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A PROBLEM CONCERNING j-PANCYCLIC GRAPHS 

V. JACOS and S. JENDROE 

Let G be a finite planar undirected graph with n vertices without loops 
or multiple edges. (For the notions of the cycle and the length of the cycle., 
see [1].) 

Let n, j be natural numbers such that n ^ 5 and 3 ^ j ^ n. 
Let us call a planar graph G with n vertices 
a) j-pancyclic if G contains cycles of every length m, where 3 ^ m ( ^ j) ^ n; 
b) pancyclic if G contains cycles of the length m for each m with 3 ^ m,^n. 
Papers [2] and [3] are devoted to the investigation of pancyclic graphs. 

In [2], a problem concerning j-pancyclic graphs is formulated; the problem 
is solved in the present paper by showing for which n there exists a j-pan
cyclic graph and for which n such a graph does' not exist. We shall prove 
a theorem which solves a problem more general than that proposed in [2],. 

Theorem. If (n,j)e{(5,3), (5,4), (6,3), (6, 5)},' then there does not eotist 
a j-pancyclic graph G with n vertices. For all other pairs (n,j) a j-pancyclic 
graph G with n vertices exists. • 

P r o o f . For the (n,j) from the above set the non-existence of a j-pancyclic 
graph is a consequence of the requirement for a cycle with the length 4, 3, 5 
or 3, respectively. For other (n,j) we describe a construction of the graph 
with the above mentioned properties. The construction will be divided into 
twro parts. 

n 
> r = n — s(j — 1). We construct a cycle 

J - l . 
with the length n and call its vertices v\, . . ., vn. To this cycle we add the 
following edges. . , 

(i) If s :?-- I, r ^ j — 2, we add the edges {v±, vQ) for 3 ^ q ^.j — 2 and 
{vi, vtj-t}, where 1 ^ t ^ s; in the case of s ^ 3, we add an edge {v2j-3, ify-i}-
This graph does not contain a cycle of the length j and contains cycles of 
the length m, where 3 ^ m (^j) ^ n. All cycles of the length m > 3 contain 
the vertex v\. If the graph contains a cycle of the length j , then this cycle 
must contain the vertex V2 or vtj-t, where 1 ^ t ^ s. In the first case, the 
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I. Let j ф 3, n. Put 5 



edge {vi,Vj} must exist; in the second case, the edge {vi, V(t-i)j-(t-i)+i} or 
{vi, V(t+i)j-(t+v,-i}, but in both cases we get a contradiction. Now it is sufficient 
to show that there exist cycles of the length m, 3 < m (^j) ^ n. For 3 ^ 
< m ^ j — 1 consider the cycle Vi, V2, . . ., vm, Vi; for j -\- 1 < m ^ 2j — 2 
consider the cycle Vi, V2j-m> V2j-m+i, V2j-m+2, . . ., #2/-2, ViVfor ra = 2j — 1 
consider the cycle Vi, _>,_i, ity, . . ., V2/-3, «_j-i, v2j, . . ., V3/-3, ^i ; for 2j ^ 
< m <sj put 

_ 
m 

i - i 
then the cycle Vi, v(p+i)j-(p+i)-m+2, . . ., #(2>+i);/-(p+i), ^1 is the one we need. 
For the case sj^m^n — 1 it is sufficient to take the cycle vi, Vn-m+2, 
vn-m+i, • • . , nn, Vi. 

(ii) If s 7- 1 and r = j — 2, then we add the edges {v±, vq}, where 3 ^ 
^ Q ^ j ~ 2? {vi> vtj-t}, where 1 < t ^ s — 1; further the edge {vs;_5_i, 
Vsj-s+i}, and, if _ ^ 3, then the edge {v2j-z, V23-1}, too. 

(hi) In the case when 5 = 1 and r 7^ j — 2, we add the edges {vi, vq}, 
where 3 ^ q ^ j — 1, g ^ r + l . 

(iv) If _ = 1 and r = j — 2, then n = 2j — 3. Let n ^ 11. In this case 
we add the edges {vi, #3}, {#1, ̂ -2} and the edges {vi, Vj+q}, where 2 ^ q ^ 
< J — 5. The situation in the cases of n = 7 and n = 9 is illustrated in Fig. la 
and Fig. lb , respectively. 

I t is possible to verify the non-existence of a cycle of the length j and the 
existence of cycles with a length different from j in a similar way as in (i). 

I I . In this part we shall describe the construction for j = 3 and j = n. 
Let j = 3. Construct a cycle of the length n consisting of the vertices Vi, 

V2, . . ., vn. If n is an odd number, n ^ 11, add the edges {vi, v4}, {vi, #7}, 
/ n — 1 \ 

{v2, VQ} and the edges {v$+q, vn_q}, where 0 ^ q ^ 5 . If n = 7,9, 
2 

see Fig. 2a, 2b. If n is even, w ^ 12, add the edges {vi, v$}, {vi, Vg}> {V2, #7} 
In \ 

and the edges {v$+q, vn_q}, where 0 ^ q ^ 61. For the cases of n = 

= 8,10 see Fig. 3a and 3b, respectively. I t is easy to verify that this graph 
satisfies the conditions of the Theorem for j = 3. 

Let j = n. Construct a cycle with the length n — 1 and call its vertices 
Vi, V2, . . . , vn_i; the n-th vertex not belonging to the cycle will be called vn. 
Add the edges {vj, vq}, where 3 ^ q ^ n, q =£ n — 1. The existence of cycles 
of the length m, 3 ^ m ^ n — 1 and the non-existence of a cycle of the length 
n is evident. 

This completes the proof of the theorem. 
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