial observers of the pecial relativity theory, one observer being pointed out as corresponding to the unity matrix E. We shall call him the original observer. Each coset of $(5) / D$ represents a class of observers moving with a common 3 -velocity vector but their frames (of orthogonal space coordinates) arbitrarily turned. Thus a coset of $\mathfrak{5}^{+} / \mathfrak{D}$ ean be characterized by inertial observers without frames: we shall identify them with inertial material particles and call them simply particles. A right coset of $\left(\mathfrak{5}^{+} / \mathfrak{D}\right.$ will be called an IP-roset.

An inertial particle can be equipped with a canonical frame - a frame with its axes parallel to those of the original observer. This canonical frame of the particle defines a Lorentz matrix of special kind. Let us call it an IP-matrix. From the intuitive point of view it is quite natural that the correspondence between IP-cosets and IP-matrices is a one-to-one. Nevertheless we shall give a mathematically strict proof of this statement (cf. the proposition bellow).

It is known that cach $\mathrm{X} \in 6$ can be written as $\mathrm{X}=P$. S, where $P \in \mathfrak{D}$ and s is an IP-matrix. Moreover each IP-matrix $(\neq E)$ has the form (cf [$\because]$)

$$
\left(\begin{array}{ccc}
E_{3}+v^{q} & 1 & \\
& v^{2} & W_{3} \\
-q / c^{2} v & -q v^{*} \\
\end{array}\right)
$$

with $\left.c \cdot\right|^{\prime} v_{1}^{2} \mid v_{-}^{2}+v_{3}^{2}<c: q \cdots\left(1-\frac{v^{2}}{c^{2}}\right)^{\stackrel{1}{2} ;} \quad W_{3} \equiv\left[v_{i} v_{j}\right]$,
where r_{1}, v_{2}, r_{3} are the components of the velocity vector \mathbf{v} of the particle with respect to the coordinate system of the original observer.

Proposition. Each IP-coset contains one and only one IP-matrix.
Proof. As stated above, each coset of $(5)+10$ contains an IP-matrix. Suppose a coset contains two IP-matrices, i. e. $S_{2}=P S_{1}$ for some IP-matrices S_{1},

$$
\begin{align*}
& P_{1} \quad\left(\begin{array}{ll}
\rho_{3} & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
E_{3}+\begin{array}{c}
q-1 \\
v^{2} \mathbf{v}
\end{array} & W_{3} \\
\cdots q / c^{2} & \cdots \mathbf{v}^{*} \\
q
\end{array}\right) \tag{15}\\
& =\left(\begin{array}{cc}
P_{3}+q \cdots 1 \\
v^{2} & P_{3} V_{3}-q P_{3} \boldsymbol{v}^{*} \\
q / c^{2} \mathbf{v} & q
\end{array}\right)
\end{align*}
$$

and compraring the lower rows of $P S_{1}$ and of S_{2} one gets $S_{1}=S_{2}$.

Hence there is a onc-to-one correspondence between the points of the oper hall $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}<r^{2}$ and the IP-cosets. (15) gives an explicit expression of this correspondence: If $\mathrm{X} \quad\left[x^{i j}\right] \in\left(\boldsymbol{5}^{\prime}\right.$, the triple $\left(r_{1}, r_{2}, r_{3}\right)$ eorresponding 10 the class of X is given by

$$
\begin{equation*}
v_{j}=c_{x^{24}}^{c^{2} x^{4 j}} \tag{16}
\end{equation*}
$$

Now one can find the explicit form of the mapping (1+) simply by computine the elements of the fourth row of the matrix exp $T, T \in M$. For this purpose let $T \quad t_{1} C_{41}+t_{2} I_{:}: t_{3} V_{13}$. The matrix

$$
\exp T\left(\theta \cdots \Gamma_{r}(0) \quad\left(0 \in l_{i}\right)\right.
$$

is the solution of the system of differential rquations

$$
{ }_{d}^{d} I_{T}(\theta) \quad I_{T}(\theta) . T
$$

$$
\begin{aligned}
& \because h(1)=\int_{k}^{t_{k}} \sinh c t: k \cdots t, t \quad 1 \\
& \left.\gamma^{\prime}+1\right)=(\cdot o s h c t
\end{aligned}
$$

or. with respect to (16) and $e^{\prime \prime} E$.

$$
\begin{array}{lll}
y_{k} \quad \frac{c t_{k}}{-\operatorname{tgh} c t} & \text { for } t & 0 \tag{17}\\
r_{k} & 0 & \text { for } t \\
& 1 .
\end{array}
$$

This formulae can be inverted in a unique way

$$
\begin{array}{lll}
t_{k} & r_{k}^{r} \text { arcoosh g } & \text { for } r \therefore 0 \tag{18}\\
t_{k} & 0 & \text { for } r=0
\end{array}
$$

Thus the mapping (14) is a one-to-ome. It is also a homeomorphism as ofte can easily see from (17) and (18) realizing that the topology in (6) D is such that a is continuous and open. We may sum this up in the

Theorem. The mapping it. exp is a homeomorphism of the linecti subspact $111 \subset(L)$ onto the space $(5+10$ of IP-cosets. This homeomorphism is given b!y (17) resp. (18) nud maps $I P$-cosets corresponding to particles moving along the k-th axis onto vectors in \mathbf{m} colinear with $I_{i k}$. Morcover it represents the fiemily of puticles moving in a given direction as a subspace of colinetr vectors in 1 It .

Note that in our considerations the inertial particle is completely characterized by its 3 -velocity vector and no attention is payed to its position say in the zero moment of the original observer. So we can always suppose the particle passing the origin of the original observer (and also of the others) at this moment.

Up to this time we have used the one-to-one correspondence between particles and 1 P -cosets provided all the measurings have been made with respect to the origina! observer. If p denotes the particle in view and $h(p, E)$ the corresponding erset of $\left(5 \cdot / D\right.$ then $h(\boldsymbol{p}, E)$ is given by the triple (r_{i}, r_{2}, v_{3}) deswibing the 3 -velocity vector components of the particle from the point of view of the original observer. (alculating the velocity vector with respert to anothow observer. say given by the matrix $\mathrm{X}_{0} \in(5)$, one obtains in general an other triple ($r_{1}^{\prime}, v_{2}^{\prime}, r_{3}^{\prime}$) defining an another IP-coset. In order to get explicitly this new triple it suffices to calculate the lower row in the matrix $Y \mathrm{X}_{0}{ }^{\prime}$. where Y is an arbitrary matrix of the IP-enset given by the triple $\left(v_{1}, v_{2}, v_{3}\right)$. Formally it can be shown that the homeomorphism (14) defines a mique analytic structure on $(5)+\mathbb{O}$ with the property that (5 : is a Lie transformation group of (5)/D (cf. [1] Th. 4.2).

We may comect with each particle \mathbf{p} and each observer given by $\boldsymbol{X}_{0} \in(5)$ an I P-roset $h\left(\mathbf{p}, X_{0}\right)$ defined by

$$
h\left(\mathbf{p}, X_{0}\right)=h(\mathbf{p}, E) \cdot X_{0}^{-1} .
$$

In arcomanne with the considerations above the triple (r_{1}, r_{2}, r_{3}) corresponding to the IP-coset $h\left(\mathbf{p}, X_{0}\right)$ is nothing efse but the 3 -velocity components of the particle with respeet to the observer sepresented by the matrix X_{0}.
()n the other hand the linear subspace $116 \mathfrak{g}(L)$ may be ronsidered as a linear space of right invariant vector fields on (\boldsymbol{S}^{+}. Hence there is a canonical one-to-one correspondence $T \rightarrow X_{0}(T)$ between the vectors of 111 and the rectors of a lincar subspace $m\left(X_{0}\right)$ of the tangent space to (o) at X_{0}. Let log: ($5: \mathcal{E}$ > 1 It denote the inverse of the homeomorphism (14). Given a fixed particle \mathbf{p} one can define a continuous vector field on (o) by

$$
X_{0} \cdots F_{\mathbf{p}}\left(X_{0}\right) \therefore\left(X_{0} \log \right) h\left(\mathbf{p}, X_{0}\right) .
$$

It is not difticult to see that this is even an analytie vector field on (6) ${ }^{+}$. The field $X_{0}>F_{\mathbf{p}}\left(X_{0}\right)$ is uniquely defined by $F_{\mathbf{p}}(E)=\log h(p, E)$ and for a fixed X_{0} (5 the correspondence $\mathbf{p}>F_{p}\left(X_{0}\right)$ is a one-to-one. The physical
meaning of this field can be found in the following: (iven $F_{p}\left(X_{0}\right)$ one calculates it.s components f_{k} with respect to the basis $\mathrm{X}_{0}\left(l_{1 k}\right)(k-1,2,3)$, uses (17) and gets the components of the 3 -velocity of the particle measured by the observer commerted with the matrix X_{0}. In particular $\dot{F}_{\mathrm{p}}\left(\mathrm{X}_{0}\right)$. 10 means that the particle \mathbf{p} is in rest with respect to \boldsymbol{X}_{0}.

REFERENOLS

11| Helgason si., Differemial geometry and symmetric spaces, New York 196.․

Receivel Jamamy $27,1965$.

[^0]: (1) Summation over repeated indiers. No ..geometrical" differemer is made bequent upper and lower indices.

