Matematicky casopis

Renata Hrmova
Relative ideals in semigroups

Matematicky casopis, Vol. 17 (1967), No. 3, 206--223

Persistent URL: http://dml.cz/dmlcz/126942

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/126942
http://project.dml.cz

Matematicky &asopis 17 (1967), No. 3

RELATIVE IDEALS IN SEMIGROUPS
RENATA HRMOVA, Bratislava

In the papers [9] and [2] the notion of a left (right, two-sided) B-ideal of
a semigroup has been introduced as follows: Let S be a semigroup, B < S,
B + 0. A left B-ideal of S is a non void set 4 < 8 such that B4 < A. Simi-
larly one defines a right B-ideal and a two-sided B-ideal of S.

It turns out that it is possible to generalize the notion of a B-ideal of S.
The generalization is given by introducing the notion of a (B:, B2)-ideal of
a semigroup S, B1, Bs being subsets of S. Using this notion some results of [2]
and [10] are generalized in this paper.

Let S be a semigroup, 41, 42 subsets of S. We define:
If 4; =+ ﬂ, Ao =+ Q, then 4142 = {alag tay EAl, as EAz}.
If Al = 0, then AlAg = Az. If Az == Q, then AlAz == Al.
In the following S will denote a semigroup.

Definition 1,1. Let By =S, Bz = S. Let I(B1,B:) = {4 = 8: BiA = A.
ABz < A} and I = {I(Bl, B2) : B1 < S, Bz < S} The elements A EI(Bl, Bz)
will be called (Bi, B2)-ideals of S. The elements A € \JI will be called relative
ideals of S. By a one-sided relative ideal we mean any (B, B2)-ideal for which
either By = Q or Bs = 0. Any (B1, Bs)-ideal of S is said to be a two-sided relative
ideal of S if By + 0 and Bz + 0.

Our definition implies:
1) 1(9,0) = {4: 4 < S}.
2) @ € I(B1, By) if and only if By = @ and By = 0.
3) If B, < B,, B, < B}, then I(B|, B)) < I(B,, B,).
4) I(B1, B2) = I(B1, 0) N I(9, Bz).

Remark. The notion of a (B1, Be)-ideal is, evidently, not only a generali-
zation of a left, right and two-sided ideal of § but also a generalization of a left,
right and two-sided B-ideal of S defined in [2] and [9].
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Tn [2] examples of (B, @)-ideals, (@, B)-ideals and (B, B)-ideals have been
given. In the following we give some examples for the notion introduced
above.

Example 1,1. Let H;, Hs be subsemigroups of S and B, Bs subsets
of § such that B, « H;, Bo < Hs. Then for every a € S we have a U Hija U
U aHs U HiaHs = A € I(B1, B2), hence A € I(H,, Hs).

Example 1,2. Let G be a group, H, Hs subgroups of G. Then for any left
coset Hia we have Hia € I(H1,9), for any right coset aHs we have aH, e
e I(9, H3), and for any double coset HiaHs we have HiaHs € I(H;, Hb).

Example 1,3. Let A = § be a biideal of S, i. e. a subsemigroup of S such
that ASA < A. Then A € I(48, SA).

Example 1,4. Let A < S be a (m, n)-ideal of S, i. e. a subsemigroup of S
such that AmSA4» < 4, for some integers m > 1,7 > 1. Then 4 € I (4mSAn-1,
Am-18A4n).

Clearly the following lemma holds:

Lemma 1,1. Let By; < S, B < S, Bis < S, Bss < S, Bin B12 = Bl,
Bs1 N Bzz = Bg, A e I(Bn, le), As e I(Blz, ng), Then:
1) 41U A4s e I(Bl, Bz)
2) If Ay Az £ 0, then A1 N Az € I(By, Bs).
3) A1A2 € I(Bll, Bgz).
The next two theorems show the importance of the set ( JIx where Iy =
{I(Hy, Hs) : Hy, Hs are subsemigroups of S}.
In the following we shall cosider the empty set 0 as a subsemigroup of S.
It is easy to prove

Theorem 1,1. I(Bi, Bs) = I(H1, Hs), where Hy =B UB{UB}uU....,
We shall need the following

Definition 1,2. Let A € I(By, Bs), for a given By < S, Bs < 8. A set By > By
will be called the first saturation set of A if Ael (B1, Bs) and there is no subset
B}, By 2 By such that A € I(B;, Bs) holds. Analogously the second saturation
set By of A is defined. If By = By, Bs = Ba, then A will be called a saturated
(Bl . Bg)-ideal.

Evidently the couple Bi, Bs is uniquely defined (for given A, Bi, Bo).

Theorem 1,2. The saturation sets of any A € I(B1, Bs) are subsemigroups of S.
Proof. Since we consider the empty set as a subsemigroup of S, it is sufficient
to prove it for non-empty saturation sets. Let, for instance, Bi + 0. Let be
aeB;,beB,i.e.ad < A,bA < A.Since bad < bA < A and abA < ad <
< A, we have ab e By, ba € B;. Analogously for the second saturation set.
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The following example shows that the saturation sets B; or Bz of a (B1, Bs)-
ideal of S can be empty.

Example 1,5. Let S = {a,b,¢,d} be a semigroup with the following
multiplication table

a b ¢ d
ala ¢ a a
bla a a a
cla a ¢ a
dla b a d

and 8" = {a, b, ¢} the semigroup with the multiplication table

‘@ b ¢
ala a a
bla a a
cla a c¢

The set {b} = § is a saturated (B1, Bp)-ideal of S, Br = {d}, Bo = 0.
(The set {b} = 8 is a right antiideal of S since {b}S N {b} = 0.) The set
{6} = S’ is a saturated (0, ¥)-ideal of S".

Example 1,6. Any subgroup of a group @ is a saturated (G, G)-ideal of G.

Example 1,7. Let S contain the unit element ¢ and e ¢ B;, e ¢ Bs. Then
no (B1, Bg)-ideal of S is saturated.

The following example shows that the subsemigroups H;, Hs of Theorem 1.1
need not be saturation sets of a (B1, Be)-ideal of S.

Example 1.8. Let 8 be the multiplicative semigroup of all residue classes

mod 12, which will be denoted by 0,1, ..... 11. If we choose B = {2}, then
A = {2, 4, 8}is a (B, B)-ideal of 8. Evidently the saturation sets of 4 coincide,
Bi=By=B=1{2,4,81,710}.But Hy = H, = BU B2U ... = {2,4,8} &
€ B
< B.

This example shows also that the subsemigroups H,;, H» considered in
Theorem 1.1 are in general only proper subsets of the intersection of the
saturation sets of all 4 € I(B1, B2). In fact the intersection of the saturation
sets of all 4 € I({2}, {2}) contains the element 1 while H; = H; = {2, 4, 8}.

It-can be shown further by means of this example that the saturation sets
of two (B1, Bs)-ideals 4 and A’ need not be the same. For instance, the sets
A= 1{2,4,8}, 4" = {7, 2, 4, 8, 10} are ({2}, {2})-ideals of S but the saturation
sets B4 of A and By of A’ are distinct. In fact 7€ B4, but 7¢ By

It is easily to see that the notion of a relative ideal of S may be used to
develop the theory in two ways:

1) Given a set A < S to find B, Bs such that A € I(Bi, Bs).
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2) To study the elements of the set I(Bj, Bz), for given B, B: < S (satis-
fying eventually the required properties).
With regard to 1) it will be useful to introduce the following

Definition 1.3. We say that a set P < 8 can be properly idealized in S if there
existsaset B < 8, B+ Qsuchthat P € I(B, 0) or P € I((), B). Denote by J the set
of all subsets of S which can be properly idealized. Denote further by

= {PeJ:Pel(By,B;) forsome B; =+ Bz, B1 + 0, Bs + 0}.

= {PeJ:Pel(By, B;) forsome B;= B:; s+ 0}.

L {PeJ:Pel(B;,0) forsome B; =+ 0}.

R={PeJ:Pecl®, B;) forsome B; =+ 0}.
—{PcS:P¢J).

We shall say that the subsets P < S, Pe D or PeO can be two-sidedly
tdealized and the subsets P < S such that P € L or P € R can be one-sidedly
tdealized.

Evidently the set V = {J, D, O, L, R, N} is partially ordered by set theoreti-
cal inclusions according to the following diagram:

/\
\/

|
0

Remark. The sets N,J are non-empty because # € N, S €J. However,
it follows from Example 1,5 that there exist semigroups containing proper
subsets which cannot be properly idealized. The following example shows that
there exists a subset P < § such that P € D but P ¢ 0.

Example 1,9. Let S = {a, b, ¢, d, e, f, g, h} be a semigroup with the follow-
ing multiplication table:

la b ¢ d e f g h
ala b a b e f f e
bib a b a f e e f
cic d ¢c d h g g h
did ¢ d ¢ g h Rk ¢
ela b b a e f e f
flb a a b f e f e
gld ¢ ¢ d g h g bk
hic d d ¢ h g h ¢
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Choose Bi = {a, c}, B> = {e, g}. Then the subset P = {f, g} is a saturated
(B1, Bg)-ideal of S and therefore P € D but P ¢ 0.

In the following sections we shall study relative ideals from the standpoint
of [2]. With regard to Theorem 1,1 and 1,2 we shall study only the sets I(B;, Bs),
where B;, By are subsemigroups of S. In the following we shall denote them
by Hy and Hs. The results obtained will generalize some known results con-
cerning ideals of semigroups and some results of [2], [9], [10].

2

Minimal relative ideals in semigroups

Definition 2,1. Let Hy, Hz be subsemigroups of S (including the case of empty
subsemigroups). We shall say that a set A = S, A € I(Hy, H2) is a minimal
(Hy, Hs)-tdeal of S if there is mo A" = S, A" < A such that A" € I(H,, H>).
The set of all minimal (Hy, Hz)-ideals of S will be denoted by In(Hy, He).

Example 2,1. If S contains the zero element 0, then {0} € I,(H:, H>)
. for each couple Hi, H;.

Remark. If S contains the zero element 0 and H; &= S, Hs + S, then
the set {O} is in general not contained in every (Hp, Hz)-ideal of S. But if at
least one of the subsemigroups Hy, Hs contains 0, then the set {0} is contained
in every A € I(H, Hs). To obtain non trivial results concerning minimal
(Hi, Hg)-ideals of S containing the zero element 0, it is necessary to assume
that none of the subsemigroups H;, H> contains 0.

From Lemma 1,1 and Definition 2,1 there follows

Theorem 2,1. Let Ay e ln(Hi, Hs), Asel, (Hy, Hs), 41 + As. Then
A1 N Ay = 0. .

Theorem 2,2. Let Lel(H:,0), L < H,, Rel(@, Hs), R < Hs, and A e
€ Im(Hy, H2). Then A = LaR, for every ac A.

Proof. Evidently LaR € I(H;, Hs). Further for every ae 4 we have
LaR < LAR < H1AHs < A. Since A € 1, (H1, Hz), we have LaR = A.

Notice that for Hi =0 (Hy=0; H; =0 and H; = ) we have L =
(R=0; L=0 and R = 0) and in the sense of our definition the set LaR
is of the form aR(La; {a}).

Corollary. If A € I, (H1, H3), then A = HqiaHs for every a € 4.

Remark. The supposition of Theorem 2,2 that L and R are subsets of Hy, H»
(in the case Hy + 0, Hz + 0) is an essential one. By means of the one sided
relative ideals not contained in H; and H, it is in general not possible to
describe a minimal (H1, Hz)-ideal even in the case when L is a minimal (Hy, 0)-
ideal of S and R is a minimal (0, Hs)-ideal of S. This can be shown on Example
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1,8 if we choose H = {1, 5,7, 11} and consider 4 = H € In(H, ) and we
choose L = {2, 10} € I,(H, §)). Then we easily establish that A = La does
not hold for any a € S.

Lemma 2,1. 1. Let L e I,(Hi, 0). Then L c € In(H1, 9) for every ce S.
2. Let R e 1,0, Hs). Then cR e I,y(0, Hs) for every c € S.

Proof. 1. If Hy = 0, then either L = @ or L is a one point set L = {a}.
In both cases we have Lc € In(9, 0) for every ¢ € S. If H, + @, by Theorem 2,2
L  Ha for every aec L, hence Lc = Hijace I(H;1, §)). Let now B < Lc,
Bel(H:,0) and be B < Le, i.e. b = ajc for some a; € L. Then Ha;c =

Lc = Hib < B and therefore Lc € I,,(H1, 9).

The second case can be treated analogously.

Corollary. Let L be a minimal (Hq, §)-tdeal of S and R a minimal (9, Hs)-
ideal of S. Then the set LaR is for every a € S an (Hy, Hz)-ideal of S, which is
a set-theoretical union of some minimal (Hy, 0)-ideals of S and also a union
of some minimal (9, Hs)-ideals of S.

We have namely LaR = (J {Lar :r€ R} = \J {laR :l € L}, and in accord
with Lemma 2,1 the set La and therefore also the set Lar is a minimal (H;, 9)-
ideal. Analogously the set laR is a minimal (0, Hs)-ideal of S.

Theorem 2,3. Let Ly be a minimal (Hi, 0)-ideal contained in Hi, and Ry
a minimal (9, Hs)-ideal of S contained in Hs. Then the set LocRy is a minimal
(1, Hp)-ideal of S for every c € 8.

Proof. If Hy = 0 or Hy = 0, then the set LocRy has one of the following
forms: cRo, Loc, {c}. By Lemma 2,1 we have cRo € In(0, Hs), Loc € Im(H1, 0),
{c} e In(®, 9).

Let H1 + 0, Hs & §). Suppose that for some ¢ € S there exists a set B < LocRo
such that B e I(H,, Hs). Let b € B. Then b = lypcro, lp € Lo, 7o € Ro. By Theo-
rem 2,2, LocRy = HilpcroHs = HibHs < Hi1BHs < B. Hence B = LocRy. This
implies LocRo € In(H:, H3) for every ce S.

Corollary 1. Let H, contain at least one minimal (Hy, §)-tdeal of S and Ho
contain at least a minimal (0, Hs)-ideal of S. Let L be a minimal (Hy, 9)-ideal
and R a mintmal (9, Hp)-ideal of S. Then the set LcR is for every ¢ € S a minimal
(111, Hz)-?:d(%al Of S.

With respect to the foregoing it is sufficient to prove it in the case 1 + 0,
II«Z + Q) Let by supposition L() C Hl, Lo € Im(lfl, @), Ro C Hz, Ro € Im(ﬂ, Hz)
By Theorem 2,2 we have L = Loa, R = bR, for some a S, beS. Hence
LeR — Lo(lcho S Im(Hl, Hz).

Corollary 2. Under the same assumptions as in the foregoing Corollary 1
we have for every a € S, b € 8 either LaR N LbR = §) or LaR = LbR.
By summarizing we get:
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Theorem 2,4. Let H; contain a minimal (Hi, 0)-ideal Lo, and Hs contain
a minimal (0, Hz)-ideal Ry. Then:

1) Every minimal (Hi, Hs)-ideal A of S is of the form: A = LoaRy with
some a € 8.

2) The set LoaRy ts for every a € 8 a minimal (Hy, Hp)-ideal of S.

Remark. This Theorem generalizes the wellknown theorems concerning
semigroups containing minimal one-sided ideals.

In the following we generalize some results concerning minimal two-sided
ideals of a semigroup.

Lemma 2,2. Let Lo EIm(Hl, ﬂ), Lo (o= Hl. Then L()Hl = U {Lok the H1} (S
€ Im(Hl, Hl) Analogously, Zf Ro € Im(@, Hz), .Ro < Hz, then HzRo =
= U {hRo che Hz} € Im(Hg, Hz).

The proof follows from the known results in the theory of semigroups
containing minimal one-sided ideals.

For brevity we denote in the following LoH; = N§, H2Ry = N;. Evidently
we have N} < Hy, N; < H».

Theorem 2,5. Let Hy contain at least one minimal (Hi, 0)-ideal and Hs
contain at least one minimal (9, Hz)-ideal of S. Let Ny be a minimal (Hy, Hy)-
ideal and N2 a minimal (Hz, Hs)-ideal of S. Then the set N1aNs is for every a € S
an (Hy, Hs)-ideal, which ts a set-theoretic union of some minimal (Hy, Hs)-
tdeals of S.

Proof. Let Loe I,y(H1,9), Lo = Hi, Rye In®, Hs), Ro = Hz. By Theo-
rem 2,2 for every nie N1 we have Ny = NyulNj = LoHiniLoH: = LoB;,
where By = HiniLoH,. Analogously for every ns € N» we have N2 = N gnzNg =
= HsRonasH2Ry = B2Ry, where Bs = H:RoneHs. Hence for every ae S
we have NiaNz = (J {LocRo : ¢ € BiaB:}.

Notice that if we replace in the case of H; = @ (Hs = 0; H; = @ and H, = ()
N} by @ (N by 0; Nt by @ and N; by 0), then the corresponding sets in our
Theorem are set-theoretic unions of minimal (@, Hj)-ideals ((Hi, 9)-ideals;
(9, 0)-ideals).

Example 2,2. The following example shows that a set NiaN2, N; €
€ Im(Hy, Hy), N3 € In(Hz, Hs) need not be itself a minimal (H:, Hz)-ideal
of S even in the case of Ny < Hy, N2 < Ho.

Let S = {a, b, ¢, d} be a semigroup with the following multiplication table:

labcde
aaaaa
aabad
aacae
abbdd
@accee

O RN ™



Choose H; = {c, e}, Hz = {d}. Then Nj = H,, N; = Hs. The set NiINZ
is the union of two minimal (H1, Hs)-ideals of S, namely N{dN; = {a} U {e}.

In contradistinction to Corollary 2, if Ny € In(H1, H1), N2 € In(Hz, Hs),
then NiaNs N N1bN2 + 0 does not imply NiaNs = N1bN,. This can be shown
on Example 2,2 if we consider the sets HidH; and HiaH,.

3

Relative socles in semigroups

In this section we again assume that H;, H, are subsemigroups of S (includ-
ing the case of the empty subsemigroups).

Definition 3,1. Suppose that I, (Hi, Hs) is mon-void. The set-theoretic
unton \J {4 : A € In(Hy, Hs)} will be called the (Hy, Hz)-socle of S and will
be denoted by S(Hy, Hs).

Remark. The notion of the (H, Hs)-socle is a generalization of the left,
right and two-sided H-socle introduced in [2].

Theorem 3,1. Let Hi contain at least one minimal (Hy, 0)-ideal and Hs
contain at least one minimal (9, Ha)-ideal of S. Then

S(H1, Hp) = S(H1, 9) NS0, Hs)

Proof. If H; = @ or Hy = 0, our statement trivially holds since S(#, 0) = S.

Let H1 % 0, Hy + 0. By suppostion there exist Lo < Hi, Lo € Im (H1, 9),
Ry © Hs, Roe I, (9, H2). By Theorem 2,4, S(Hy, 0) = LoS, S(0, H2) = SRy,
S(Hy, Hz) = LoSRy = LoS = S(H1, 0). Analogously GS(Hi, Hz) < SRy =,
— &(0, Hz), and therefore G(Hi, Hs) < G(H1i, 0) N S(0, Hp). Conversely
let a e S(H1, 0) N S(D, Hz) for some a € S. Then there exists some L € I, (Hi, ()
and R e In (0, He) such that a € L and a € R. Moreover a € Loa since Loa <
< LoL = L implies L = Loa. Analogously a €aRy, hence a = lya = aro
for some lp € Lo and some 79 € Ry. This implies a = lyarg € LoSRy = S(H1, Hp).

Example 3,1. The following example shows that a two-sided relative socle
can be a proper subset of a one-sided relative socle even in the case of H; = Ho.

Let S = {a, b, ¢, d} be a semigroup with the following multiplication
table:
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If we choose Hi = Hs = {a, b} = H, then S(H, 0) = S, while S(H, H) =
= {a, b}.

It is useful to notice the following. If H; = H2 = S and there exists Ng < §,
Noe In(S, S), then G(Hy, Hs) = No. It is known that No exists if there
exists at least one minimal (S, §)-ideal or one minimal (@, S)-ideal of S. For
instance if there exists one L € I, (S, ), then we have LS = S(S, 0) = Ny
= NoSNo = 3(S, S).

But in the case of H1 = Ha, H1 + 0, Hi £ S, Hy &= 0, Hy &+ S, for describ-
ing S(H, H) it is (in general) not sufficient to know a single relative one-sided
minimal ideal of S. We have seen namely that in general we only have S(H, H) <
< G(H, 0), and not necessarily S(H, H) = S(H, 0).

In the case of Hy &+ H», Hy + 0, Hs &+ ), we may obtain an analogy with
the case of the (S, S)-socle. In this case it is sufficient to suppose for describing
S(H1, Hs) the existence of only one one-sided relative ideal in each of the
semigroups Hy, Hz, namely the existence of a minimal (H,, #)-ideal in H; and
the existence of a minimal (0, Hs)-ideal in Ho.

In the following theorem we shall give the conditions under which the sets
S(H1, 0) and &(9, Hs) coincide.

Lemma 3,1. Let Hy contain at least one minimal (H1, §)-ideal and Hs contain
at least one minimal (9, Hs)-ideal of S. Then S(Hy, Hs) = N}SN;, Ny € I (Hi,
Hl), N(l) < Hi, Nge]m(Hz, Hz), N(Z) < Hs.

Proof. Let Ly < Hy, Lo € In(Hi1, 9), Ry = Hs, Ry € I,y(@, Hs). Then we have
G(H1, Hz) = LySRy = N)SN;. Conversely by Theorem 2,5, N{SN; <
< G(H1, H)).

Corollary. Under the suppositions of the foregoing Lemma the relative socles
of a semigroup S are subsemigroups of S.

Lemma 3,2. Under the same suppositions as in Lemma 3,1 S(Hi, 0) =
= &(0, Hs) if and only if for every L€ In(Hy, 0) and every R e In(0, Ha) we
have L = S(Hy, Hz) and R = S(Hy, Hy).

The proof follows from Theorem 3,1.

Theorem 3,2. Under the suppositions of Lemma 3,1 suppose moreover Hi =
= Hy = H. Then G(H1, 0) = S0, Hs) if and only if S(Hy, Hs) is an (S, S)-
ideal of S.

Proof. For H = @ the proof is trivial. Let H + 0. If S(H, 0) = &9, H),
then by Theorem 3,1 we have GS(H, H) = S(H,0) = &(0, H) = LS = SRy
and so S(H, H) € I(S, S). Conversely, let S(H, H) € I(S, S). We shall prove
that for every L € I (H, 0) and for every R € I,, (0, H) we have L < S(H, H)
and R < G(H, H). If Lel,(H,¥), then by Theorem 2,2 there exists an
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element « € S such that L = Loa. Further Lya < Noa, No€ I, (H, H), No < H.
Since for every n € Vo we have NonNg = Ny, we conclude Lo = NonNoa <
< NoSNoS < NoSNy = S(H, H). Similarly we can show that for every
Re 1,0, H)we have R < G(H, H). By Lemma 3,2 S(H, 0) = &(9, H).

Remark. It follows from the proof of Theorem 3,2 that the condition
S(Hy, Hs) € I(S, S) is necessary for the validity of the relation S(Hi, 0) =
— &(0, Hs) even in the case when H; + H,. However, if S(Hi, Hs) + S,
H, + H,, this condition is not sufficient. This can be shown on the following
example:

Example 3,2. Let S = {a, b, ¢, d, ¢} be a semigroup with the following
multiplication table:

labcde

aaadd
abcdd
acbdd
dddaa

deceaa

”d Vo ™

Choose H, = {b}, Hs = {a, d}. Then Ly = {b}, S(I1, 9) = LoS = {a, b, ¢, d},
RO == {a> d}) 6(9; HZ) = SRO = {a: d}a 6(Hl; HZ) == LOSRO = {CL, d}' G(Hly HZ) €
e I(8S, S), but S(Hi, 0) + S(0, Hs).

Theorem 3,3. Let Hi contain at least one minimal (Hi, 0)-ideal and a minimal
(0, H1)-ideal of S. Let Hz contain at least one minimal (Hs, 0)-tdeal and a minimal
(9, Hz)-ideal of S. Then

6(111, Hz) N S(Hz, fil) = G(Hl, Hl) N S(Hz, Hy).

The proof follows from Theorem 3,1.
Remark. The intersection of the relative socles in the foregoing formula

can be the void set. This, e.g. is the case if we choose in Example 3,1, H, = {a, b}
and Hy = {c}.

4
Principal relative ideals of semigroups

In this section some notions and some results of [10] are generalized. More-
over the notion of the simplicity of a semigroup is generalized in various

ways.
We assume again that i, H are subsemigroups of S (including the case

of the empty subsemigroups).
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Definition 4,1. Let a € S. The set A = aU Hia U aHz U HyaHz will be called
the principal (Hy, Hs)-ideal of S generated by the element a. It will be denoted
by m(a)u,.

This definition evidently generalizes not only the notion of a principal left,
right and two-sided ideal but also the notion of a principal 7T-ideal defined
in [10].

Theorem 4,1. Let A be a (Hy, Hy)-ideal of S. Then A = \J {u(a)u: ac A}.

Proof. If 4 € I(H,, H;), then for every a € 4 we have mla)u, = A. Con-
versely, a € g (a)u, for every a € A.

Using the notion of a principal (Hy, Hz)-ideal of S we can generalize the
notion of Green's relations.

Definition 4,2. Let for a€ S, b e S be u(a)n, = u (b)u,. Then we shall write
(a,b) € I u, and shall say that the elements a and b are u .S u-equivalent.

Remark. The relation g #n, is clearly an equivalence relation on §, and
it is a generalization not only of Green's relations on S but also of the relations
introduced in [10].

We shall denote the classes corresponding to this equivalence relation
by H,FH,-

In the following (for typographical reasons) the relations x.f,, ,5#,,
¥ s and theclasses u ¥, , ;Fu,, ,F , will be briefly denoted by u.%, Ju , 4,
and H}F, F u,, I respectively.

Recall that for H; = () and Hs = 0, the relation x .y, = .7 is the equality
relation on S and the corresponding classes uFu = F are one point sets.

From the preceding definition there follows

Theorem 4,2. Let T, H1, T2, Ho be subsemigroups of S such that Hy < T,
Hy < Ts. Then Hleg < T,jTg-

Remark. The known relations between one-sided and two-sided ,,classical‘
Green’s relations follow from Theorem 4,2 if we take Hy = S, Ho = 0, T, = S,
To=8 and Hi =0, Hy= .8, Ty = 8, T2 = S respectively. Further if we
replace (for typographical reasons) the symbol of inclusion < by the symbol —,
we get from Theorem 4,2 the following diagram:

SJS

sIH,
N

sF oY
NS
s

N

TN\ &
2 \Qg/

s
AN
S

A

H,

S

N

g
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Definition 4,3. Denote the class uFu, containing the element a by y Fy .
We shall write y Fy < 5 FY if and only if m(a@)n, < #,(0)H,.

Theorem 4,3. For each gy (a)u, w2 have

Hn(a)Hz = U {HIFHz : HlFHz = HxF;llg}'

Proof. If for some x €S and some class yFyu, £ 5 Fy,, ® € nFu, holds,
then by the definition of our partial ordering z € m,(a)n,. If for x ey Fy
we have z € p,(a)u,, then g, (¥)n, < m,(a)u,, hence y Fy < y Fy, .

Evidently the equivalence relation p.# is a right congruence and the
equivalence relation .y, is a left congruence.

In the following we suppose the familiarity with the notion of the product
of two relations.

Notation: The product of the relations g,.# and Sy, : nt . Fu, will be
denoted by u,Z24,.

Evidently:
For Hy = 0, Hs + § we have 5y, 95, = FH,.
For Hy, + 0, Hy = 0 we have g, Du, = n.s .

For Hy = 0, Hy = () we have g, 9y, = 4 (the equality rela-
tion on 8).

Lemma 4,1. Hlj . sz = JH, . H,j-
Proof. Since g4, fu, are symmetric relations, it is sufficient to prove
that Hlf.fy, < Jy,. Hlf-
Let (a,b)e s . u,. Then there exists c¢€S such that (a,c)e uJf,
(¢, b) € Lu,.
The following cases are possible:
1) @ = b = c. In this case evidently (@, d) € fu, . u,.7.
2) b =c¢ #% a. Since (a, a) € #n,, (a, ¢) € uF, we have (a,b) € Fu, . u, 7.
3) a =10b =% ¢.Then (g, ¢) € u, 7, (¢, a) € Sy, implies (a, a) = (a, b) € Fy,. u,s .
4) a=c +b. We have (a,b)e Fy,, and since (b, d) € Fpy,, we conclude
(@,b) € L, . us.
5) @ %+ ¢,b # c. Then there exist h; € Hi, hs € Hs such that a = hic, b = chs.
Since fy, is a left congruence, we have (hic, mb) € Jy,, i.e. (a, hb) € Fy,.
Analogously (ahs, che) € g, #. This implies (kichs, chs) = (Mub, b) € y,.# hence
(@, b) € Zu, . uF . This completes our proof.

Theorem 4,4. The relation y,Pu, is an equivalence relation.
Proof. The reflexivity of y,Z2n, follows from the reflexivity of x,.# and Sn,.
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The symmetry follows from Lemma 4,1. The transitivity follows from Lemma
4,1 and from the transitivity of y,.# and Sy,.

Denote by g, u, the equivalence relation #,.# N Spy,.

It is easy to prove the following

Theorem 4,5. The following inclusions hold:
nHn, < g g VI, < n,9u, < 17H,

Notation: Let T = S. The equivalence induced on 7' by the equivalence
wHu,, 19n, and g Iy, respectively will be denoted by u, 7%, n2h ,
and y,f%5 respectively. Denote further z,Fu, NT = uFy,.

Definition 4,6. Let T < S. Then we shall say that the subset T of S is S n,-
simple if T consists exactly of one class y.F,.. Similarly one may define the
o u-simplicity and gD u,-simplicity of a subset T' of S.

Theorem 4,6. An g% y-simple subset T of S does mot contain any proper
(H1, Hs)-tdeal of S.

Proof. Let N g T, N e I(Hy, Hg). Then there exists beT, b¢ N. Let
aeN. Then Hiya < HHN < N, aHy <« NHy < N, HiaH, < HHINHs < N.
Therefore m,(¢)y, = N. Definition 4,6 implies #,(@)g, = u,(b)n,, hence be N,
contrary to the supposition.

Evidently an y,.#p,-simple subset 7' of S is an (Hi, Hs)-ideal of § if and
only if 7' is a minimal (H;, Hs)-ideal of S.

Theorem 4,7. Every minimal (Hy, Hs)-ideal of S coincides with some class
aFu,.

Proof. If N eln(H1, H), then g (a)g, = n,(b)u, for every «,be N, and
thus all elements of N are contained in the same class. Further, if ¢ is any
element contained in that class y F'n, which contains N, then by Theorem 4,6
ceN.

Remark. Under the assumptions of Theorem 3,1 the sets S(Hi, Hs) are
subsemigroups of S, which are disjoint unions of classes p Fg,.

Theorem 4,8. A semigroup S is g5 u,-simple if and only if S does not contain
any proper (Hyi, Hs)-tdeal of S.

Proof. Since S e I(H;, Hs), the statement follows from Theorem 4,6 and
Theorem 4,7.

Remark. The notion of the p.#y,-simple semigroup S coincides in the
case of H1 =8, Ho=0(Hi=0,H, = 8; Hi =8 and Hs; = S) with the
known notion of a left simple (right simple; simple) semigroup S.

But if Hy &+ S, Hs #+ S, it is not true that any set 7 < S not containing
any proper (Hi, Hsz)-ideal of S is necessarily . pg,-simple, even in the case
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when 7' is a subsemigroup of S. We can see it on Example 1,9 if we choose
H, = {a, e}, Hs = {c, d}. The subsemigroup 7' = {a, ¢} does not contain any
proper (Hi, Hs)-ideal of S, but the elements a, ¢ generate principal (H;, Hz)-
ideals, which do not coincide.

5

In this section we shall use the notions defined in the previous sections for
the theory of groups and completely simple semigroups without zero. The
results obtained will complete some results of [2].

In [2] it was already remarked that a group G does not contain any proper
(@, 9)-ideal, (9, Gf)-ideal and (G, G)-ideal of G but important subsets of a group,
cosets, e. g. are relative ideals of @.

In the following x(a),, ,(a)u will be briefly denoted by u(a), (@)u.

From Definition 2,1, Theorem 2,4 and Theorem 4,8 there follows

Theorem 5,1. Let G be a group, H a subgroup. Then for every a € G the set Ha
is @ minimal (H, Q)-ideal, the set aH is a minimal (0, H)-ideal and the set HaH
is @ minimal (H, H)-ideal of G. Moreover for every a € G we have Ha = gFe¢ =
— nla), all = Fy = (a)u, HaH = yF}y = pla)u.

Denote the right congruence on a group ¢ corresponding to the right coset
decomposition of H by 'R, and the analogous left congruence by L. Then
the following theorem holds:

Theorem 5,2. Let H be a subgroup of a group G. Then AR = yg.f, AL = Iy.
Proof. Let us for @, b € S have (a, b) € g#, i.e. Ho = Hb. Then ab-1e H,

i.e. (a,b) € AR, Analogously for L. Conversely, if ab—!e H, then Ha =
Hab~1b = Hb, hence (a, b) € x.7. Analogously for L.

Theorem 5,3. Let G be a group, H a subgroup of G. Then H is a normal subgroup
of G if and only if every minimal (H, 9)-ideal is a minimal (9, H)-ideal of G and
conversely every minimal (0, H)-ideal is a minimal (H, 0)-ideal of G.

Proof. If H is a normal subgroup of ¢, then for every ¢ € ¢ we have Ha =

aH = HaH. By Theorem 2,4 for every N € I, (H, §) we have N € I, (0, H)
(also N € I, (H, H)) and conversely. Let @ be any element of (. By the sup-
position and Theorem 2,4, if N = Ha, Ha € I,(H, (), then for some be G
we have Ha = bH. Hence it follows that Ha = HbH, HaH = bH? = bH =

Ha. Consider a minimal (0, H)-ideal aH. Then for some ¢ € G we have
«H = Hc and analogously aHH = HaH. Therefore «H = Ha for every a € (.

Remark. In accord with Theorem 5,1 one can state the preceding Theorem
as follows: H is a normal subgroup of @ if and only if the principal relative
ideals g(a), (@)u, (@) coincide for every a € G. It further follows from the
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foregoing Theorem that p¥ = Sy = gy if and only if H is a normal sub-
group of .

Let H;, Hs be subgroups of a group . By Theorem 2,4 the sets HyaH>
are minimal (H, Hs)-ideals of G for every a € G. Moreover these sets are
principal (Hi, Hg)-ideals of G generated by a. Therefore the known decom-

position ¢ = HiH, U Hil'Hs U ... is a decomposition of G into minimal
(H1, Hp)-ideals of G.

Theorem 5,4. Let Hy, Hy be subgroups of a group G. Then every minimal
(H1, 9)-ideal is a minimal (9, Ho)-ideal of G and conversely every minimal
(9, H3)-ideal s a minimal (Hy, 0)-ideal of G if and only if Hy = Hy = H,
and H is a normal subgroup of G.

Proof. It is sufficient to prove the necessity of the condition. Let a be any
element of G. It follows from the supposition that Hia = bH> for some b € G.
This implies Hia = H1bHs = HyaHz. For the same element a € G we also
have aHs; = HiaHs. This implies Hi[(Ua] = Hi[\UalH2, i.e. Hy = H1H>.

acH, acH,

Analogously we get Hy = H1H,. Hence H; = Hz. Moreover Hia = aH, for
every a € . Hence H1 = Hs = H is a normal subgroup of G.

The following results will complete to a certain extent the results of section 4
of [2] concerning completely simple semigroups without zero. Some results

have been found by S. Schwarz in [6] without the use of the notion of a relative
ideal of a semigroup. :

We shall use the following theorem proved in [6]:

Let S be a completely simple semigroup without zero. This is in our ter-
minology a s.# s-simple semigroup containing at least one minimal (S, 0)-ideal
and at least one minimal (@, S)-ideal of S. It is known that: § = (J{Ra: Ra€
€ln®,8)} = U{Lp: LgeIn(S,0)} = U{Gap: Gag = Ra N Lg}, Gqsp are dis-
joint maximal isomorphic groups. Let I be a subsemigroup of S, which is
n# g-simple and contains at least one idempotent. Then 1) H = \J{R.: R, =
RynHy=\U{L;: Ly=LgnHy = {Goy: Gy = R, N Ly}, R, e I,,(9,H),
LyeIn(H,9). 2) The set H=\U{Ru:RanH % 0} =J{Lp: Ly H} +
+ 0} = U{Gas=RanNLg:RanNH+0, Lsn H + 0} is a maximal sub-
semigroup of S containing the same idempotents as H.

In [2] we have proved

Theorem 5,5. Let S be a completely simple semigroup without zero, H a sub-
semigroup of S containing an idempotent. Then :

S(H,0) = U{Rs: Ra€ In®, S), Ra N H + 0},
S@, H) = U{Lp: Lge In(S,0), Ly N H #+ 0}.
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Corollary. If H contains all idempotents of S, then S(H,0) = |J{R«: Ry €
€ In(®,8)} = U{Lg: Lge In(S,0)} = SO, H). Further S(H,0) = HS,
S0, H) = SH, hence in this case S = \J{Ha:a €S} = \J{aH : a € S} holds.

In the following S means a completely simple semigroup without zero.

Theorem 5,6. Suppose that an g u-simple subsemigroup of S contains all
tdempotents of S. Then the set Ha s for every a € S a minimal (H, 0)-ideal and
the set aH a minimal (9, H)-ideal of S. Also Ha = pgFe, Ho = g(a), and aH =

Fy, all = (a)n.

Proof. Let he H. Then heLlf, and Hh = L:g. If es is an idempotent,
eg€ L, LgN H = L‘;, then by the supposition eg e H and therefore e € Lj.
Also Heg = L;. Let s € S. Denote the unit element of the group containing
s by es. Then we have Hs = Hezs = L.s. By Theorem 2,4 we have L. se
€lIn(H, Q) for every se S. Analogously sH € I, (0, H) for every seS. The
last part of the statement follows from Theorem 4,7 and from the fact that
s€ Hs and s € sH, for every se 8.

Corollary. Under the assumptions of the preceding Theorem for any a,be S
we have either Ha N\ Hb = () or Ha = Hb. Also aH NbH = () or aH = bH.

Theorem 5,7. Let H be an pJ p-simple subsemigroup of S. Let H contain
at least one idempotent. Then the two-sided socle S(H, H) is the maximal sub-
semigroup of S containing the same idempotents as H.

The proof has been given in [2].

Corollary. If H contains all idempotents of S, then S(H, H) = HSH = S
and hence S = \J{HaH :a < S}.

Theorem 5,8. Suppose that under the suppositions of the preceding Theorem H
contains all idempotents of S. Then the set HaH is for every a € S a minimal
(H, H)-ideal of S. Moreover HaH = pyFy,, HoH = p(a)u.

Proof. It follows from the proof of Theorem 5,6 that for every se S we
have Hs = L/s, L, < H, L,eI,(H,®) and L, contains an idempotent e,
which is the unit element for s. By the assumption e; € H. By the analogy
with the proof of the same Theorem concerning (0, H)-ideals of S we get
esH = R, ,where R, € 1,,(@, H), R, < H,and R, contains the idempotent e,.
This implies HsesH = HsH = L;seaR;‘. = L;sR;o. By Theorem 2,4 we have
LysR,, € In(Hy, Hy) for every s € S and for every L,, R, .

Corollary. Under the assumptions of Theorem 5,6 in the decomposition
S U{HaH :a e S} we have either HeH = HbH or HaH N HbH = 0.

Theorem 5,9. Let H be an gt g-simple subsemigroup of S containing at least
one idempotent. Then S = | J{Ha :a € S} = U{aH :a e S} = \J{HaH : a € S}
if and only if H contains all idempotents of S.
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Proof. It is sufficient to prove the necessity of the condition. Evidently,
if S=U{Ha:ae8}=HS, and § = J{aH :aeS8} = SH, then we have
S = HSH = \J{HaH : a € S}. The end of the proof follows from Theorem
14 of [2].

Remark. If H does not contain all idempotents of S, then S = | J{Ha : a € S}
and 8 = {aH :a €S} cannot hold. However in this case it may be either
S=U{Ha:aeS}, or 8= J{aH :aeS}. This is shown on Example 1,9
if we choose H = {a, c}.

Theorem 5,10. Let Hy be an y S u-stmple subsemigroup of S, Hy a u.Fu,-
simple subsemigroup of S, and suppose that each of these subsemigroups contains
at least one tdempotent. Then

S(Hi, H))=RNL, R=\J{Ra: RucIn® 8S), Ran Hy + 0},
L= U{Lg:LaeIm(S, 0), Lgn Hp + 0}.

Proof. It follows from Theorem 3,1 and 5,5 that G(H:1, Hs) = HiSH; =
= H1S N SH; and H8, SH> have the properties mentioned in our Theorem.

Remark. If H, and H, contain all idempotents of S, then by Theorem 5,9
we have H1S = SHy = S and H1SHy; = S = \J{H1aH; : a € S}. Analogously
as in Theorem 5,8 it can be proved that the set HijaH, is for every a €S
a minimal (H1, Hs)-ideal of S. Moreover Hyall; = y,Fy ,and HiaHs = g,(a)u,.
Hence the sets in the decomposition of S considered above are either disjoint
or coincide.

It is, of course, possible that there exists a decomposition of S into disjoint
summands: S = \J{HiaH: : a € S} where H; and H: do not contain all idem-
potents of S. This can be shown on Example 1,9 if we choose H; = {a, c},
Hy = {a, e}.

I wish to express my thanks to S. Schwarz, Z. Hedrlin and M. Kolibiar
for useful suggestions.
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