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MATEMATICKO-FYZIKÁLNY ČASOPIS SAV, 15, 3, 1965 

ON POWERS OF NON-NEGATIVE MATRICES 

STEFAN SCHWARZ, Bratislava 

Let Ahe&n X n matrix with non-negative entries. One of the main problems 
in studying such matrices is to study the distribution of zeros and ,,non-
-zeros" in the sequence 

(1) A, A\A\... 

In the paper [2] I have shown that there is a simple semigroup treatment 
of this problem which leads to a series of results without any mention of such 
notions as characteristic values, characteristic vectors, etc. 

This semigroup treatment leads to some pertinent questions which will 
be partly solved in this paper. 

For convenience of the reader I briefly recall the necessary notions intro­
duced in [2]. 

Let N = {1, 2, . . . , n}. Consider the set of (in X n matrix-units", i.e. the 
set S of symbols {e# \i,je N} together with a zero 0 adjoined: S = {e# | i, j e 
GN}U {0}. 

Define in S a, multiplication by 

/ 0 for j 7^ m, 
^eu tor j = m, 

the zero 0 having the usual properties of a multiplicative zero. The set S = Sn 

with this multiplication is a ^-simple semigroup. I t contains exactly n non-zero 
idempotents, namely the elements en, e22, . . . , enn. 

Let A = (atj) be a non-negative n X n matrix. By the support of A we shall 
mean the subset of S containing 0 and all those elements e# e S for which 
atj > 0. 

The support of A will be denoted by GA • For typographical reasons we shall 
write occasionally GA = G(A). 

For any two n X n non-negative matrices we clearly have GA+B = GAV GB-
Consider further the set S = Qn of all subsets of S = Sn and define a multi-
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plication in S as the multiplication of complexes in S, i.e. if C, C" e S , then 
C'C" = {C1C2/C1 e C, C2 G C"'}. Then (5 is again a finite semigroup containing 
exactly 2n2 different elements^1) 

If A, B are two non-negative matrices it is easy to see that CAB = CA • CB. 
In particular, the supports of the elements of the sequence (1) are given 
by the sequence 

(2) CA,CA,CA,... 

Though (1) may contain an infinity of different elements, the sequence (2) 
contains only a finite number of different elements. The correspondence 
A -> CA is a homomorphic mapping of the semigroup of all non-negative 
matrices onto the semigroup S . [If we consider the union of sets as the second 
binary operation in S , we have even a homomorphic mapping of the semiring 
of all non-negative n X n matrices onto the semiring S.] 

The following facts easily follow from the elements of the theory of finite 
semigroups. 

Let A be a fixed n X n matrix. Let k be the least integer such that CA = Cl
A 

for some I > k. Let further I = k -{- d (d ^ 1) be the least integer satisfying 
this relation. Then the sequence (2) is of the form 

r\ rik—1 I rik rik+d—1 I r\k r\k+d—\ I 

Denote by QA the subsemigroup of S generated by CA . Then QA has exactly 
k + d — 1 different elements and we have 

(3) <ZA = {CA,...,CA-\CA,...,CA
+^}. 

For any a ^ k and every /? ^ 0 we clearly have 

(4) cA = cy* . 

I t is well known that (5A = {CA, ..., C*A
d~x} is a cyclic group of order d 

(subgroup of &A)- The unit element of the group (5A is CQ
A with a suitably 

chosen Q satisfying k ^ o ^ k + d— 1. Let r be the uniquely determined 
integer such that k ^ r d ^ k + d— 1. Then Q = rd. To show this it is 
sufficient to show that CA is an idempotent. In fact we have (by (4) with 
a = rd, p = r) C2

A
rd = Crd+rd = Crd. 

In the following we shall consequently write Q = rd, so tha t CQ
A is the 

(unique) idempotent G &A . Clearly, we also have (5 A = {CQ
A . C0/1, ..., CQ/d~1}. 

Note explicitly tha t to every non-negative matrix A we have associated 
three integers k = k(A), Q = Q(A) and d = d(A) satisfying k ^ rd = Q ^ 

(x) S may be considered — of course — also as the Boolean algebra of n X n square 
matrices with elements 0 and 1 and the usual binary operations. 
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5S g + d — 1, which depend only on the distribution of the zeros and non-
-zeros in A. 

For further purposes we mention also the following facts proved in [2]. 
If A is any n x n non-negative matrix, then 

Cn/1CCA UC2
AKJ ...KjCn

A. 

Hence the set CA KJ CA KJ ... KJ CA is always a subsemigroup of S = Sn. 
A non-negative matrix A is aalled reducible if there is a permutation mat­

rix P such that PXAP is of the form 

Otherwise it is called irreducible. An n X n non-negative matrix A is irre­
ducible if and only if 

cAKjCs
Av...ucrA = sn. 

I t should be mentioned in advance tha t in this paper the emphasis is rather 
on the reducible case. 

Consider now the semigroup (5A as given in (3). The elements of 5A are 
subsets of S. At least one of the elements e 5A (namely CQ

A) is itself a sub-
semigroup of S. The first problem treated in this paper concerns the following 
question. Under what conditions concerning A and s may it happen that 
the set CA is a subsemigroup of S. The second problem is to find a "good" 
characterization of the number d = card (5A • I t will turn out that both 
questions are intimately connected. 

I. 

Lemma 1. Let A be any n X n non-negative matrix. Suppose that CA is a sub-
semigroup of S = Sn. Then 

n)CACCA; 
b) CA contains all idempotents e S contained in the union CA U CA KJ ... U CA. 
Proof, a) The sequence 

W> W> W> ••• 

contains a unique idempotent CA. Hence there is an integer v such that 
CA = CQ

A . Since CA is a semigroup, we have CA D CA, which ;mplies 

CS
A D C2J D CSJ D . . . D C°l = CQ

A . 

b) Let EA = {eaa/oc running through a subset of N} be the set of all non-zero 
idempotents e S contained in CA U CA U . . . U CA. If eaa e CA (1 ^ h ^ n), 
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then eaoc e CA for any integer t ^ 1. Since some power of CA is CQ
A, we have 

6 a a e C ^ , hence EACCQ
ACC8

A. 

Theorem 1. The group (5A = {CA, . . . , C^-1} contains exactly one element 
which is itself a subsemigroup of S . 

R e m a r k . This is — of course — the idempotent CA. 
Proof . Suppose that CA, k^s<k-{-d— 1 is a semigroup. By Lemma 1 

we have CQ
A C CS

A. Multiplying by CS
A we have CQ

A.CS
AC C2J C CS

A. But since CQ
A 

is the unit element E&A, CQ
A.CS

A = CS
A. NOW CS

A C C2S
A C CS

A implies CS
A = 

= C2J, i.e. CA is an idempotent contained in (5A- Hence CA = CQ
A, q.e.d. 

R e m a r k . If k > 1, the set {CA, CA, ..., C1^1} may contain subsemigroups 
of S. Let f i . A be a non-negative 3 x 3 matrix with the support (in an obvious 
notation(2)) 

Then 

and CA = {0}. Hence all elements CA, CA, CA are subsemigroups of $3. 

Theorem 2. Let A be a non-negative n X n matrix for which C i U ^ U . . . U 
U CA contains all non-zero idempotents e S, i.e. the set EA = {̂ 11, 622, •.. , enn}. 
Then <5A contains exactly one element that is itself a subsemigroup of S. 

Proof . Let he\i^Ls^Lk-\-d — 1 and CA a subsemigroup of S. By Lemma 1 
we have {en, ..., enn} C CA. If A is any subset of S we always have A{e±i, . . . , 
enn} = A. In particular (in our case) we have 

@A = Cl{eH > • • • > enn} C CA . 

The "inequalities" CA C CA and CA C CA (describing the semigroup property 
of CA) imply CA = CA. Since there is a unique idempotent e QA we have 
Ci = ^ , q . e . d . 

If S is irreducible, then CA U CA U ... U CA = S, so that the suppositions 
of Theorem 2 are satisfied and we obtain: 

Corollary 1. If A is irreducible, then CQ
A is the unique element GQA which 

is itself a subsemigroup of S. 

(2) We shall occasionally use this obvious notation by puting 1 on those places (i, k) 
for which e^ e CA . F.i. in our example the "Boolean matrices'' CA, C\ , C\ denote CA = 
- {0, e2i, e3i, e32}, Cj = {0, e3i}, C\ = {0}. 
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Corollary 2. If A is any n X n non-negative matrix and CA is a semigroup 
containing {en, . . . , enn}, then CA = CQ

A. 
Proof . By supposition CA = CA{en, ..., enn}CC2]. On the other hand 

C22 C CS
A, hence CS

A = CA
S; therefore CS

A = CQ
A, q.e.d. 

R e m a r k . In Corollary 2 the supposition that CA is a semigroup cannot 
be omitted. Let f.i. i b e a 3 x 3 matrix with 

^0 0 1\ 

Then 

contains {en, e22, e^}, but CA is not the idempotent e S i . (The idempotent 
eQAisCA.) 

The next two Lemmas will enable us to locate, so to say, the semigroups 
in the sequence (2) and to find at the same time a new characterization of the 
number d. 

Lemma 2. Let s be an integer such that CA is a subsemigroup of 8. 
We then have: 

a) &A = C^; 
b) d | s; 
c) CQ

A C Cs+td for any integer t ^ 0. 

Proof , a) We have CQ
A

+S e © ^ . Further CQ
A

+S is a subsemigroup of S since 
c2jQ+s) = c2

A
Q. c2j = CQ

A . c2j CCQ
A.CS

A = CQ+S. 

Hence by Theorem 1 CQ+S = CQ
A. 

b) Suppose that d ^ s and write s = ocd + /?, where a ^ 0 is an integer 
and 0 < /? < d. Since for any integer oc we have CQ

A
+ocd = CQ

A the relation 
CA = C<AS implies 

CQ
A = CQ+«d+P = CQ+«dCA = CQ

A.CA = CQ+(i. 

The relation CQ
A = CQ

A
+P contradicts to the fact tha t the group ©^ = {CQ

A, 
CQ+1,..., CQ+d~x} is of order d. 

c) By Lemma 1, we have CQ
ACCS

A, hence CQ+td C Cs+dt and since CQ+td = 
= CQ

A, we obtain CQ
A C Cs+td. This proves our Lemma. 

Lemma 3. If CA is a semigroup, then none of the sets CS
A

+1, CA
+2, ..., Cs

A
+d"1 

can be a semigroup. 
Proof . If CS

A
+X, 1 <! X < d — I, were a semigroup, then Lemma 3b) would 

imply that d \ s and d \ s ~\- I, which is impossible. 
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Let s0 be the least integar s such that CA is a semigroup. Then s0 __ Q and 
we may arrange the set of powers in the following way: 

(5) cA,cA,...,c°A-\cA, cA
+\ ...,cs

A
+d-x 

p% + d rv$0+d+l sis0+2d—l 
^ A 9 ^ A 9 • • • > ^ A 9 

sis0 + 2d sis0 + 2d+l sis0 + 3d—1 
^ A 9 ^ A 9 • ' • 9 ^ A 9 

c*., cA
+\ ...,cA

+d~\ 

Since d \ o and d | s0 there is necessarily an integer t such that Q = s0 + td. 
We get exactly t + 1 rows. The last of them contains at least one element 
e (5^ which does not occur in the foregoing row. (This means: I t may happen 
tha t to obtain all different elements e <BA it is not necessary to consider 
the whole last row. but certainly at least the first element contained in it.) 

The idempotent CQ
A is necessarily contained in the column {CSJ, Csii~d, ...} 

and (by Lemma 2c) CQ
A is a subset of each element of this column. 

Also (by Lemma 2b) all elements e QA which are themselves subsemigroups 
of 8 are located in the column {C% Cs2+d, Csj+2d, ..., CQ

A). Hence the semi­
groups contained in the sequence (2) are some of the powers 

ns0 sis0+d sis0+(t—l)d 
UA9 W 9 •••> ~^A 

and all the following 
QQ ___ Sjs0+td __ sjs0 + (t+l)d __ sjs0-\-(t+2)d __ 

Now since d \ s0, the number d is the greatest common divisor of the sequence 
of integers 

s0 9 so + d, s0 -\- 2d, ... 
We have proved: 

Theorem 3. The number d = card ©^ is the greatest common divisor of all 
such integers s for which CA is a semigroup (subsemigroup of S). 

We make some supplementary remarks to t h e "tableau" (5). 
R e m a r k 1. None of the sets CQ

A, ..., CQ
A

d~1 is contained as a proper 
subset in another, i.e. CQJ~U C CQ

A
V implies CQ+U = CQ/V. 

Proof . We first prove that CQ C CQ/U, 0 __ u __ d — 1, implies CQ
A = CQ/U. 

Note that by Lemma 2 a Q = CQ
A

+Xs° for any integer X __ 0. The relation 
CQ

ACCQ/U implies 

CQ
A C CQ_+U C CQ/2u C ...CCQ/S»U = CQ

A. 

Hence CQ
A = CQ2 u- Suppose now 

(6) CQ/U C CQ/V 

for some u, v __ 0. Since CQ/U
 E(&A, there is a C&+"' suc^i that O+u QQ+W __ 

= CQ
A. Here u + u' = 0 (mod d) Multiplying (6) b y CQ+W w e ^ h a v / c * C 
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C Ce

A

+v+u', hence CA = CA

+V+U', so that v + u' 0 (mod d). Therefore u — v = 0 
(mod d) and C ^ м C*/«, q.e.d. 

R e m a r k 2. The statement just proved implies t h a t none of the elements 
C*2, Cs2+1, . . . , C8^rd~~1 can be contained (as a proper subset) in an another. 
For Cs*+i C <7D+*, 0 ^i, l^d—l, i ^ l multiplied by Ctd

A would imply 
ç\sй-\-dt+i r~ ґjsQ-\ dt+l i.e. CQ/{ C CQ/1, hence CQ/i = CQ/1, which is not true. 

An analogous statement holds for the remaining rows. 
R e m a r k 3. In [2] we have proved that for an irreducible matrix the inter­

section TA = CQ

A n CQ/1 n ... n C6/^1 is {0}. [Even the intersection of any 
two of these sets is {0}.] This is not necessarily true in the case of a reducible 
matrix. Consider f.i. a 3 x 3 matrix A with CA = {̂ 12, 621, 633, 0). Then CA = 
= {en, e22, 633, 0} and © A = {CA, C\}. Here TA = CAC\C\ = {e33, 0}. 

But it is easy to show that TA is always a subsemigroup of S. For let be 
aeTA, beTA. Then a e CQ/k for any k = 0, 1, ..., d - 1 and b e CQ/1 for 
any 1 = 0, 1, . . . , tZ — 1. Hence ab eCQ

A

k+l. If k, I run through a residue 
d—l 

system (mod d) so does k -\- I so that ab e f) C^+ m; hence ab eTA, q.e.d. 
m = 0 

R e m a r k 4. For an irreducible matrix A we have s0 = Q and we always 
have CA C (7̂ °. Again this is not necessarily true for a reducible matrix. 
This is shown on the following example. Let A be a matrix with 

Cл = 

Here d = 1 and ©^ is the one-point group (5A = {CA}, where 

GÌ 

We have sn 2 and CA C CA does not hold. 

E x a m p l e . We conclude this section with a simple example of a matrix 
with card ©^ > 1 and s0 < Q. L 0 t A be a matrix with 

CA 

0 1 
1 0 

0 

0 
0 0 0 0 
1 0 0 0 
1 1 0 0 
1 1 1 0 
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Then 

Oì 

1 0 
0 1 0 

0 0 0 0 

0 0 0 0 0 0 
1 0 0 0 
1 1 0 0 

c\ = 
1 0 
0 1 

0 

0 

ö 
Here QA has 5 different elements, (5A 

e = 4. 

i i . 

oì 

oì 

0 1 
1 0 

0 

0 1 
1 0 

0 

0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 

0 

0 
{CI, C*}, d = 2, s0 = 2, while 

The result of Theorem 2 may be formulated in a somewhat other way 
by introducing the notion of the normal form of a non-negative matrix M. 

Let M be a non-negative matrix (of order n). I t is well known that there 
is a permutation matrix P (of order n) such that PMP1 = A is of the form 

/An, 0, . . . 

(7) A = M21 , -422, . . . 

\_4ri, Ar2 , . . . 

where An (1 ^ i ^ r) are irreducible matrices (including the case that some 
of the An 's may be zero matrices of order 1). 

Consider the sequences 

(8) 

(9) 

ґl Гi2 ґlЪ 

^м-> °_tf? ^ І > 

ґl /i2 ҐІЗ 

L A , O A , L 'A > A 9 

The semigroups <BA and SM are clearly isomorphic. If CM is a semigroup, 
then so is CA since 

OІ UpO^Op-] 
/Пŕ /^s ҐI ГІ ҐІ2SҐІ r~ ґl ҐIS ґl 

V-/pL/^jL/p_i L /pL /jtørOp-i ^- \Jp\J M\JP~\ OA, 

and conversely. In particular, if CQ
M is the idempotent e S M > then CPCQ

MCP-X 

is the idempotent C^ e S i , so that Q(A) = £>(lf). Hence instead of studying 
the sequence (8) we may restrict ourselves to the study of the sequence (9). 

We shall use the following notations, di will denote the order of the group 
©__f? Qi will denote the least integer for which C% is an idempotent eQ>Ar 

If CQ
A is the idempotent e (&A , then CQ

Ai is necessarily the idempotent e ©__, • 
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If Q = Q(A) has the meaning introduced from the beginning (i.e. the smallest 
integer for which Ce

A is an idempotent EQA), then Q is necessarily of the form 
Q = Qi + x\d\ = o2 + x2d2 == • • • = Qr + %rdr, with suitably chosen non-nega­
tive integers x\, x2, ..., xr. Since Qi = ridi, we have Q = di(rt + xt), i = 
= I, 2, . . . . r. Denote d* = [d\, d2, ..., dr] the least common multiple of the 
integers d±, ..., dr. The relation di \ Q implies d* \ Q. We have proved: there is 
an integer r* such that Q(A) = r*d*. 

In what follows it is often of decisive importance whether in the normal 
form (7) there is among the Au s a zero matrix (of order 1) or not. If none 
of the Au s is a zero matrix, then 

OA = CAd* c CA U G\ U .. . U Cn
A 

contains {en, e22, . . . , enn}. With respect to Theorem 2 we have 

Theorem 4. If a matrix A written in the normal form (1) has no zero matrix 
in the main diagonal, then CQ

A is the unique semigroup contained in the sequence (9). 
The condition mentioned in this Theorem is not necessary. There are classes 

of non-negative matrices with zeros in the main diagonal having the same 
property. We prove f.i.: 

Theorem 5. Let 

(ttì 
where A\ is irreducible and not the zero matrix of order 1. Then CA is a semi­
group if and only if it is the idempotent e QA . 

Proof. Let i i b e a m x m matrix (so that R is a (n — m) x m rectangular 
matrix). D e n o t e d = {en, e22, ..., emm). The support of 

^ - (Al °) 
is a semigroup if and only if 

(10) C\\ CCs
Ai, C{RAf-1) C C{RAsf1). 

Now CA is a semigroup if and only if CA = CA\ i s * n e idempotent e S i 
and CA contains then E. Hence we have 

CR = CR. {en, e22, . • •, emm} C C{RA\). 

Now if CA is a semigroup, (10) implies 

C{RA[-1) D C{RA\S^X) = C{RAS
1)C{AS

1-
1) D C{R)C{AS~1) = C{RAS~'). 

Hence C{RAS~1) = C{RA2
1

S'1). Therefore CS
A = C2J, q.e.d. 

Theorem 5 may be generalized as follows: 
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Theorem 6. Let 
(A1 0 
KRA2 

with A1 irreducible and not the zero matrix of order 1. If CA is a semigroup, 
then CA is the idempotent e QA if and only if Cs

Ai = C2J . 
Proof . Denote 

(A[ 0 
\RSA2 

As — . 
l 2 

and Ri = R. Then 
I 2s _ / A? 0 \ 

- \RSA[ + A2RS A?) 

The set CA is a semigroup if and only if 

cA\ccAi, c%ccA„ 
C(RSA[)KJC(AS

2RS)CC(RS). 

Since A1 is irreducible, we conclude C *̂ = CAi and the diagonal of CA 

is positive, i.e. if A1 is a m x m matrix, we have {ell9 e^i, . . . emm} C CA 

so that C(RS) = C(R8){ell9 . . . , < w } C O^C^*). 
The relation 

C(RSA[) u 0(A |B , ) C C(B,) C C(B ,A ' ) 
implies 

C(RSA[) u C(^|^) = C(i?s) = C ( - M I ) . 

Therefore C(4«) = C(A*S) if and only if C(AS
2) = C(^ | s ) , q.e.d. 

III. 

In this last section we shall deal with some special types of matrices for 
which card ©^ = 1. 

Let A be the matrix of the form (7). The question arises what can be said 
about card (5A by knowing card © ^ = df. 

The following Lemma holds. 

Lemma 4. If d* = [d±, ..., dr], then card ©^ = d*. 
The p r o o f of this Lemma (which has been known to the author for some 

time) is given in the recent paper of K). H. J I I O S H H ( J U . I . L jub i6 ) [see [1], 
Lemma 2, p. 344]. 

A non-negative irreducible matrix A is called primitive if some power of A 
is positive. This is the case if and only if d(A) = 1. In this case ©^ is a one-
-point group, namely the idempotent e S_4. 

224 



If A is reducible of the form (7) then Lemma 4 implies card (5A = 1 if and 
only if di = d2 = . . . = dr = 1. Hence: 

Theorem 7. If A is of the form (1), then (5A is a one point group if and only 
if the matrices An are either primitive or zero matrices of order 1. 

R e m a r k . There are some special cases in which we may decide that (5A 
is a one-point group without reference to the normal form (7). 

Assertion 1. If CA is a semigroup, then card (5A = 1. 
Proof. By Lemma 2 d = d(A) divides every s for which CA is a semigroup. 

Since in our case wre may put s = 1, we conel nde d = 1. 

Assertion 2. If A is any non-negative n X n matrix and CA contains 
E = {en, . . . , enn), then card (5A = V 

Proof. By supposition CA = CA • E C CACA = CA. Hence CA C CA C 
C . . . C Q C Cf1. On the other hand we always have C^1 C CA U C\ u . . . U 
U C\, i.e. C^+1 CC'A. Hence C\ = Cn/X. This implies that Cn

A is the idem-
potent e QA and, moreover, card (5A = V 

A special class of matrices with d(A) = 1 is the class of lower triangular 
non-negative matrices, i.e. matrices of the following form: 

/ a n , 0, 0, . . . , 0 
(11) A = la21, a22, 0, . . . , 0 

\an\, an2, an3, ..., ann/ 

where aa (for i ^ k) are non-negative elements, while all elements above 
the main diagonal are zeros. 

Theorem 8. For a lower triangular non-negative matrix A of order n the set CA 

is the idempotent e QA • 
P r o o f a) We first prove that CA C C'A'1. Any element oc e CA is the product 

of n elements G CA of the form a = 6 ,̂-,̂  • . . . eWH,2. Such a product is certainly 
zero if the subscripts do not follow in the following order 

(12) (*i,*2), (i2,is), . . . , {in,in+i). 

Suppose a ^ O . Then by supposition we have i± 2> i2 ^ . . . ^ in ^ in+1. 
The integers i\, i2, . . . , in+± cannot be all different. There is therefore a couple, 
say ij, ij+i, such that ij = ij+\. The sequence (12) is of the form 

(ii, i2) ... (ij-!, ij) (ij, ij) (ij, ij+2) ... (in, in+i) 

and a may be written as the product 

V 1 ^ ) a = = ei1iz • ' * %-xii ' em • e w f 2 • • • einin+i 

But then we may write also 
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so that a G Gn
A

+1. Hence C\ C CV
A

+1. 

b) On the other hand if a e CA and a 7^ 0, a is of the form (13) and we may 
omit e{jij in oc (without changing the value of a) so that 

Hence C^CCy1. 
The last relation implies C1/1 C Cn

A. Both "inequalities" Q C ^ + 1 C Q 
imply Cn

A = C71/1 a n d Cn
A = CV

A
+1 = ... = Cf, q.e.d. 

R e m a r k 1. The exponent n is sharp since for a matrix with n zeros along 
the main diagonal and all elements below the main diagonal equal to 1 we 
have CY1 =£ 0, but Cn

A = 0. 
R e m a r k 2. Also the exponent n in the relation CA C C^"1 (proved in b) 

cannot be in general replaced by a smaller one. Take f.i. the matrix A with 

CA = 

Then CA C CA, but it is not true that CA C CA, since CA^ CA = {en, e^i, e^i, 
631, e32, 0} holds. 

Theorem 9. For a lower triangular matrix of the type (11) and n > 2 there 
is always a number s < n — 1 such that CA is a semigroup. 

Proof . In Theorem 8 we have proved C1^1 D CA = C"A~X = ... . Since for 
n > 2 we have 2n — 2 > n, wo conclude C^~~1 3 C'^"~~1). 

We now give a non-trivial generalization of Theorem 8 concerning a larger 
class of matrices with d(A) = 1. 

Theorem 10. Let A be a matrix of the form 

(14) A = 

An,0, . . . , 0 
A2L A22, . . . , 0 

\Ar\, Ar2, ..., A 

where An is either a positive square matrix or a zero matrix of order 1. Then C^"1 

is the idempotent e QA -
Proof . Denote — for typographical reasons — C(Atj) by Cy. 
We first prove that CqaCxn = 0 for a 7^ r. Let m be the order of Au. Then, 

if e0 a e COG, we have nx + . . . + na-i < a0 < n± + . . . + na. If <?T0A0 e C-Q0Ü0 Qõ ? TЯ3 

we have m + ... + nr-i < T0 ^m + ... + nr. If a > r, then r 0 < wi + 
+ . . . % ^ % + . . . ^ - 1 < °o> hence c/0 7^ r0, and eQoaoer^ = #. If a < r, 
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then a0 ^ n± + .. . + na ^ n\ + . . . + nt-i < rQ, hence c/0 7̂  r0 , and egQaer0A0 = 
= 0. Therefore the product CQaCxx can be different from zero only if it is 
of the form CQaCax (and of course q ^ a ^ }). 

We shall now study the behaviour of the powers of GA = U C# • 
i > 3 

The set C^ is a union of products of the form CtiC^ . . . Cww%. Such 
a product can be non-zero only if the subscripts follow in the order indicated 
in the product 

CO c 
i\Hri%H ' ' ' irir+i ' 

Suppose that this product is non-zero. Since i\ ^ i2 ^ . . . ^ ir+17 there is 
necessarily a couple, say ij, ij+i, such that ij = %+i, and each of the non-zero 
summands in the set CA is of the form 

C C C C C 
^ ' i i h ' ' ' ij-iij ijij ijij+2 ' ' ' ^irir+i ' 

But since C? • = (7,,• (and C„- „•. is not zero) this is the same as 
h>J ijij v tJh ' 

ri ri riZ ri ri 
iiiz ' ' ' ij-iij ijij ijij+2 ' ' ' irir+i' 

which belongs to the set C*^1. Hence CA C Cr
A

x. 
We next show that CA C GA~X. Each non-zero summand of CA is of the 

form 
c c c 

iiU ' ' ' ijij+1 ' ' ' I2ri2r+1 ' 

The non-increasing sequence of 2r + 1 integers 

ii ^ *2 ^ • • • ^ ij ^ ij+i • • • ^ *2r+l 

contains at most r integers different one from the other. Hence there must 
be at least one triple such that ij = ij+i = ij+2. (For if each of the r numbers 
appeared at most twice, the system would contain at most 2r members.) 
Hence any non-zero summand of CA may be written in the form 

c c c c c c 
iiH ' ' ' ij-iij ijij ijij ijij+z ' ' ' i2ri2r+i ' 

Now since C\{ = Cij(j, this product is yet contained in C2]~~x. Hence CAC 
CG2;-1. 

Now the relation G^CC^1 implies CA~1CCA. This combined with 
CA C CA~X gives CA~X = CA, which proves our Theorem. (By the way 
the last result proves again that (5A is a one-point group.) 

R e m a r k 1. In general the exponent 2r — 1 cannot be replaced by a smaller 
one. This is shown on the following example. Let A be a matrix with 

and G\ 
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Here r = 2, CA is not an idempotent, while CA is the idempotent e QA-
R e m a r k 2. This example shows at the same time that it is in general 

not truo that CA C C1^1 as one could expect by analogy with the proof of 
Theorem 8. On the other hand we cannot prove CT

A~l C CA since, for instance, 

for the matrix A with CA = I 1 I we have r -= 2 and CA J CA = {0}. 

The next theorem gives an information concerning the semigroups in the 
sequence 

(15) CA, CA, CA, ..., 

with A given by (14). 

Theorem 11. If CA is not a semigroup, then the sequence (15) contains a unique 
suhsemigroup of 8n (namely the idempotent Ce

A EQA). If CA is a semigroup, 
then it is at the same time the idempotent e <SA and (15) contains at most r different 
elements. 

r Proof . Let s0 be the least integer for which CA° is a semigroup. 
a) Let first s0 > r. Since Cr

A C C'/1, we have Cr
A C C}

A
+1 C ... C Csj ... C C2J\ 

The semigroup property implies CA° C CA\ Hence CA° = CA° and the idem-
potent e QA is the unique semigroup contained in the sequence (15). 

b ) L e t s 0 ^ r . Then C2
A

S° C C'j implies (multiplied by Cr
A

s») C8j+r C CA. 
But Cr

A C CV
A

V1 implies Cr
A C CA

+S\ Hence C*i+r = Cr
A. Now a power of CA 

which occurs in the sequence (15) more than once is contained in ©^. Since (5A 
is a one-point group, we conclude tha t CA is the idempotent e &A- Moreover 
in this case the sequence (15) has at most r different members. 
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