Matematický časopis

Rudolf Fiby

Leibniz Rule

Matematický časopis, Vol. 23 (1973), No. 3, 290--292
Persistent URL: http://dml.cz/dmlcz/126887

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

LEIBNIZ RULE

RUDOLF FIBY, Bratislava

Preface

The classical rule for high order derivations of a product of functions has a certain analogue in the more general case of normed modules. The general Leibniz rule can be expressed as some morphism of functors (the rule in [1] is not valid). These functors map the category of bounded polylinear mappings into the category of polylinear mappings. The first functor is a functor of multiplication. The second functor is the composition of a certain extending functor from the category of bounded polylinear mappings into itself with the first functor. Basic algebraic properties of the extending functor are described in [3].

The terminology is taken from [2] and [4]. Differential calculus is used in a more general form than in [2].

Notations

R is a normed commutative associative ring with unit which contains the field of real numbers as a subring;
p, q are non-negative integers.
The other notations in this paper are the same as in [3], but we shall consider normed right R-modules and bounded R-polylinear mappings.
\mathscr{U} is the additive category of right R-modules and R-linear mappings;
Upolimap $_{n}$ is the additive category which is in [3] denoted by Polimap ;
U is a non-empty open set of A;
F_{U}^{p} is the additive functor from \mathscr{A} into \mathscr{U} defined as follows:

1. $F_{U}^{p}(E)$ is the right R-module of all continuously differentiable mappings up to the order p from U into E (see [2]),
2. $\xi F_{V}^{p}(\varphi)=\xi \circ \varphi$ for every \mathscr{A}-morphism φ and $\xi \in F_{V}^{p}(E)$;
M_{U}^{p} is the additive functor from Polimap into $_{n}$ Upolimap $_{n}$ defined as follows:
3. for every Polimap -object $X: E_{1} \oplus \ldots \oplus E_{n} \rightarrow E$ and for each $\left(\xi_{1}, \ldots, \xi_{n}\right) \in F_{U}^{p}\left(E_{1}\right) \oplus \ldots \oplus F_{U}^{p}\left(E_{n}\right), u \in U$, we have $u\left(\left(\xi_{1}\right.\right.$, $\left.\left.\ldots, \xi_{n}\right) M_{V}^{p}(X)\right)=\left(u \xi_{1}, \ldots, u \xi_{n}\right) X\left(M_{U}^{p}(X)\right.$ is an R-polylinear mapping from $F_{U}^{p}\left(E_{1}\right) \oplus \ldots \oplus F_{U}^{p}\left(E_{n}\right)$ into $\left.F_{U}^{p}(E)\right)$,
4. for every Polimap -morphism $\left.^{\text {-m }}, \ldots, \varphi_{n}, \varphi\right), M_{U}^{p}\left(\varphi_{1}, \ldots, \varphi_{n}, \varphi\right)=$ $=\left(F_{U}^{p}\left(p_{1}\right), \ldots, F_{U}^{p}\left(\varphi_{n}\right), F_{U}^{p}(\varphi)\right) ;$
D^{p} is the symbol of the p-th derivation;
$\Theta_{U}^{p, q}$ is the morphism from F_{U}^{p+q} into $F_{U}^{q} \circ P l_{A}^{p}$ defined by the relation $u\left(\xi \Theta_{U}^{p, q}(E)\right)=\left(u D^{0} \xi, \ldots, u D^{p} \xi\right)$ for every \mathscr{A}-object $E, \xi \in F_{U}^{p+q}(E)$ and $u \in U$.

The morphisms $\Lambda_{U}^{p, q}$

1. Theorem. Let $X: E_{1} \oplus \ldots \oplus E_{n} \rightarrow E$ be a Polimap ${ }_{n}$-object. Then $\left(\Theta_{U}^{p, q}\left(E_{1}\right), \ldots, \Theta_{U}^{p, q}\left(E_{n}\right), \Theta_{U}^{p, q}(E)\right)$ is a Upolimap p_{n} morphism from $M_{U}^{p+q}(X)$ into $M_{U}^{q}\left(\operatorname{Lex}_{A}^{p}(X)\right)$.

Proof. If $p=0$, the proposition holds. Let it hold for p. For each $\left(\xi_{1}, \ldots, \xi_{n}\right) \in F_{U}^{p+q+1}\left(E_{1}\right) \oplus \ldots \oplus F_{U}^{p+q+1}\left(E_{n}\right)$ and $u \in U$, we have

$$
\begin{aligned}
& \left(u\left(\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{p+q+1}(X)\right) \Theta_{U}^{p+1, q}(E)\right)\right)^{r}=u D^{r}\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{p+q+1}(X)\right)= \\
& =\left(u\left(\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{p+q}(X)\right) \Theta_{U}^{p+q}(E)\right)\right)^{r}= \\
& =\left(u\left(\left(\xi_{1} \Theta_{U}^{p, q}\left(E_{1}\right), \ldots \xi_{n} \Theta_{U}^{p, q}\left(E_{n}\right)\right) M_{U}^{q}\left(\text { Lex }_{A}^{p}(X)\right)\right)\right)^{r}= \\
& =\left(\left(u\left(\xi_{1} \Theta_{U}^{p, q}\left(E_{1}\right)\right), \ldots, u\left(\xi_{n} \Theta_{U}^{p, q}\left(E_{n}\right)\right)\right) L e x_{A}^{p}(X)\right)^{r}= \\
& =\left(\left(\left(u D^{0} \xi_{1}, \ldots, u D^{p} \xi_{1}\right), \ldots,\left(u D^{0} \xi_{n}, \ldots, u D^{p} \xi_{n}\right)\right) L e x_{A}^{p}(X)\right)^{r}= \\
& =\left(\left(\left(u D^{0} \xi_{1}, \ldots, u D^{p+1} \xi_{1}\right), \ldots,\left(u D^{0} \xi_{n}, \ldots, u D^{p+1} \xi_{n}\right)\right) L_{e x}^{p+1}(X)\right)^{r}= \\
& =\left(\left(u\left(\xi_{1} \Theta_{U}^{p+1, q}\left(E_{1}\right)\right), \ldots, u\left(\xi_{n} \Theta_{U}^{p+1, q}(E \check{z})\right)\right) L e x_{U}^{p+1}(X)\right)^{r}= \\
& =\left(u\left(\left(\xi_{U}^{p+1, q}\left(E_{1}\right), \ldots, \xi_{n} \Theta_{U}^{p+1, q}\left(E_{n}\right)\right) M_{U}^{q}\left(\operatorname{Lex}_{A}^{p+1}(X)\right)\right)\right)^{r}
\end{aligned}
$$

where $r=0, \ldots, p$. For every A-object $E, \xi \in F_{U}^{p+q+1}(E), u \in U$ and $a \in A$, we have

$$
a\left(u D^{1}\left(\xi \Theta_{U}^{p, q+1}(E)\right)\right)=\left(a\left(u D^{1} \xi\right), \ldots, a\left(u D^{p+1} \xi\right)\right)
$$

this follows from [2] 8.1.5. For every Polimap ${ }_{n}$-object $X: E_{1} \oplus \ldots \oplus E_{n} \rightarrow E$, $\left(\xi_{1}, \ldots, \xi_{n}\right) \in F_{U}^{q+1}\left(E_{1}\right) \oplus \ldots \oplus F_{U}^{q+1}\left(E_{n}\right), u \in U$ and $a \in A$, we have

$$
a D^{1}\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{q+1}(X)\right)=\sum_{i=1}^{n}\left(u \xi_{1}, \ldots, a\left(u D^{1} \xi_{i}\right), \ldots, u \xi_{n}\right) X
$$

this follows from [2] 8.1.4, 8.2.1. Therefore

$$
\begin{aligned}
& a\left(u\left(\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{p+q+1}(X)\right) \Theta_{U}^{p+1, q}(E)\right)\right)^{p+1}= \\
& \left.=a\left(u D^{p+1}\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{p+q+1}(X)\right)\right)\right)= \\
& =\left(a\left(u D^{1}\left(\left(\left(\xi_{1}, \ldots, \xi_{n}\right) M_{U}^{p+q+1}(X)\right) \Theta_{U}^{p, q+1}(E)\right)\right)\right)^{p}= \\
& =\left(a\left(u D^{1}\left(\left(\xi_{1} \Theta_{U}^{p, q+1}\left(E_{1}\right), \ldots, \xi_{n} \Theta_{U}^{p, q+1}\left(E_{n}\right)\right) M_{U}^{q+1}\left(L_{e} x_{A}^{p}(X)\right)\right)\right)^{x}=\right. \\
& =\sum_{i=1}^{n}\left(\left(u\left(\xi_{1} \Theta_{U}^{p q+1}\left(E_{1}\right)\right), \ldots, a\left(u D^{1}\left(\xi_{i} \Theta_{U}^{p, q+1}\left(E_{i}\right)\right)\right), \ldots,\right.\right. \\
& \left.\left.u\left(\xi_{n} \Theta_{U}^{p, q+1}\left(E_{n}\right)\right)\right) L e x_{A}^{p}(X)\right)^{p}= \\
& =\sum_{i=1}^{n}\left(\left(\left(u D^{0} \xi_{1}, \ldots, u D^{p} \xi_{1}\right), \ldots,\left(a\left(u D^{1} \xi_{i}\right), \ldots,\right.\right.\right. \\
& \\
& \\
& \left.\left.\left.a\left(u D^{p+1} \xi_{i}\right)\right), \ldots,\left(u D^{0} \xi_{n}, \ldots, u D^{p} \xi_{n}\right)\right) L e x_{A}^{p}(X)\right)^{p}= \\
& = \\
& =a\left(\left(\left(u D^{0} \xi_{1}, \ldots, u D^{p+1} \xi_{1}\right), \ldots,\left(u D^{0} \xi_{n}, \ldots, u D^{p+1} \xi_{n}\right)\right) L e x_{A}^{p+1}(X)\right)^{p+1}= \\
& = \\
& = \\
& = \\
& =a\left(\left(\left(u\left(\xi_{1} \Theta_{U}^{p+1, q}\left(E_{1}\right)\right), \ldots, u\left(\xi_{n} \Theta_{U}^{p+1, q}\left(E_{n}\right)\right)\right) L e x_{A}^{p+1}(X)\right)^{p+1}=\right.
\end{aligned}
$$

for each $a \in A$.
2. Definition. The Upolimapn-morphism $\left(\Theta_{U}^{p, q}\left(E_{1}\right), \ldots, \Theta_{U}^{p, q}\left(E_{n}\right), \Theta_{U}^{p, q}(E)\right)$ will be denoted by $\Lambda_{U}^{p, q}(X)$.
3. Theorem. $\Lambda_{U}^{p q q}$ is a morphism from M_{U}^{p+q} into $M_{U}^{q} \circ L e x_{A}^{p}$.

The proof is clear.
4. Note. Theorem 3 expresses the general Leibniz rule.

REFERENCES

[1] ABRAHAM, R.-ROBBIN, J.: Transversal mappings and flows. W. A. Benjamin, N. Y. - Amsterdam, 1967.
[2] DIEUDONNE, J.: Foundations of modern analysis. Academic Press, N. Y. - London, 1960.
[3] FIBY, R.: Extensions of polylinear mappings (to appear).
[4] LANG, S.: Algebra. Addison-Wesley P. Co., Reading, 1965.
Received July 11, 1972
Katedra geometrie
Prírodovedeckej fakulty Univerzity Komenského Bratislava

