
Matematický časopis

Zuzana Ladzianska
Poproduct of Lattices and Sorkin's Theorem

Matematický časopis, Vol. 24 (1974), No. 3, 247--251

Persistent URL: http://dml.cz/dmlcz/126969

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/126969
http://project.dml.cz


Mat čas 24, 1974, N o 3, 247-252 

POPRODUCT OF LATTICES AND SORKINS THEOREM 

Z U Z A N A L A D Z I A N S K A , Brat i s lava 

B a l b e s and H o r n [1] introduced and studied in the class of distributive 
lattices a new operator, the so-called "order sum", which is a generalization 
of the free product and the ordinal sum of distributive lattices. This paper 
introduces such an operator for an arbitrary equational class J f of lattices, 
this operator will be called a JT — poproduct. In part two the word problem 
for the poproduct in the class of all lattices is solved. The main result, the 
generalization of well known Sorkin's theorem, can be found in part three 
of the paper. Several ideas and methods have been borrowed from paper [4], 

1, Introduction. Let P be a poset and let Lv, p eP be pairwise disjoint 
lattices. The lattice operations in each Lv will be denoted by U, n . Let Q = 
— [J Lv be partially ordered in the following way: 

peP 

for a, b eQ we put a ^ b if and only if one of the conditions 
(1) and (2) holds: 
(1) there is a p e P such that a, b e Lv and the relation a ^ b in Lv holds; 
(2) there are p, r e P such that a e Lv, b e Lr and the relation p < r in the 

poset P holds. 
If/ is a mapping from Q into M, then fv denotes its restriction on Lv. 

Definition 1. Let J f be an equational class of lattices. Let L, Lv e J f for p e P 
and let P be a poset. The lattice L is said to be the JT — poproduct of the lattices 
Lv if: 
1. there is an isotone injection i: Q -> L such that for each p e P iv is a lattice 

homomorphism; 
2. if M e JT", then for every isotone mapping f: Q -> M such that for each p e P fv 

is a lattice homomorphism, there exists uniquely a lattice homomorphism W: 
L -> M such that W ° i = f. 
I t is obvious that the definitions of the order sum from [1] and of the po­

product in the class 3) of distributive lattices coindice. 
The ^ — poproduct, i.e. the poproduct in the class of all lattices, will 

be briefly called poproduct (of lattices). 
The existence of the poproduct follows from [3]: R. A. Dean has constructed 

the free lattice FL(P,%, 93) generated by the poset P and preserving the 
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ordering of P , those lub's of a family 21 of finite subsets of P which possess 
lub's in P and those gib's of a family 23 of finite subsets of P which possess 
gib's in P . 

I t is easy to see that a JT — poproduct L of lattices is uniquely determined 
up to isomorphism by the poset P and the lattices Lv, p e P . 

The following theorem will explain the relation between the JT — popro­
duct, the J f — free product and the ordinal sum, respectively. For the class £/ 
of distributive lattices, see [1]. 

Theorem 1. Let JT be a nontrivial equational class of lattices. Let L be the 
JT — poproduct of the lattices Lv e Jf, p e P and let P be a poset. Then 
(1) L forms the J f — free product of the lattices Lv(p e P) if and only if P is 

an anti-chain. 
(2) Lforms the ordinal sum of lattices Lv(p e P) if and only if P is a chain. 

Proof . (1) If P is an anti-chain, then according to the definition of the 
poproduct 
1. there exists a family of lattice homomorphisms iv : Lv -> L for each p e P ; 
2. if M e JT, then for every family of lattice homomorphisms fv : Lv-> M 

there exists uniquely a lattice homomorphism *P : L -> M such that W ° iv = 
= fp for each p e P 

That means that L is a J f — free product of Lv(p e P). 
Conversely, let L be a Jf — free product of Lv(p e P) . Suppose that P 

is not an anti-chain, hence there exist q, r e P such that q < r. Let M = 
= | 0 , 1} be a two-element chain and \etfv(p e P) be a family of lattice homo­
morphism fp : Lv-> M. Let fq(Lq) = 1, fr(Lr) = 0. Then there exists a homo­
morphism W :L-> M such that W ° iq = fq, W ° ir = / r . Since i is isotone 
and W is a homomorphism, W ° iq(Lq) S lP ° ir(Lr), contradicting the fact 
t h a t / , ( £ , ) = 1 > 0 = / r ( Z r ) . 

(2) If P is a chain, then Q is a lattice which obeys the conditions V 2 of 
definition 1, hence L — Q. Q is clearly an ordinal sum of Lv, p e P . 

Conversely, let L be an ordinal sum of Lv, p e P . Then L = Q and there­
fore P is a chain. 

2* The word problem. Throughout the paper Q will denote the partially 
ordered set mentioned in the introduction. Let us denote by &(Q) the set 
of lattice polynomials (terms) over Q. These polynomials are formed from 
symbols denoting elements of Q and from the symbols U, H- For each A e 
e3P(Q) we define a natural number 1(A) — the length of A — as follows: 

if A eQ, then 1(A) = 1; 
if-4o, AiG&iQ), then l(A0 U Ax) = l(A0 n -4i) = Z(-40) + Z(-4i). 

For each A e &(Q) and each l e P , the existence and the value of the upper 
X — cover, A&\ AW e Li, and the lower A — cover, Aw, A(^ e Li, are defined 
as follows: 
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Definition 2. 
(i) if A E La, then Aa), AW exist and Aw = A^ = A. 

A(U), A(#) do not exist for [i ^ X. 
(ii) if A = B fl C, then AW exists if and only if BW and CW both exist and 

in this event AW = BW U CW. 
Aw exists if and only if at least one of B(x), C(^ exists; A(A) = B(x) (respec­
tively C(A)) if only Bw (respectively C(A)) exists, and A(X) = I?u) U C^) 
if both B(v, C(i) exist. 

(iii) if A = B f| C, then A(X) exists if and only if B(^ and C<A) both exist and in 
this event A(X) = B(A) n C(x). 
AiA) exists if and only if at least one of BW, CW exists; AW = BW (res-
pectively CW) if only BW (respectively CW) exists, and AW = BW n CW 
if both BW, CW exist. 

Definition 3. For any A, B e &(Q) we define by induction on 1(A) + 1(B) 
the relation A g B to hold if and only if at least one of the conditions (1) to (6) 
below holds: 
(\)A=B: 

(2) there are A, fi e P such that AW, B(li) exist and AW <; J5(|/) (in the ordering 

ofQ); 
(3) A = Ao U A\, where A0 g B and A\ g B\ 
(4) A = Ao fl Ai, where A0 g B or A± g B; 
(5) B = BoU Bi, where A g B0 or A g Br, 
(6) B = Bo fl Bi, where i g f t and A g B±; 
Set A ~ Bif A g B and B Q A. 

The relation ^ is reflexive and symmetric, we shall show ~ to be transi­
tive. 

Lemma 1, If A(%), A^ both exist, then X = ju. 
Proof . Cf. [4], Lemma 1. 
Lemma 2. If AW exists, then A g AW. Jf ^ (A) exists, then A(x) g A. 
Proof . I t follows from (2): AW _= [AW]{A)j [AW]W = Aw. 

Theorem 2. A g B and B g C implies A g C. 
P roof . Let 4̂ g J5 and H g C. If both of these relations are due to (2), 

we apply Lemma 1 and so A g C follows by (2). Otherwise we proceed by 
induction on 1(A) + 1(B) + 1(C). 

Thus ~ is an equivalence relation. Given A e &(Q), denote < 1̂> the equi­
valence class of A under ^ and let L = &(Q)\~ . Define the binary relation <z 
on L by <̂ 4> ^ <i?> if and only if A c B. Then ^ is a partial order on L 
with respect to which L is a lattice. Moreover, by (3) and (5), <^1> U <J5> = 
= (A U B} and dually (A} n <£> - < t̂ fl -B>. 
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Theorem 3. L is the poproduct of Lx, X e A. 
Proof . Q <-= L, thus i: Q->L is an isotone injection. Let M be a lattice, 

l e t / : Q -> M be an isotone mapping such that fx is a homomorphism. Let gr: 
L -> M be defined inductively as follows : 

if AeQ, g(A)=f(A); 
g(A vB) = g(A) U g(B); 
g(AnB) = g(A)ng(B). 

Then the following statements hold: 
If AW exists, then g(A) S g(AW). If Aa) exists, then g(Aa)) ^ g(A). The 

proof is omitted, because, similarly as in [4], the formal computations are 
a special case of computations in the proof of Theorem 4. Now we have to 
show that g factors through ~ . I t is- enough to prove that A g B implies 
9(A) ^ g(B). 

Let A g B. 
If A Q B is due to (2), AW <. Bifl), then s ince / i s isotone on Q, there holds 

g(A) S g(AW) = f(AW) = f(Biti)) = g(BUi)) ^ g(B). 
If A g B is due to (3) —(6), the proof is by induction on 1(A) + /(15).Thus 

g is well — defined, g is isotone on Q, because / and g are equal on Q. g is an 
isomorphism by definition. Therefore g ° i = f. Finally, g is unique, because 
it is a homomorphism and L is generated by Q. 

Theorem 3 is proved. 
3. Sorkm's theorem. 
Theorem 4. Let L be the poproduct of Lx, X e P, let K be a lattice and let i: 

Q -> L be an isotone injection such that for eachp e P, ip is a lattice homomorphism. 
Let f: Q -> K be an isotone mapping. Then there is an isotone mapping g: L -> K 
such that g ° i = f. 

Proof . We define h: SP(Q) -> K by inductio'n on the length of the poly­
nomials in 8P(Q): 

(i) if -4 eQ, then h(A) =f(A); 
(ii) if A = B U C and Aw is defined for no X e P, then h(A) = h(B) U h(C), 

otherwise h(A) = h(B) U h(C) U U (f(Aw)/X e P and AiA) exists); 
(iii) if A = B U C and A<» is defined for no X e P, then h(A) = h(B) n h(C), 

otherwise h(A) = h(B) n h(C) n f| (f(A^)jX e P and A^ exists). 
By definition 2, AW or A^) exists for only finitely manyr XeP and thus the 
definition makes sense. We define g: L -> K by requiring that g((A}) = h(A). 
Now the following statement holds: 

If AW is defined, then h(A) ^ f(AW) (and dually). 
The proof is by induction on 1(A), cf. [4]. Similarly as in [4], it can be shown 

by induction on 1(A) + 1(B) that if A, Be0>(Q), A g B, then h(A) g h(B). 
Therefore g is well defined and isotone. From the definitions of h and g it 
follows that g o i = f. 
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R e m a r k . I f / i s a U-morphism, then g is U-morphism (and dually). 

Proof. Cf. [4]. 

From Theorems 1 and 4 there immediatel\r follows the 

Corollary (Sorkin's theorem, [4]). Let L be the free product of L*, A e A, 
let K be a lattice and let for each 1 e A, fx '• L). -> K be an isotone mapping. Then 
there is an isotone mapping g: L -> K extending all the /;.. 

4. Sublattices and irreducible elements. 

Theorem 5. For each p e P let L* be a sublattice of Lv and let L* be the sub-

lattice of the poproduct of the Lv generated by L*. Then L* is the poproduct of 

the L*. 

P r o o f . Cf. [4], Theorem 2. 

Similar arguments as in the proof of Theorem 3 of [4] prove. 

Theorem 6. Let P consist of more than one element and let P' g P. Let L 

be the poproduct of Lv, p e P. Then L — ( J Lv is a sublattice of L if and only 
peP' 

if for each p e P' there holds: 

IJV is a chain or p is comparable with each q e P. 
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