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Matematický časopis 23 (1973), No. 2 

ON THE EXTENSION OF MEASURES IN RELATIVELY 
COMPLEMENTED LATTICES 

LADISLAV GYORFFY and BELOSLAV RIECAN, Bratislava 

I n the paper we extend the main result of paper [1] for relatively com
plemented lattices. Theorem 2 belongs to the first author, Theorem 3 and 
Lemma 2 to the second author. Lemma 1 was proved by Prof. M. Kolibiar. 
Theorem 1 is a consequence of the lemma. \ 

First some notations and terminology. A lattice is called o--continuous 
if i t is a-complete and xn/x, yn / y (resp. xn\ x, yn\y) implies xn C\ 
nyn / x C\y (resp. xn\J yn\x\J y). A measure is any function y : R -> 
-> <0, oo) defined on a lattice R with the least element 0 and satisfying the 
following conditions: 1. y(0) = 0. 2. y(x) + y(y) = y(x U y) + y(x n y) for 
any x,y eR. 3. If xn/ x, xneR (n = 1, 2, . . . ) , x eR, then y(xn)/ y(x). 
A subset M of a cr-completelattice His called monotone, if xn e M (n = 1,2,...) t 

xn / x resp. xn\ x, implies x e M. If D C H, then by M(D) we denote t h e 
least monotone set over D. 

Theorem 1. Let H be a o-continuous, modular, complemented lattice, R be such 
a sublattice of H that a C\b' eR for any a eR and any complement b' of any 
b e R. Let y be a o-finite measure y : R -> <0, oo). Then there is just one measure 
y : M(R) -> <0, oo) which is an extension of y. 

Proof . The assumptions of the main theorem of [1] are the same as those 
of Theorem 1 except of the following one: 

(H) To any x,y,z eH such t h a t x ^ y ^ z and any complements x' resp. 
z of x resp. z such that x' ^ z' there is a complement y' of y such t h a t x' ^ 

- y' - z'm 

Hence Theorem 1 will be proved if we prove t h a t the condition (H) is 
satisfied in any modular complemented lattice. 

Lemma 1.*) In any modular complemented lattice the condition (H) is satisfied. 
Proof . P u t t = (y U z') n x'. Evidently z' ^ t ^ x'. Let u be the relative 

complement of t in [z', x'], i.e. t n u = z', t U u = x'. Then 

*) Lemma 1 gives the answer to a problem stated in [1] and simultaneously in C a ^ 
pest, mat., 93 (1968), p. 236. 
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and 

o = z'nz = untnz = un(yuz')nx'nz = 
= u n (y KJ z') nz = u n[y u (z' nz)] = u ny, 

i = x' u x = u u t u x = u u x u [(y u z') n x'] = 
= uKJ [(y U z') n (x u #')] = uUy^Jz' = uKJy. 

Hence u = ?/' is a complement of 2/ and z' ^ y' ^ x'. 
Let F? be now a relatively complemented lattice with the zero element 0. 

By a —- b we denote the set of all complements of a n b with respect to <0, a}, 
i.e. a — b = {x:x n a nb = 0, x U (a n b) = a}. A sublattice R of H 
will be called a lattice ring if a — 6 c: i? for any a, b e R. A lattice o--ring is 
a ©--complete lattice ring. 

Theorem 2. Let H be a relatively complemented, modular, a-continuous lattice 
ivith the least element, R C H be a lattice ring, y be a a-finite measure on R. 
Then there is just one measure y on M(R) that is an extension of y; the measure y 
is G-finite. 

Proof . For any c e R p u t Rc = {x ER;X g c}, Hc = {x e H; x ^ c} 
and define yc : i? c-> <0, 00) by the formula yc(x) = y(x). Then Hc,Rc,yc 

satisfy all the assumptions of Theorem 1, therefore there exists just one 
measure yc on M(RC) t h a t is an extension of yc. 

00 

Further denote by B the set of all elements b of the form b = ( J cn, cn e R. 
n-i 

As before p u t Rb = {x eR;x ^ 6}. First we prove: If c ^ b, c eR and 
x e 31 (Rb), x <: c, then x e M(RC). Indeed, the set K = {x e M(Rb); x n c e 
e M(RC)} is monotone and K D Rb, therefore KZ) M(Rb). 

co 

Let b eB, b = ( J cn,cn eR. We can assume cn ^ cn+i (n = 1, 2, ...). Let 
m«l 

x G M(Rb). Then we put 

y(x) = lim yCn(z O cw) . 
ťCnV 

íl-»CO 

Of course, we must prove t h a t y(x) does not depend on the choice of the 
sequence {c^}^. First, if y ^ u ^ v,u,v G R,y e M(RV), then yy is an 
extension of yu, hence yv(y) = fu(y). Hence, if x eM(Ra), dn eR, dn fg dn+± 

00 

(n = 1, 2, . . . ) , ( J dn = d, then 
»-i 

y(Jx n cn) = lim ycJx ncnn dm) = 
m-*co 

= l i m 7cnndJx r\cnn dm) = 
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— l i m VaSx ^Cn<^ dm) § lim ydm{oc n dm) 

and therefore 

lim yCn(x n cn) = lim ydm(x n dm) . 

To prove that f is a measure put xk e M(tlb) (k = K 2, . . . ) , xk / x. Then 
evidently j7(ar) ^ l i m y ^ ) . On the other hand y(xk) ;> ft.n(#* n cn). therefore 

y(x) = lim yCn(x n cn) = lim lim yCn(xk O c„) g l i m lim y(^>) = lim y(xk). 
» - K C W-»OO &->oo n-»oo fc-*:c A--*x 

hence 

y(x) = lim y(a*). 
/:->oo 

Finally let a\ # e M(Bb), then 

y(^) + y(y) = I i m ;MX n c^) + l i m £«(# n cn) = 

= lim yCn( (x n c„) U (y n cw)) + lim yPii(a' O t ? /nc„ ) = 

= y(ar U y) + y(x n y) 

(since (x C\ cn) \J (y n cn)/ x \J y, x C\ y C\ cn/x n y). 
We have proved that y is a measure on the set 31 = ( J 31 (Rb). Since I?& C I? 

/,£H 

for every 6, we have M(Bb) C Jf(L?), hence 31 C JI(I?). But J / is a monotone 
set, J / D i?. Therefore Jf D JI(i?) and y is a measure on 31(R). 

Now we prove that y is unique. Let r be an extension of y. r : 31(B) -> 
-><0, oo). If ceB, xeM(Bc) then r(x) = y(x), since 7, T are extensions 
of yc on Jf(Bc). Lst x e Jf(L?) i.e. x ^ b, b e B, cn/b, cn e R. Then 

T(2,) = lim r(cn n a;) = lim y(cn n a;) = y(a'). 

cr 

The measure y is cr-finite, since the set N = {x G 31(B); X ^ | J c « . y ( c f i ) ( x ] 
i*=i 

is monotone and contains B. 
Let S(B) be the lattice cr-ring generated by B. Finally we prove: 

Theorem 3. / / B is a lattice ring in a a-continuous, mod^dar. relatively com
plemented lattice with the least element, then 31(B) = S(B). 

In the proof of Theorem 3 we need the following lemma: 

Lemma 2. Let H be a modular, relatively complemented lattice ivith the least 
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element. Let a,b,c eH, a ^ c. Then to any x ea — b there is y ec — b such 
that x ^ y. 

Proof . Since x ea — b, we have x n a nb = 0, x U (a nb) = a. Let y be 
a relative complement of a U (b n c) in the interval <#, c>, i.e. y n [a U 
U (b n c)] = x and y U a U (b n c) = c. Evidently a n y = x. Further 

c = y \J a \J (b n c) = y \J (a nb) \J x KJ (b n c) = 

= [(a nb)\J (c n b)] U (x\Jy) = (b n c) U y, 

hence 

(1) (bnc)\Jy = c. 

The proof of the relation (b n c) n y = 0 is a little more complicated. First 
we have 

(a \Jy) n[a\J (b nc)] = a\J (y n[a\J (b n c)]) = 
== a U x = a, 

hence 

x u (b n c) = (a n y) u (b n c) = 
= ({(a \Jy) n[a\J (b n c)]} ny)\J (b n c) = 
= (y n[a\j (b n c)]) u (6 n c) = 
= [y u (6 n c)] n[a\j (b n c)] = 
= c n[a\J (b nc)] = 
= a\J (b nc). 

0=anbnx=anbnany=anbny= 
= {[a \J (b n c)] n (a \J y)} nb n y = 
= [a \J (b n c)] nb n y = 
= [x u (b n c)] nb n y = 
= (x n b n y) u (b n c n y) = bn c n y, 

hence 

(2) 0 = (bnc) ny. 

From (1) and (2) we get tha t y ec — b. Moreover y ^ x, hence the proof 
is complete. 

Proof of Theorem 3. Since S(B) is a monotone set, evidently M(B) C S(B). 
I t is sufficient to prove tha t M(B) is a lattice ring. Indeed then M(B) is 
a lattice cr-ring, hence M(B) D S(B). 

I t is not difficult to prove tha t M(B) is a lattice. The only difficulty is 
in proving that a, b eM(B), x ea — b imply x eM(B). 
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First let b e R be a fixed element and pu t 

K = {a e M(R); xea — b=> xe M(R)} . 

Evidently K D R. We prove tha t K is monotone. Hence let an e K (n = 1,2,...), 
an / a, x ea — b. Since H is c/-continuous, we have an nb / a nb. According 
to Lemma 1 there are xn ea — an nb such tha t xn\ x. But xn n an e an —-
— an nb = an — b, since xn n an n an nb = 0 and (xn n an) U (an nb) = 
= [xn U (an n b)] n an = a n an = an. Thus xn n an e M(R). Since M(R) 

m 

is a lattice, also xm n an = p j (xi n at) e M(R) for every m ^ n. Hence 
i=n 

CO 

x n a^ = P | xm n an e M(R) (n = 1,2,...) and therefore x = x n a = 
CO 

= \J (x n an) e M(R). We have proved that Kis closed under limits of non-de-
« « i 

creasing sequences. 

Now let an eK (n = 1, 2, . . . ) , a w \ a, x ea — b. According to Lemma 2 
there are ynean — b such tha t yn ;> #. Since are e Z , we have t/n e M(R) 

oo co n 

and also ^ / = p | ^ = p | P|2l^G ilf (R). We assert tha t y = x. Indeed, first 

/ i= l w = l i = l 

(3) y n (a n b) <L yn n an n b = 0; 

further 
2/ U (a n b) *> a: U (a n &) = a 

and 

y u (a O 6) = f ) ( y , U ( o n o ) ) | f | (ž/« U (o, n 6)) = 
«=1 

00 

= P I °""> = a> 
«=1 

hence 
(4) y\j (anb) = a. 

The relations (3) and (4) with y ^ x give y = x. Hence x e M(R), therefore 
a e K. 

Now let a e M(R) be a fixed element. Pu t 

L= {be M(R)\ x e M(R) for every x e a — b} . 

We have L ZD R. Now with the help of Lemma 1 it is not difficult to prove 
that L is a monotone set. Hence L :=> M(R) and x e M(R) for every a, b e 
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e J\I(R), x e a — b. Since M(R) is now evidently a lattice cx-ring, the proof 
is complete. 
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