Matematický časopis

Ján Duplák
 Rot-Quasigroups

Matematický časopis, Vol. 23 (1973), No. 3, 223--230
Persistent URL: http://dml.cz/dmlcz/126892

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ROT- QUASIGROUPS

JÁN DUPLÁK, Prešov

Let \mathscr{E}^{2} be an oriented Euclidean plane and let (.) be a binary operation defined in \mathscr{E}^{2} by $a . b=c$, if c is the image of b under the rotation $R\left[a,+90^{\circ}\right]$. We find easily that the groupoid $\mathscr{E}^{2}($.$) is a medial, idempotent, elastic and$ transitive quasigroup. Moreover, the groupoid $\mathscr{E}_{2}($.$) satisfies the interesting$ identity $x \cdot(x, y)=z \cdot[(x, z) \cdot y]$. This identity will be taken as an axiom in the description of certain quasigroups, rot-quasigroups, which we are going to study.

We remark that a groupoid with the law of composition (A) in a set 2 is denoted by $2(A)$. Let a, b be arbitrary elements of $\mathscr{2}$ and let there exist uniquely determined $y \in \mathscr{2}$ such that $A[a, x]=b, A[y, a]=b$. Then $\mathscr{2}(A)$ is a quasigroup. We shall denote $A^{-1}[a, b]=x,,^{-1} A[b, a]=y$ if and only if $A[a, x]=b, b=A[y, a]$, respectively. It is clear that if $\mathscr{Q}(A)$ is a quasigroup, then $2\left(A^{-1}\right)$ and $\mathscr{2}\left({ }^{-1} A\right)$ are quasigroups (see [1]).

Definition 1. A rot-quasigroup is such a quasigroup which satisfies the identity

$$
\begin{equation*}
x \cdot x y=z(x z \cdot y)^{(1)} \tag{1}
\end{equation*}
$$

In the following the symbol $\mathscr{2}(A)=\mathscr{2}($.$) or \mathscr{2}$ denotes a rot-guasigroup.
This paper considers elementary properties of rot-quasigroups $2($.$) and$ groups of all their automorphisms, denoted by $(\mathscr{G}(\mathscr{2}), \circ)=\mathscr{G}(2)$.

Theorem 1. For any $x, y \in \mathscr{2}$

$$
\begin{align*}
& x \cdot x=x \quad \text { (idempotency) } \\
& x(y x \cdot y)=y \tag{2}\\
& x \cdot y x=x y \cdot x \quad \text { (elasticity), } \\
& x \cdot x y=y x y \cdot y \tag{3}\\
& A^{-1}[x, y]=y x y \tag{4}
\end{align*}
$$

(1) The expression $x \cdot y$ will be usually written in the abbreviation $x y$. Thus $x \cdot y z=$ $=x \cdot(y \cdot z)$ and $x y x=x \cdot y x=x y \cdot x$.

Proof. The proof is straightforward. From (1) we have the idempotency, (2) for $x=z, x=y$, respectively. Now we prove the elasticity. Since 2 (.) is a quasigroup there exists $t \in \mathscr{Q}$ such that $x=y t$ for arbitrary $x, y \in \mathscr{Q}$. It follows from the idempotency and (1) that $x \cdot y x=x(y x \cdot y x)=t(y t \cdot y x)=$ $=t(x \cdot y x)$. Thus $x \cdot y x=t(x \cdot y x)$, which implies $t=x \cdot y x$. Hence $x=y t=$ $=y(x, y x)$ and so $x=y(x, y x)$. From the last identity and (2) we obtain $x \cdot y x=x y \cdot x=x y x$. To prove (3) assume $y=z$ in (1). Then with respect to the elasticity we obtain (3). Finally, we prove (4). It follows from (2) that $A^{-1}[x, y]=y x . y$ and because of the elasticity we obtain (4).

We recall that the right (left) translation with respect to $a \in \mathscr{Q}$ is the map $R_{a}: \mathscr{2} \rightarrow 2, x \rightarrow x . a\left(L_{a}: \mathscr{2} \rightarrow 2, x \rightarrow a \cdot x\right)$.

Theorem 2. For any $x, y \in \mathscr{Q}$

$$
\begin{equation*}
L_{x}^{2}=L_{y} L_{x y} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& L_{x} L_{y}=L_{z}^{2}, \text { where } z==^{-1} A[y, x] \tag{6}\\
& L_{x}^{3} y=y x y \tag{7}
\end{align*}
$$

$$
\begin{align*}
& L_{x}^{4}=1 \tag{8}\\
& \left(L_{x}^{2} L_{y}^{2}\right)^{-1}=L_{y}^{2} L_{x}^{2} \tag{9}\\
& L_{x} L_{y}=L_{y}^{-1} L_{x}^{-1}, \text { i. e. }\left(L_{x} L_{y}\right)^{2}=1, \tag{10}\\
& L_{x}^{-1}=L_{x}^{3}=L_{y} L_{x} L_{y} \tag{11}\\
& L_{x y}^{3}=L_{x}^{2} L_{y} \tag{12}
\end{align*}
$$

Proof. It is clear that $(1) \Rightarrow(5) \Rightarrow(6)$. From (1) the identity $x(x, x y)=$ $=z(x z, x y)$ follows and so $L_{x}^{3} y=y(x y . x y)$, if $y=z$. Hence $L_{x}^{3} y=y x y$. Further (2) and $(7) \Rightarrow(8) \Rightarrow(9) ;(6)$ and $(8) \Rightarrow(10) ; 10$ and $(8) \Rightarrow(11)$. By (11) and (5), $L_{x y}^{3}=L_{y} L_{x y} L_{y}=L_{x}^{2} L_{y}$. This completes the proof.

We recall that a medial quasigroup is such a quasigroup which satisfies the identity $x y . w z=x w, y z$.

Theorem 3. A rot-quasigroup is medial.
Proof. Choose $x, y, z, w \in \mathscr{2}$. By (11), (12) and (5), $L_{y}=L_{x z} L_{y} \cdot L_{x z}^{3}=$ $=L_{x}^{2} L_{z}=L_{y} L_{x y} L_{z}$. Hence $L_{x z} L_{y} w=L_{x y} L_{z} w$ and so $x z, y w=x y, z w$.

Combining Th 3 (i. e. Theorem 3) with Th 2.6 and Th 8.3 from [1] we obtain the following results.

Corollary 1. Every rot-quasigroup is transitive, i. e. each loop isotopic to a rot-quasigroup is necessarily a group.

Corollary 2. For any $x \in \mathscr{Q}, L_{x}$ and R_{x} are automorphisms of a rot-quasigroup 2 (.), i. e. $L_{x}, R_{x} \in \mathscr{G}$ (2).

Corollary 3. Every rot-quasigroup 2 (.) is distributive, i. e. 2 (.) satisfies the identities $x, y z=x y \cdot x z, x y \cdot z=x z \cdot y z$.

Definition 2. For any $x, y \in \mathscr{Q}$, the map $V_{x, y}=L_{x}^{2} L_{y}^{2}$ is called a left transfer.
Theorem 4. For any $x, y \in \mathscr{2}$

$$
\begin{equation*}
L_{x}^{*} L_{y}^{-1}=V_{x},{ }^{-1} A[x, y] . \tag{13}
\end{equation*}
$$

Proof. It follows from (11) that $L_{y}^{-1}=L_{x} L_{y} L_{x}$. Then $L_{x} L_{y}^{-1}=L_{x} L_{x} L_{y} L_{x}$ and with respect to (6) we have (13).

The following result is the immediate consequence of (4) and Th 4.
Corollary. For any $x, y \in \mathscr{Q}$

$$
\begin{equation*}
V_{x, y}=L_{x} L_{x y z}^{-1} \tag{14}
\end{equation*}
$$

Theorem 5. $L_{a}^{2} t=L_{b}^{2} t$ for some t if and only if $a=b ; L_{a}^{2} x=x$ if and only if $a=x ; V_{a, b}=1$ if and only if $a=b ; V_{a, b} \neq 1$ has no invariant points.

Proof. It follows from (1) that $L_{a}^{2} t=L_{a}^{2} t \Rightarrow a . a t=b . b t \Rightarrow z(a z . t)=$ $=z(b z . t) \Rightarrow a z \cdot t=b z . t \Rightarrow a=b$. $\operatorname{By}(3) L_{a}^{2} x=x \Leftrightarrow a \cdot a x=x \Leftrightarrow x a x \cdot x=$ $=x \Leftrightarrow a=x$. Because of the statement (8) and the first assertion of the theorem, $V_{a, b}=1 \Leftrightarrow a=b$. Let $V_{a, b} c=c$. Since $L_{a}^{-2}=L_{a}^{2}, L_{b}^{2} c=L_{a}^{2} c$. Hence $a=b$ by the first assertion of this theorem. It follows that $V_{a, b}=1$. The proof is complete.

Theorem 6. For any $x, y, z \in \mathscr{2}$ there exists a unique point $u \in \mathscr{2}$ such that $L_{x}^{2} L_{y}^{2} L_{z}^{2}=L_{u}^{2}$. The point u is given by

$$
\begin{equation*}
u={ }^{-1} A[x(z v \cdot y \cdot z v), v] \tag{15}
\end{equation*}
$$

where $v \in \mathscr{2}$ is an arbitrary element.
Proof. It follows from (5) that for any $t, v \in \mathscr{2}$

$$
L_{x}^{2} L_{y}^{2} L_{z}^{2}=L_{t} L_{x t} L_{t} L_{y t} L_{v} L_{z v}
$$

and according to (10)

$$
L_{x}^{2} L_{y}^{2} L_{z}^{2}=L_{x t}^{-1} L_{y t} L_{z v}^{-1} L_{v}^{-1}
$$

If $L_{y t}=L_{z v}$ (i. e. $\left.y t=z v, t=A^{-1}[y, z v]=z v . y . z v\right]$, then

$$
L_{x}^{2} L_{y}^{2} L_{z}^{2}=L_{x t}^{-1} L_{v}^{-1}=L_{v} L_{x t}
$$

and by (6), $L_{x}^{2} L_{y}^{2} L_{z}^{2}=L_{u}^{2}$, where $u={ }^{-1} A[x t, v]={ }^{-1} A[x(z v, y, z v), v]$. The unicity of u follows directly from Th 5 .

There are two interesting simplifications of (15), namely

$$
\begin{array}{ll}
u={ }^{-1} A[x . z y z, z] & \text { for } v=z \\
u=-1 A[x y, y z y] & \text { for } v=y z y \tag{17}
\end{array}
$$

Since $L_{u}^{-2}=L_{u}^{2}, L_{x}^{2} L_{y}^{2} L_{z}^{2}=\left(L_{x}^{2} L_{y}^{2} L_{z}^{2}\right)^{-1}=L_{z}^{2} L_{y}^{2} L_{x}^{2}$. Hence for any $x, y, z \in \mathscr{Q}$

$$
\begin{equation*}
L_{x}^{2} L_{y}^{2} L_{z}^{2}=L_{z}^{2} L_{y}^{2} L_{x}^{2} \tag{18}
\end{equation*}
$$

Combining (18) with (16) we obtain the identity

$$
\begin{equation*}
{ }^{-1} A[x . z y z, z]={ }^{-1} A[z . x y x, x] . \tag{19}
\end{equation*}
$$

Definition 3. For any $a, b \in 2 a \operatorname{map} P_{a, b}=R_{a} R_{b}^{-1}$ is called a right transfer.
Theorem 7. For any $a, b, c \in \mathscr{Q}$

$$
\begin{align*}
P_{a, b} & =V_{R_{b}^{-2} a, b} \tag{20}\\
V_{c, b} & =P_{R_{b}^{2} c, b} \tag{21}
\end{align*}
$$

Proof. It is clear that for any $a . b \in \mathscr{2}$ there exists a unique element $d \in \mathscr{2}$ such that $b d=R_{b}^{-2} a$, i. e. $b d b . b=a, a=d$. $d b$. Similarly, for any $b, d \in \mathscr{Q}$ there exists a unique element $a \in \mathscr{2}$ such that $b d=R_{b}^{-2} a$. To complete the proof it suffices to show

$$
\begin{equation*}
P_{d . d b . b}=V_{b d, b} \tag{22}
\end{equation*}
$$

From (2) there follows the identity $b=x \cdot b x b$. Since $L_{b} \in \mathscr{G}$ (2), $L_{b}^{3} b=$ $=L_{b}^{3}(x . b x b)=L_{b}^{3} x . L_{b}^{3}(b x b)=L_{b}^{3} x . L_{b}^{4}(x b)=L_{b}^{3} x \cdot x b$ 。 Hence $b=L_{b}^{3} x . x b$ and by (11), $b=L_{d} L_{b} L_{d} x \cdot x b=d(b \cdot d x) \cdot x b$. According to (2) and Corollary 3 of Th $3, b=(b \cdot d b d)(b \cdot d x) \cdot x b=[b \cdot d(b d, x)] \cdot x b$. If $u=b d \cdot x$ and $z=d u$, then $b=b z \cdot x b, z b=z(b z \cdot x b), d u, b=z(b z \cdot x b)$. By (1) we have $d u . b=b(b . x b)=b . b x b$ and so $u(d u . b)=u(b . b x b), u(d u . b)=(b d . x)(b$. $. b x b), d . d b=(b d, x)(b . b x b), x(d . d b)=x \cdot(b d . x)(b . b x b)$, i. e. $R_{d . d b} x=$ $=x .(b d . x)(b . b x b)$. By (1) have $R_{d . d b} x=b d$. [bd . $\left.(b . b x b)\right]$ and so $R_{d . b d} x=$ $=L_{b d}^{2} L_{b}^{2} R_{b} x$, hence $R_{d . a b}=L_{b d}^{2} L_{b}^{2} R_{b}, R_{d . d b} R_{b}^{-1}=L_{b d}^{2} L_{b}^{2}$, which is the identity (20). If $c=R_{b}^{-2} a$, then from (20) we obtain (21).

Corollary. Each left transfer is a right transfer and each right transfer is a left transfer.

With respect to the last result, we shall speak about a transfer. To express a transfer more precisely we have to use either a right or a left transfer notation.

Next we shall consider the structure of the group $\mathscr{G}(2)$ and of its subgroups. We list five of them:
\mathscr{G} - the group generated by all left and right translations of $\mathscr{2}$ (.),
\mathscr{G}_{L} - the group generated by all left translations,
\mathscr{G}_{R} - the group generated by all right translations,
\mathscr{G}_{T} - the group generated by all transfers,
\mathscr{G}_{S} - the group generated by all involutions L_{x}^{2}.
Theorem 8. The set of all transfers forms an Abelian group which is identical with the group \mathscr{G}_{T}.

Proof. By Th 6 there exists $u \in 2$ such that $V_{x, y} V_{z, t}=V_{u, t}$ for any $x, y, z, t \in$ 2. It follows from (9) that $V_{y, x}=V_{x, y}^{-1}$. Hence the set of all transfers forms the group \mathscr{G}_{T}. By (18) we have $V_{x, y} V_{z, t}=V_{z, y} V_{x, y, t}=V_{z, t}$ $V_{x, y}$. Hence \mathscr{G}_{T} is an Abelian group.

We recall that \mathscr{H} is a normal subgroup of a group \mathscr{G}, denoted by $\mathscr{H} \triangleleft \mathscr{G}$, if $f \mathscr{H} f^{-1}=\mathscr{H}$ for each element f of some set generators of \mathscr{G}.

Theorem 9. $\mathscr{G}_{T} \triangleleft \mathscr{G}_{S} \triangleleft \mathscr{G}_{L} ; \mathscr{G}_{T} \triangleleft \mathscr{G}_{L}$.
Proof. It is clear that for any $a, x, y \in \mathscr{2}$.

$$
L_{a}^{2} V_{x, y} L_{a}^{-2}=L_{a}^{2} L_{x}^{2} L_{y}^{2} L_{a}^{2}=L_{y}^{2} L_{x}^{2} L_{a}^{2} L_{a}^{2}=L_{y}^{2} L_{x}^{2}=V_{y, x}
$$

Hence $\mathscr{G}_{T} \triangleleft \mathscr{G}_{S}$. Further, from (6), (13) and Th 6 it follows that

$$
L_{a} L_{x}^{2} L_{a}^{-1}=L_{a} L_{x} L_{x} L_{a}^{-1}=L_{-1_{\mathrm{A}[x, a]}^{2}} L_{x}^{2} L_{-1_{\mathrm{A}[x, a]}^{2}}^{2}=L_{u}^{2}
$$

where u is given by (15), therefore $\mathscr{G}_{S} \triangleleft \mathscr{G}_{L}$. Similarly for any $a, x, y \in \mathscr{Q}$

$$
\begin{gathered}
L_{a} V_{x, y} L_{a}^{-1}=L_{a} L_{x}^{2} L_{y}^{2} L_{a}^{-1}=L_{a} L_{x} . L_{x} L_{y} . L_{y} L_{a}^{-1} \\
L_{-1_{A[x, a]}^{2}}^{2} L_{-1_{A}[x, a]}^{2} L_{y}^{2} L_{-1_{A}[y, a]}^{2}=V_{u},-1_{A[y, a]},
\end{gathered}
$$

where u is given by (15). This completes the proof.
Theorem 10. $\mathscr{G}_{T} \triangleleft \mathscr{G}_{R}$.
Proof. From the mediality there follows the identity $R_{x} t . L_{y} s=R_{y} t . L_{x} s$. If $u=R_{y} t, z=L_{y} s$ (i. e. $t=R_{y}^{-1} u, s=L_{y}^{-1} z$), then $R_{x} R_{y}^{-1} u . z=u . L_{x} L_{y}^{-1} z$. Hence $R_{z} R_{x} R_{y}^{-1} u=R_{L_{x} L_{y}-\frac{1}{z}} u$. It is obvious that $L_{x} L_{y}^{-1} z=x \cdot A^{-1}[y, z]=$ $=x \cdot z y z$, therefore

$$
\begin{equation*}
R_{z} R_{x} R_{y}^{-1}=R_{x \cdot z y z} \tag{23}
\end{equation*}
$$

If $y=z$, then from (23) we have

$$
\begin{equation*}
R_{x} R_{y}^{-1}=R_{y}^{-1} R_{x y} \tag{24}
\end{equation*}
$$

Further, by (24) we have $R_{a} P_{x, y} R_{a}^{-1}=R_{a} R_{x} R_{y}^{-1} R_{a}^{-1}=R_{a} R_{y}^{-1} R_{x y} R_{a}^{-1}=$ $=P_{a, y} P_{x y, a}$. Hence $\mathscr{G}_{T} \triangleleft \mathscr{G}_{R}$. This completes the proof.

Theorems 9 and 10 lead to the question: What do the factor-groups $\mathscr{G}_{S} \mid \mathscr{G}_{T}$, $\mathscr{G}_{L}\left|\mathscr{G}_{S}, \mathscr{G}_{L}\right| \mathscr{G}_{T}$ and $\mathscr{G}_{R} / \mathscr{G}_{T}$ look like? The following theorems show it.

Theorem 11. $\mathscr{G}_{S} / \mathscr{G}_{T} \approx \mathscr{Z}_{2}$ (i. e. the group $\mathscr{G}_{S} \mid \mathscr{G}_{T}$ is isomorphic to the group of remainders modulo 2).

Proof. It follows from Th 6 that each element $f \in \mathscr{G}_{S}$ can be written in the form $f=L_{x}^{2}$ or $f=L_{x}^{2} L_{y}^{2}$. If $f=L_{x}^{2} L_{y}^{2}$, then $f \in \mathscr{G}_{T}$. If $f=L_{x}^{2}$, then $f=L_{a}^{2} L_{a}^{2} L_{x}^{2}=L_{a}^{2} V_{a, x} \in L_{a}^{2} G_{T}$. Clearly $\left(\mathscr{G}_{T} \cup L_{a}^{2} \mathscr{G}_{T}\right) \subset \mathscr{G}_{S}$. Hence $\mathscr{G}_{T} \cup$ $\cup L_{a}^{2} \mathscr{G}_{T}=\mathscr{G}_{S}$. According to $\operatorname{Th} 5, f \in \mathscr{G}_{T}, f \neq 1$ has no invariant point and $f \in L_{a}^{2} \mathscr{G}_{T}$ has exactly one invariant point. This implies $\mathscr{G}_{T} \cap L_{a}^{2} \mathscr{G}_{T}=\emptyset$ and the proof is completed.

Theorem 12. $\mathscr{G}_{L} \mid \mathscr{G}_{S} \approx \mathscr{Z}_{2}$.
Proof. Similarly to the proof of Th 11 we shall show that $\mathscr{G}_{S} \cup L_{a} \mathscr{G}_{S}$ is a disjoint decomposition of the group \mathscr{G}_{L}. It follows from (6), (11) and Th 6 that each element $f=L_{a_{i}}^{n_{1}} \ldots L_{a_{k}}^{n_{k}} \in \mathscr{G}_{L}$ can be rewritten in the form

$$
f=L_{a}^{2} \text { or } f=L_{a}^{2} L_{b}^{2} \text { or } f=L_{a} \text { or } f=L_{a} L_{b}^{2}
$$

If $f=L_{a}^{2}$ or $f=L_{a}^{2} L_{b}^{2}$, then $f \in \mathscr{G}_{S}$. If $f=L_{a}$ or $f=L_{a} L_{b}^{2}$, then $f \in L_{a} \mathscr{G}_{S}$. Hence $\mathscr{G}_{L} \subset\left(\mathscr{G}_{S} \cup L_{a} \mathscr{G}_{S}\right)$. Since $\left(\mathscr{G}_{S} \cup L_{a} \mathscr{G}_{S}\right) \subset \mathscr{G}_{S}$, we have $\mathscr{G}_{L}=\mathscr{G}_{S} \cup L_{a}$ \mathscr{G}_{S}, which is a disjoint decomposition of \mathscr{G}_{L}, because $L_{a} \notin \mathscr{G}_{S}$.

Theorem 13. $\mathscr{G}_{L} \mid \mathscr{G}_{T} \approx \mathscr{Z}_{4}$.
Proof. It is easy to show that $\mathscr{G}_{T} \cup L_{a} \mathscr{G}_{T} \cup L_{a}^{2} \mathscr{G}_{T} \cup L_{a}^{3} \mathscr{G}_{T}$ is the disjoint decomposition of \mathscr{G}_{L}.

Lemma 1. Let n be a positive integer. If $R_{a}^{n}=1$ for some element $a \in \mathscr{Q}$, then $R_{z}^{n}=1$ for all $z \in \mathscr{2}$.

Proof. From (24) we have $R_{x}=R_{y}^{-1} R_{x y} R_{y}$. If $x y=z$ (i. e. $y=A^{-1}[x, z]=$ $=z x z$), then

$$
R_{x}=R_{A-1[x, z]}^{-1} R_{z} R_{A}-1_{[x, z]}=R_{z x z}^{-1} R_{z} R_{z x z}
$$

Thus

$$
R_{a}^{n}=\left(R_{z a z}^{-1} R_{z} R_{z a z}\right)^{n}=R_{z a z}^{-1} R_{z}^{n} R_{z a z}
$$

Since $R_{a}^{n}=1, R_{z a z}=R_{z}^{n} R_{z a z}$. Hence $R_{z}^{n}=1$.
Lemma 2. Each element $f \in \mathscr{G}_{R}$ can be written in the form

$$
R_{a_{1}} R_{a_{2}} \ldots R_{a_{n}} \text { or } R_{a_{1}}^{-1} R_{a_{2}}^{-1} \ldots R_{a_{n}}^{-1} \text { or } P_{a_{1}}, a_{2}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are suitable elements of 2 and n is a positive integer.
Proof. Let $\mathscr{L}=\left\{R_{x}: x \in \mathscr{Q}\right\} \cup\left\{R_{x}^{-1}: x \in \mathscr{2}\right\}$ be the base to the group \mathscr{G}_{R}. We proceed by induction on the length of a word $f \in \mathscr{G}_{R}$. Clearly, the assertion is valid for $n=1$ and $n=2$ (see (24). Assume that $g \in \mathscr{G}_{R}$ is of the length $n+1>2$. If $g=R_{a} f$, where

$$
f=R_{a_{1}}^{-1} \ldots R_{a_{n}}^{-1}=R_{a_{1}}^{-1} R_{a_{2}}^{-1} \circ h, h=R_{a_{3}}^{-1} \ldots R_{a_{n}}^{-1}
$$

then by (23),

$$
g=R_{a} R_{a_{1}}^{-1} R_{a_{2}}^{-1} \circ h=R_{a_{1} \cdot a_{2} a a_{2}}^{-1} \circ h,
$$

which is the required form of g. Similarly we do the rest of the proof.
Theorem 14. Let $a \in \mathscr{2}$ be a fixed element and let $\left\langle R_{a}\right\rangle$ be the subroup of \mathscr{G} (2) generated by $R_{a} \in \mathscr{G}_{R}$. Then $\mathscr{G}_{R} / \mathscr{G}_{T} \approx\left\langle R_{a}\right\rangle$.

Proof. It follows from (23) and (24) that

$$
R_{x \cdot z y z}=R_{z} R_{x} R_{y}^{-1}=R_{z} R_{y}^{-1} R_{x y}=R_{y}^{-1} R_{z y} R_{x y}
$$

If $z y=t, x y=u$ (i. e. $\left.z={ }^{-1} A[t, y], x={ }^{-1} A[u, y]\right)$, then $R_{y}^{-1} R_{t} R_{u}=R_{d}$, where $d={ }^{-1} A[u, y] .{ }^{-1} A[t, y] y^{-1} A[t, y]$. Thus for arbitrary elements a_{1}, \ldots, a_{n}, $b_{1}, \ldots, b_{n}, a, b$ there exist $e, f \in \mathscr{2}$ such that

$$
P_{e, f}=R_{a_{n}}^{-1} \ldots R_{a_{1}}^{-1} R_{b_{1}} \ldots R_{b_{n}} P_{a, b}
$$

i. e.

$$
R_{a_{1}} \ldots R_{a_{n}} P_{e, f}=R_{b_{1}} \ldots R_{b_{n}} P_{a, b}
$$

Hence the decompositions $R_{a_{1}} \ldots R_{a_{n}} \mathscr{G}_{T}, R_{b_{1}} \ldots R_{b_{n}} \mathscr{G}_{T}$ are not disjoint and so they are equal. Analogously

$$
R_{a_{1}}^{-1} \ldots R_{a_{n}}^{-1} \mathscr{G}_{T}=R_{b_{1}}^{-1} \ldots R_{b_{n}}^{-1} \mathscr{G}_{T}
$$

Thus

$$
\mathscr{G}_{R} / \mathscr{G}_{T}=\bigcup_{i \in \mathscr{N}} R_{a}^{i} \mathscr{G}_{T}
$$

where \mathscr{N} is the set of all integers. Therefore $\mathscr{G}_{R} \mid \mathscr{G}_{T} \approx\left\langle R_{a}\right\rangle$. Clearly, the map $R_{a}^{i} \mathscr{G}_{T} \rightarrow R_{a}^{i}$ is an isomorphism.

The results are summarized in the diagram

in which $\mathscr{A} \xrightarrow{n} \mathscr{B}$ denotes that \mathscr{B} is a normal subgroup of \mathscr{A} of the index n and. $\mathscr{A} \rightarrow \mathscr{B}$ denotes that \mathscr{B} is a subgroup of \mathscr{A}.

Now we shall consider the finite rot-quasigroups.

Theorem 15. If $\mathscr{2}$ (.) is a finite rot-quasigroup, then card $\mathscr{2}=4 p-3$, where p is a positive integer.

Proof. Let $\mathscr{Q}=\left\{a_{1}, \ldots, a_{n}\right\}$. It is obvious that $\mathscr{H}=\left\{L_{a_{1}}^{4}, L_{a_{1}}, L_{n_{1}}^{2}, L_{a_{1}}^{3}\right\}$ is a subgroup of \mathscr{G}_{L} which acts on the set 2 by

$$
\mathscr{2} \times \mathscr{H} \rightarrow \mathscr{Q},\left(x, L_{a_{1}}^{i}\right) \rightarrow L_{a_{1}}^{i} x
$$

This action leads to the orbit decomposition $2 / \mathscr{H}$ of 2 :

$$
\mathscr{Q}=\mathscr{H}\left(a_{1}\right) \cup \mathscr{H}\left(a_{2}\right) \cup \ldots \cup \mathscr{H}\left(a_{n}\right)
$$

Clearly, card $\mathscr{H}\left(a_{i}\right)=4$ for $i=2,3, \ldots, n$ and $\mathscr{H}\left(a_{1}\right)=\left\{a_{1}\right\}$. Therefore, card $\mathscr{2}=4(\operatorname{card} \mathscr{2} / \mathscr{H}-1)+1=4 p-3$, where $p=\operatorname{card} \mathscr{2} / \mathscr{H}$.

Example. Let $\left(\mathscr{Z}_{p},+\right)$ be an Abelian group of remainders modulo p and $\mathscr{2}=\mathscr{Z}_{p} \times \mathscr{Z}_{p}$. Define the binary operation by

$$
2 \times \mathscr{Q} \rightarrow \mathscr{Q},(a, b) \cdot(c, d)=(a+b-d,-a+c+b) .
$$

If p is odd, then $2($.$) is a rot-quasigroup. It can be easily shown that the last$ assertion is true.

Acknowledgement

I would like to express my thanks to M. Hejný, for his valuable advice by which he helped me to solve problems concerning the subject.

REFERENCES

[1] БEJOУCOB, В. Д.: Основы теории квазигрупп и луп. Издательство «Наука» 1967. Received June 2, 1971

Katedra matematiky Pedagogickej fakulty Univerzity P. J. Šafárika Prešov

