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MATEMATICKO-FYZIKALNY CASOPIS SAV, 15, 3, 1965

ON POWERS OF NON-NEGATIVE MATRICES
STEFAN SCHWARZ, Bratislava

Let A be an X n matrix with non-negative entries. One of the main problems
in studying such matrices is to study the distribution of zeros and ,,non-
-zeros‘‘ in the sequence

(1) A, A2, 43, ...

In the paper [2] I have shown that there is a simple semigroup treatment
of this problem which leads to a series of resultswithout any mention of such
notions as characteristic values, characteristic vectors, ete.

This semigroup treatment leads to some pertinent questions which will
be partly solved in this paper.

For convenience of the reader I briefly recall the necessary notions intro-
duced in [2].

Let N = {1,2,...,n}. Consider the set of “n X m matrix-units”, i.e. the
set S of symbols {e; | 7, j € N} together with a zero 0 adjoined: S = {e; | i,j €
e N} U {0}.

Define in § a multiplication by

__Oforj #m,
eueml - <eil fOI‘j — /}n’

the zero 0 having the usual properties of a multiplicative zero. The set S = S,
with this multiplication is a 0-simple semigroup. It contains exactly n non-zero
idempotents, namely the elements ei1, ez, ..., enn.

Let A = (ay) be a non-negative n X m matrix. By the support of 4 we shall
mean the subset of S containing 0 and all those elements e; € S for which
Qi > 0.

The support of A will be denoted by C4. For typographical reasons we shall
write occasionally C4 = C(4).

For any two n X » non-negative matrices we clearly have C41p = C4 U Op.

Consider further the set © = &,, of all subsets of § = S, and define a multi-
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plication in & as the multiplication of complexes in 8, i.e. if ', 0" € S, then
C'C" = {cicefe1 € O, ¢ € C"}. Then S is again a finite semigroup containing
exactly 2" different elements. (1)

If A, B are two non-negative matrices it is easy to see that Cyp = C4 . C5.
In particular, the supports of the elements of the sequence (1) are given
by the sequence

(2) 0A50i70?4;-"

Though (1) may contain an infinity of different elements, the sequence (2)
contains only a finite number of different elements. The correspondence
A - C4 is a homomorphic mapping of the semigroup of all non-negative
matrices onto the semigroup &. [If we consider the union of sets as the second
binary operation in &, we have even a homomorphic mapping of the semiring
of all non-negative n X n matrices onto the semiring &.]

The following facts easily follow from the elements of the theory of finite
semigroups.

Let 4 be a fixed n X n matrix. Let k be the least integer such that C% = (',
for some I > k. Lot further I = k 4 d (d = 1) be the least integer satisfying
this relation. Then the sequence (2) is of the form

k—1 k k+d—1 | k k+d—1
Cuy ooy O O, L CBFOT1 | O L, OFFE L

Denote by ©4 the subsemigroup of S generated by C4. Then S, has exactly
k - d — 1 different elements and we have

(3) S, =1{C,, ... C0LCh ..., CEr 1y

For any « = k and every f = 0 we clearly have

(4) % = 0P,

It is well known that G4 = {C%, ..., C%"" '} is a cyclic group of order d

(subgroup of S,4). The unit element of the group G, is 4 with a suitably
chosen ¢ satisfying k¥ <9 <k + d — 1. Let 7 be the uniquely determined
integer such that ¥ <td <k + d — 1. Then ¢ = td. To show this it is
sufficient to show that O% is an idempotent. In fact we have (by (4) with
«=1d, f=1) OF = O = O

In the following we shall consequently write ¢ = 7d, so that €% is the
(unique) idempotent € S 4. Clearly, we also have G4 = {C%,C4"', ..., C4F* 1

Note explicitly that to every non-negative matrix 4 we have associated
three integers k = k(A4), o = o(4) and d = d(A4) satisfying k = 1d =p <

(!) © may be considered — of course — also as the Boolean algebra of n X m square
matrices with elements 0 and 1 and the usual binary operations.
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=< o + d — 1, which depend only on the distribution of the zeros and non-
-zeros in 4.

For further purposes we mention also the following facts proved in [2].
If 4 is any » X n non-negative matrix, then

CvIC O, UCE U ... Ul

Hence the set C, UC% U ... U C% is always a subsemigroup of S = S,.
A non-negative matrix A4 is called reducible if there is a permutation mat-
rix P such that P-14P is of the form

A1 0
E),l 4 E) I .
(B Az)

Otherwise it is called irreducible. An n X n non-negative matrix A4 is irre-
ducible if and only if
C,uCiu...uly =8,.

It should be mentioned in advance that in this paper the emphasis is rather
on the reducible case.

Consider now the semigroup S4 as given in (3). The elements of S, are
subsets of S. At least one of the elements € S, (namely C9) is itself a sub-
semigroup of S. The first problem treated in this paper concerns the following
question. Under what conditions concerning 4 and s may it happen that
the set (% is a subsemigroup of S. The second problem is to find a “good”
characterization of the number d = card & 4. It will turn out that both
questions are intimately connected.

Lemma 1. Let 4 be any n X n non-negative matrixz. Suppose that C° is a sub-
semigroup of 8 = Sy,. Then
a) 5 C O
b) C% contains all idempotents € S contained in the union C, U C5 U ... U C".
Proof. a) The sequence
s, C%, C%, ..

contains a unique idempotent C%. Hence there is an integer » such that
C% = (9. Since (¥ is a semigroup, we have C% D C%, which ‘mplies

C4DC0EDC0%D...DC0% = (Y.

b) Let £4 = {eaa/x running through a subset of N} be the set of all non-zero
idempotents €S contained in C, UOC% U ... UC%. If exe € C" (1 < b =< n),
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then ey € % for any integer ¢ = 1. Since some power of C* is C%, we have
ean € C%, hence K, CC4 C (Y.

Theorem 1. The group G4 = {C%, ..., C5"'} contains exactly one element
which is wtself a subsemigroup of S .

Remark. This is — of course — the idempotent C%.

Proof. Suppose that €%, k < s <k 4+ d — 1 is a semigroup. By Lemma 1
we have 0% C (% . Multiplying by C% we have C% . C% C OF C C% . But since (%
is the unit element € G4, C¢ . C% = C%. Now C% C C% C % implies % =
= 0%, i.e. (% is an idempotent contained in 4. Hence €% = €%, q.e.d.

Remark. If k > 1, the set {C,, C%, ..., (7'} may contain subsemigroups
of 8. Let f.i. A be a non-negative 3 X 3 matrix with the support (in an obvious
notation(2))

000
Cy= 0
0
Then
000
cZ2=1000
100

and C% = {0}. Hence all elements C,, C%, (% are subsemigroups of Ss.

Theorem 2. Let A be a non-negative n X n matriz for which C, U C5 U ... U
U C" contains all non-zero idempotents € S, i.e. the set B4 = {e11, €22, ..., enn}.
Then S 4 contains exactly one element that is itself a subsemigroup of S.

Proof . Letbel =< s <k 4+ d — 1and (¥ a subsemigroup of S. By Lemma 1
we have {e11, ..., exn} C C%. If 4 is any subset of S we always have A{e, ...,
enn} = A. In particular (in our case) we have

05 = Cfen, ..., en} CO%.

The ‘‘inequalities’” €% C C% and C% C (%, (describing the semigroup property
of C%) imply C% = C%. Since there is a unique idempotent € S4 we have
C% =09, qe.d.

If S is irreducible, then C', U C% U ... U (% = 8, so that the suppositions
of Theorem 2 are satisfied and we obtain:

Corollary 1. If A is irreducible, then C° is the unique element € S4 which
18 ttself a subsemigroup of S.

(?) We shall occasionally use this obvious notation by puting 1 on those places (¢, k)
for which e;z € C4. F.i. in our example the ‘‘Boolean matrices” C,, Ci s C’fi denote C4 =

= {0, ea1, ea1, eas}, O 2 = {0, es1}, C} = {0}.
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Corollary 2. If A is any n X n non-negative matriz and C° is a semigroup
containing {ei1, ..., ean}, then C% = C%.

Proof. By supposition C% = C%{e11, ..., enn} CC%. On the other hand
C% C (%, hence (%, = C%; therefore %, = (%, q.e.d.

Remark. In Corollary 2 the supposition that C% is a semigroup cannot
be omitted. Let f.i. 4 be a 3 X 3 matrix with

001
Cs=1({100].
110
Then
101
c3=[110
111
contains {e11, ez, e}, but (3, is not the idempotent € S,4. (The idempotent
€Sy is CZ )

The next two Lemmas will enable us to locate, so to say, the semigroups
in the sequence (2) and to find at the same time a new characterization of the
number d.

Lemma 2. Let s be an integer such that C% is a subsemigroup of S.
We then have:

a) 0% = C°*;

b) d | s;

c) 0% C C*™ for any integer ¢ = 0.

Proof. a) We have C%* €®,. Further C%"* is a subsemigroup of S since
CHers) = 0 .C%F = C% . C5CCYy . C5 = O,
Hence by Theorem 1 C%"* = (¥ .

b) Suppose that d + s and write s = ad + 8, where « = 0 is an integer
and 0 < f < d. Since for any integer o we have C%"* = (% the relation
% = C%* implies

04y = Oy itP = Cor*10f = ¢ . OF = C°fP.

The relation 04 = C%"? contradicts to the fact that the group G4 = {CY,
CyH, ..., C4F 1Y is of order d.

¢) By Lemma 1, we have C% C C%, hence 4" C (%% and since C4 " =
= (%, we obtain ¢4 C (%%, This proves our Lemma.

Lemma 3. If C% is a semigroup, then none of the sets C%%, C*F2, ..., O3
can be a semigroup.

Proof. If C5*, 1 < A < d — 1, were a semigroup, then Lemma 3b) would
imply that d | s and d | s + A, which is impossible.
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- Let s, be the least integar s such that (% is a semigroup. Then s, < p and
we may arrange the set of powers in the following way :

2 8o—1 S, So+1 8o+d—1
(5) C,, 0%, ....C5 1, C% %, o, O

so+d So+d+1 So+ 2d—1
oy, Oy, L, 0 ,

8o+ 2d S+ 2d+1 So+ 3d—1
(O A O] s ey O ,

0 o+ 1 9+ d—1
ce,  O%L, .., 05

Since d | p and d | s, there is necessarily an integer ¢ such that o = s, + td.
We get exactly ¢ + 1 rows. The last of them contains at least one element
€ ® 4 which does not occur in the foregoing row. (This means: It may happen
that to obtain all different elements € G4 it is not necessary to consider
the whole last row, but certainly at least the first element contained in it.)

The idempotent C¢ is necessarily contained in the column {C%, C%*% ...}
and (by Lemma 2¢) C¢ is a subset of each element of this column.

Also (by Lemma 2b) all clements € ©4 which are themselves subsemigroups

of S are located in the column {C%, C%¢ C%*2¢ . (C%}. Hence the semi-
groups contained in the sequence (2) are some of the powers
s (Yot d o (t—1)d
Ch, Ot ., Oy

and all the following
CQ O% +td Oso+(t+ 1Nd __ Cs,, +(t+ ’)d

Now since d | s,, the number d is the greatest common divisor of the sequence
of integers
So, So + 4, so + 2d, ...
We have proved:

Theorem 3. The number d = card ® 4 is the greatest common divisor of all
such integers s for which Cy is a semigroup (subsemigroup of S).

We make some supplementary remarks to the ‘“tableau’ (5).

Remark 1. None of the sets (%, ..., C%"*! is contained as a proper
subset in another, i.e. €4 C €% implies C4"" = 0%"".

Proof. We first prove that C* C %", 0 =u < d — 1, implies (4 = 0%+
Note that by Lemma 2 a C%4 = C%"** for any integer A = 0. The relation
% C C%"* implies

C4 COG  C O™ C L. COse = (0.
Hence 0% = C% *. Suppose now
(6) cureC oy

for some u, v = 0. Since C%"™" € G4, there is a C¢tv gych that Ceru oov
= (4. Here u + w' = 0 (modd) Multiplying () by C4% we have e C
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C C4"+* hence C4 = 04", so thatv + 4’ = 0 (mod d). Therefore w — v =0
(mod d) and C%* = %", q.e.d.
Remark 2. The statement just proved implies that none of the elements

C%, C%F1, ..., C%""1 can be contained (as a proper subset) in an another.
For O C O 0<4, Il <d—1, ¢ #1 multiplied by C4 would imply
O aE C Ot att e, C4FF C C%', hence C4" = (04!, which is not true.

An analogous statement holds for the remaining rows.

Remark 3. In [2] we have proved that for an irreducible matrix the inter-
section 7'y = C4 N C4 N ... N %1 is {0}. [Even the intersection of any
two of these sets is {0}.] This is not necessarily true in the case of a reducible
maitrix. Consider f.i. a 3 X 3 matrix 4 with C4 = {e12, ea1, es3, 0}. Then C? =
= {611, €22, €33, 0} and 4 = {CA, Oi} Here Ty = C4 N Oi = {633, 0}

But it is easy to show that 7', is always a subsemigroup of S. For let be

aeTy, beTy. Then a € C4* for any k=0, 1, ..., d — 1 and b e 04" for
any [ =0, 1, ..., d — 1. Hence ab € C4"**!. If k, I run through a residue
i—1
system (mod d) so does k + I so that ab € N} C%™; hence ab € T4, q.e.d.
m=0

Remark 4. For an irreducible matrix 4 we have s, = p and we always
have C% C C%. Again this is not necessarily true for a reducible matrix.
This is shown on the following example. Let 4 be a matrix with

0000
Ca=]11100
1000
1111

Here d = 1 and G4 is the one-point group G4 = {C%}, where
0000
C3=(1100
0000
1111

We have s, = 2 and C, C C% does not hold.

Example. We conclude this section with a simple example of a matrix
with card ®4 > 1 and s, < ¢. Let 4 be a matrix with

01
1o, O

Oy =

000
O 100
110
111
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Then

[10] 01
o1 0 10 0
Ci=| 0000 A Y
Q1 00001, Qg 9000},
{1000 0000
{1100 1000
10} 01|
0y = 010 5 = 1020

Here G4 has 5 different elements, G, = {C%, C%}, d = 2, s, = 2, while
o =4.

IL

The result of Theorem 2 may be formulated in a somewhat other way
by introducing the notion of the normal form of a non-negative matrix M.
Let M be a non-negative matrix (of order »). It is well known that there
is a permutation matrix P (of order n) such that PMP-1 = A is of the form

A, 0, ..., 0
(7) A= |42, 22, ..., 0 ,
A1'19 ATZ, ey Arr

where Ay (1 = ¢ =< r) are irreducible matrices (including the case that some
of the 4;; ’s may be zero matrices of order 1).
Consider the sequences

(8) Oy, O3, C3, ...
(9) c,, C%, C%, ...

The semigroups S4 and Sy are clearly isomorphic. If Cj, is a semigroup,
then so is C% since

028 - OPORIOP‘I . CPOBIOP‘l - OPOIZ‘;OPA C CpoanP_x = 0‘;,

and conversely. In particular, if €Y, is the idempotent € Sy, then CpC%,Cp.
is the idempotent C € G4, so that o(4) = o(M). Hence instead of studying
the sequence (8) we may restrict ourselves to the study of the sequence (9).
We shall use the following notations. d; will denote the order of the group
®4,, 0; will denote the least integer for which (%, is an idempotent € S4,.
If C% is the idempotent € G4, then C%, is necessarily the idempotent € ®4,.
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If p = o(4) has the meaning introduced from the beginning (i.e. the smallest
integer for which C% is an idempotent € S4), then g is necessarily of the form
0 = 01+ x1dy = g2 + xed2 = ... = gr + 2d,, with suitably chosen non-nega-
tive integers x1, xs, ..., zr. Since ¢; = id;, we have o = di(v; + %), 7 =
=1, 2, ..., r. Denote ¢* = [di, da, ..., d,] the least common multiple of the
integers dy, ..., dr. The relation d; | ¢ implies d* | p. We have proved: there is
an integer v* such that o(4) = v*d*.

In what follows it is often of decisive importance whether in the normal
form (7) there is among the 4; s a zero matrix (of order 1) or not. If none
of the Ay’ s is a zero matrix, then

¢ =C7"CO,uliuU...uCY
contains {ei1, ez, ..., exn}. With respect to Theorem 2 we have

Theorem 4. If a matrix A written in the normal form (7) has no zero matrizx
wn the marn diagonal, then C% is the unique semigroup contained in the sequence (9).

The condition mentioned in this Theorem is not necessary. There are classes
of non-negative matrices with zeros in the main diagonal having the same
property. We prove f.i.:

Theorem 5. Let

A, 0
A"(R 0)’

where Ay is irreducible and not the zero matriz of order 1. Then C° is o sems-
group if and only of it is the idempotent € S4. '

Proof. Let 4; be a m X m matrix (so that R is a (n — m) X m rectangular
matrix). Denote £/ = {ej1, €22, ..., emm}. The support of

A} 0
A= (RA';“I o)
is a semigroup if and only if
(10) C3 CCy, CRAY ) CORATT).

Now (% is a semigroup if and only if % = C% is the idempotent €Ga,
and (% contains then £. Hence we have

Cr = Cr. {en, €22, ..., emm} C C(RAY).
Now if () is a semigroup, (10) implies
C(RAT™) D C(RAT ) = C(RAS)C(ATY) D O(R)C(AT™) = C(RAS™).
Hence C(RA5™') = C(RA3 ). Therefore C% = C%, q.e.d.

Theorem 5 may be generalized as follows:
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Theorem 6. Let
A1 0
4= (7).
with A irreducible and not the zero matrix of order 1. If C% is a semigroup,
then C% is the idempotent € G 4 if and only if C% = C%..

Proof. Denote
A% 0
A= (RSA;)

A?.s . A%S 0 .
“\R A} + AR, A%

and R; = R. Then

The set C? is a semigroup if and only if
oy coy, 0% Coy,
C(R,A3) U C(A4R,) C O(R,).

Since A, is irreducible, we conclude C% = C% and the diagonal of €%,
is positive, i.e. if A1 is a m X m matrix, we have {ej1, ez, ... emm}CC’fAl
so that C(Rs) = C(Rs){en, ..., emm} C C(Rs)C(4]).
The relation
O(R,43) U C(43R,) C C(R,) C O(R,43)
implies
C(R,AY) U C(43R,) = C(R) = C(R,A3).

Therefore C(A45) = C(A2%) if and only if C(45) = C(43), q.e.d.

IIL.

In this last section we shall deal with some special types of matrices for
which card 4 = 1.

Let 4 be the matrix of the form (7). The question arises what can be said
about card ®4 by knowing card G4, = d;.

The following Lemma holds.

Lemma 4. If d* = [dy, ..., d;], then card ®4 = d*.

The proof of this Lemma (which has been known to the author for some
time) is given in the recent paper of 0. 1. JIo6ug (Ju. I. Ljubig) [see [1],
Lemma 2, p. 344].

A non-negative irreducible matrix A4 is called primitive if some power of 4
is positive. This is the case if and only if d(4) = 1. In this case ®4 is a one-
-point group, namely the idempotent € S 4.
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If A4 is reducible of the form (7) then Lemma 4 implies card 4 = 1 if and
only if di = dy = ... = d, = 1. Hence:

Theorem 7. If A is of the form (7), then & 4 is a one point group if and only
of the matrices Ay are either primitive or zero matrices of order 1.

Remark. There are some special cases in which we may decide that G4
is a one-point group without reference to the normal form (7).

Assertion 1. If C4 is a semigroup, then card ®4 = 1.
Proof. By Lemma 2 d = d(A4) divides overy s for which (" is 2 semigroup.
Since in our case we may put s = 1, we conclude d = 1.

Assertion 2. If A is any non-negative n X n matrix and C4 contains
E = {ewu, ..., enn}, then card G, = 1.

Proof. By supposition C4 = O4.H CC4 04 = C5. Hence C,CC5C
C...CC% C 4 On the other hand we always have C'* C (O, U C% U ... U
U %, ie. CTC Y. Hence " = €', This implies that C” is the idem-
potent € S4 and, moreover, card ®4 = 1.

A special class of matrices with d(4) = 1 is the class of lower triangular
non-negative matrices, i.e. matrices of the following form:

a, 0, 0, ..., 0
(11) A =|as, ase, 0, ..., 0
Anl, An2, An3, .., Ann

where a;; (for ¢ = k) are non-negative elements, while all elements above
the main diagonal are zeros.

Theorem 8. For a lower triangular non-negative matriz A of order n the set C7
18 the idempotent € S4.

Proof. a) We first prove that ¢’y C €","'. Any element « € C"} is the product
of n elements € C4 of the form « = ¢, ¢, ... e, . . Such a product is certainly

zero if the subscripts do not follow in the following order
(12) (ily i?); (7:27 Z3)~ ey (?:n, in+1)-

Suppose « 7% 0. Then by supposition we have i1 =192 = ... = 1y = ipq1.
The integers ¢1, 2, ..., in+1 cannot be all different. There is therefore a couple,
say %, tj11, such that 4 = 4;41. The sequence (12) is of the form

(v, 22) - (415 4) (5 %) (3, 442) - (n, Tnta)
and o« may be written as the product

(13) o = e

ei,'iz cee el}-lij- iy ei;ijsz v er'nim»l

But then we may write also
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9

o = eiﬂ'g R eij»—\'[j e'{'jl.j A eirﬂ'nn ’

so that « € C"{*'. Hence C" C C*"1.
b) On the other hand if « € " and « 7 0, « is of the form (13) and we may

omit e;; in « (without changing the value of x) so that

o =€ 4 e

s+ CiaiCisien -0 Cininint
Hence C7% C O

The last relation implies C%"' C C". Both “inequalities” C% C C"*1 C (",
imply C% = C%* and C% = O = ... = C¥", q.e.d.

Remark 1. The exponent % is sharp since for a matrix with » zeros along
the main diagonal and all elements below the main diagonal equal to 1 we
have C7' £ 0, but C% = 0.

Remark 2. Also the exponent » in the relation €% C C"™! (proved in b)

cannot be in general replaced by a smaller one. Take f.i. the matrix 4 with

Then C% C C%, but it is not true that C* C C,, since C g C% = feur, ea1, s,
es1, es2, 0} holds.

Theorem 9. For a lower triangular matriz of the type (11) and n = 2 there
18 always a number s = n — 1 such that C% is a semigroup.
Proof. In Theorem 8 we have proved ¢ 'D (" = C"'"' = .... Since for
n = 2 we have 2n — 2 = n, wo conclude "' D C5*V.
We now give a non-trivial generalization of Thecorem 8 concerning a larger
class of matrices with d(4) = 1.
Theorem 10. Let A be a matriz of the form
A1, 0, ...,0
Ao, Aoz, ..., 0
(14) . 21, A2 ,

Arly Ar2, tees Arr

where Ay is either a positive square matriz or a zero matriz of order 1. Then C%
is the tdempotent € S 4.

Proof. Denote — for typographical reasons — C(4y) by Cy.

We first prove that CpsCrx = 0 for o = 7. Let n; be the order of 4. Then,
if e eC we have ny + ... + ne1 < 0p =1+ ... + ng. If ey € Oy,

Q000 Qo2

we have ny + ... + 1 <Tg=mn1+ ... + ny. If 0>, then 7, = n; +

4+ ome < m -+ ... ngo1 < 09, hence oy 7~ 7,, and eoorp, = 0. If o <r,
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then o, = ny + ... + 76 = n1 + ... + 771 < 7, hence o, # 7,, and ey g 7,5, =
= (. Therefore the product ngCr; can be different from zero only if it is
of the form CysCs; (and of course p = ¢ = 1).

‘We shall now study the behaviour of thc powers of Cy = U C.

> 7
The set €7 is a union of products of the form C;,C;, ...C,, . Such
a product can be non-zero only if the subscripts follow in the oxder indicated
in the product

C;Ci. ...C

[ P PN Irirs1
Suppose that this product is non-zero. Since 43 = i» = ... = i,,1, there is
necessarily a couple, say 4, 4;41, such that ¢; = 4,11, and each of the non-zero
summands in the set ", is of the form

Ciy...C i Co Coi .. O

U1ls Gty T agry T ijigee Trire1 *

But since €}, = C;,; (and C,

i is not zero) this is the same as

igis

Cpi...C, . C3Co ... C,

R Y-ty Aty T i Grirs1?
which belongs to the set C";*. Hence C", C C"}t*.
We next show that €% C C%'. Each non-zero summand of (% is of the
form

Cii...C;

Aydy =00 i 00 larlarer *
The non-increasing sequence of 2r - 1 integers
0 =0 = .. 2 Y = GG =l

contains at most r integers different one from the other. Herice there must
be at least one triple such that ¢; = 4511 = ¢12. (For if each of the » numbers
appeared at most twice, the system would contain at most 2r members.)
Hence any non-zero summand of O3 may be written in the form

C...C. 0. C.Cu ...C

Ul G-1ty gty ity T igtyes torlar+l *

Now since CF, = C;,
C Ob—

Now the relation €7 CC"{' implies C5~'CC%. This combined with
CY COY™ gives C’“’*1 C’i’, which proves our Theorem. (By the way
the last result proves again that $4 is a one-point group.)

Remark 1. In general the exponent 2r — 1 cannot be replaced by a smaller
one. This is shown on the following example. Let 4 be a matrix with

this product is yet contained in C% . Hence C% C

1100 1100
Ca=[1100 and cZ=(1100
0011 1011
1011 1111
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Here 7 = 2, (% is not an idempotent, while C? is the idempotent € 4.
Remark 2. This example shows at the same time that it is in general
not truo that C7, C C";™! as ono could expect by analogy with the proof of
Theorem 8. On the other hand we cannot prove €’ ' C (", since, for instance,
. . 00
for the matrix 4 with Cy = (1 0) we have r = 2 and C, D CF = {0}.
The next theorem gives an information concerning the semigroups in the
sequence

(15) Cy, 03, C%, .,
with 4 given by (14).

Thecrem 11. If C', is not a semigroup, then the sequence (15) contains a unique
subsemigroup of Sn (namely the idempotent C% € S,). If C") is a semigroup,
then it is at the same time the idempotent € S 4 and (15) contains at most v different
elements.

.Proof. Let s, be the least integer for which C*} is a semigroup.

a) Let first s, > r. Since ", C C"{"!, we have O, CC'/' C...CC% ... CC%.
The semigroup property implies C5* C C%. Hence C% = C%* and the idem-
potent € S4 is the unique semigroup contained in the sequence (15).

b) Let s, =< . Then C%° C C% implies (multiplied by C7%) C%*" C (.
But €7, C """ implies 7, C C"f*. Hence C%"" = C”,. Now a power of Cy4
which occurs in the sequence (15) more than once is contained in G4. Since G4
is a one-point group, we conclude that (" is the idempotent € S 4. Moreover
in this case the sequence (15) has at most r different members.
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CTENMEHN HEOTPUIIATEJBbHBIX MATPHUI]
Hitedan MIBapi

Pesome

B cratpe usyuamoTcAd HEKOTOpHIE CBOICTBA mociegoBareiapnoctn A, A2, A ..., rue
A — HeoTpUIATEeJIbHAA PA3JIOKAMAS MATPUIA.
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