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A NOTE ON RADICALS OF SEMIGROUPS 

BEDRICH PONDfiLICEK, Podebrady 

Let S be a semigroup. For each ideal J of S, M(J), L(J), R*(J), C(J) and 
N(J), respectively, will denote the McCoy (prime) radical, the Sevrin (locally 
nilpotent) radical, the Clifford (nil-) radical, the Jiang Luh (completely prime) 
radical and the set of all nilpotent elements with respect to J. J. Bosak [1] 
proved that 

(1) M(J) c L(J) c R*(J) c N(J) c C(J) 

for every ideal J of a semigroup S. R. Sulka [2] proved that if S is a commu
tative semigroup and J is an ideal of S, then 

(2) M(J) = L(J) = R*(J) = N(J) = C(J). 

Further, J . E. Kuczkowski [3] proved that if S is a O2-semigroup then (2) 
holds for every ideal J of S (by a OVsemigroup we mean a semigroup S with 
the property that xyzyx = yxzxy for all x, y, z e S). I n this note we shall 
study the necessary and sufficient condition such t h a t (2) holds for every 
ideal J of a semigroup S. 

Let a be an element of a semigroup S. The principal ideal generated by a 
we denote by J (a). 

Theorem. Let S be a semigroup. Then (2) holds for every ideal J of S if and 
only if 

(3) J(a)nJ(b) c M(J(ab)) 

for all a,b e S. 
P r o o f . Let (2) hold for every ideal J of S. Let x eJ(a) n J(b) for some 

a, b e S. Let us assume t h a t x $ M(J(ab)). Then it follows from (2) that x $ 
£ C(J(ab)). The Jiang Luh radical C(J(ab)) is the intersection of all completely 
prime ideals of S including J(ab). This implies that there exists a completely 
prime ideal I of S such that J(ab) c: / and x $ I. Evidently, ab e J(ab) c / 
and so a el or b el. Thus x e J (a) ^ I or x e J(b) _= / . This contradicts 
x$I. Therefore x e M(J(ab)). Hence (3) holds for all a, beS. 

Let (3) hold for all a,beS. According to (1), it suffices to prove tha t C(J) c= 
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c M(J) for every ideal J of S. Let x e C(J) for some ideal J of S. Let us assume 
tha t x<£M(J). By [2] M(J) consists exactly of such elements x tha t every 
m-system containing x has a non-empty intersection with J . This implies 
that there exists an m-system A of S such tha t A n J = 0 and # e ^4. Let I 
be the union of all ideals of S which do not meet A. The ideal I has the required 
maximal property. We shall prove tha t I is completely prime. Suppose that 
a <£ I, b <£ I and abel for some a, be S. Then J(a) n A ^ 0 ^ A n J(b). 
There exist u, veS such tha t u e J (a) n A and veJ(b)nA. Since A is 
an m-system of S, then uzv e A for some z e S. Evidently, uzv e J (a) n J(b). 
I t follows from (3) that uzv e M(J(ab)). Since uzv e A n M(J(ab)), then 
A n J(ab) ^ 0. Now, abel implies tha t J(ab) ^ I and so A n l ^ 0. 
This contradicts A n I = 0. Therefore, 7 is a completely prime ideal of S. 
Since xeA, then # ^ 7 and thus x£C(J). This contradicts xeC(J). There
fore, we have xeM(J). Hence O(J) ^ M(J). 

Denote by L(x), R(x) and Q(x) the principal left, right and quasi ideal 
of a semigroup S generated by x e S, respectively. Clearly Q(x) -= L(x) n 
n B(x). 

Corollary 1. Let S be a semigroup and let for every element a of S 

(4) J(a) ^N(Q(a)), 
00 

(5) ae n M(J(an)) 
n=l 

hold. Then (2) holds for every ideal J of S. 
Proof . We shall prove tha t (3) holds for every a, beS. Let xeJ(a) n 

n J(b). I t follows from (4) tha t x e N(Q(a)) n N(Q(b)). Since N(A) is the set 
of all nilpotent elements with respect to A, then xneQ(a) ^ L(a) and xm e 
£Q(b) ^ R(b) for some positive integers n, m. Then xn+m e L(a) B(b) ^ J(ab). 
Evidently, J(xn+m) ^ J(ab). According to (5), we have x e M(J(xn+m)). Thus, 
by Lemma 7 [2], we obtain that x e M(J(ab)). Hence J(a)) n J(b) c= M(J(ab). 
Theorem implies that (2) holds for every ideal J of S. 

The principal biideal generated by an element x of a semigroup S we denote 
by B(x), i.e. B(x) = xSx u x2 u x. Clearly B(x) c Q(x). 

Corollary 2. Let S be a semigroup and let for any elements x, y, z of S 

(6) yxzxy e B(x) 

hold. Then (2) holds for every ideal J of S. 
Proof . Let ae S. We shall prove that (4) and (5) hold. 
1. Let x e J (a). We shall show tha t x3 e Q(a). Evidently, x may have several 

forms: a, sa, at or sat, where s, t e S. 
(i) If x = a then x3 = a3 eQ(a). 
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(ii) If x = sa then, by (6), we have x3 = (sasas)a e B(a)a £ B(a) c Q(a)' 
(iii) If x = at then similarly we obtain tha t x3 eQ(a). 
(iv) If x = sa£ then, by (ii) and (iii), we have x*eQ(sa) nQ(at) c Q(a). 
Hence, x e J (a) implies tha t x*eQ(a) and so xeN(Q(a)). Thus (4) is true. 
2. Let A be an arbitrary ra-system containing a. First we shall prove tha t 

A n aw#aw ^ 0 for every positive integer n. Clearly aza e A for some z e S 
and so A n a£a =£ 0. The statement is true for n = 1. Assume the statement 
to be true for n = 1c. Then, by the induction hypothesis, A n akSak -^ 0. 
There exists M G # such that a ^ a ^ G ^ l . Since A is an m-system of S, there 
exists V G $ such tha t y = akuakvakuak e A. I t follows from (6) tha t ye 
G akB(ak)ak. Since ye A, there exists W G # such tha t ywy e A n akB(ak) . 
. akwakB(ak)ak ^ A C\ ak+1Sak+1 and so tha t 4̂ n ak+1Sak+1 ^ 0. Hence 
the statement is valid for every positive integer n. Since anSan c= J (a71), 

00 

then J. n J(aw) -^ 0 for any n. Thus we have ae n M(J(an)) and (3) is true. 
7 1 = 1 

A semigroup £ is called a efeo semigroup if every one-sided ideal of S is 
a two-sided ideal. Clearly L(x) = -/(#) -= i?(x) for every x e S. 

Corollary 3. Let S be a duo semigroup. Then (2) holds for every ideal J of S. 
P r o o f . We shall show tha t (6) holds for every x,y,zeS. Evidently, we 

have yxzxy G L(x)zR(x) = R(x)zL(x) c B(x). 
A semigroup S is called normal if xS = Sx for every x of S. Evidently, 

every normal semigroup is a duo semigroup. 

Corollary 4. Let S be a normal semigroup. Then (2) holds for every ideal J 
of S. 

Corollary 5. (Cf. [3], Theorem). Let S be a C^-semigroup. Then (2) holds for 
every ideal J of S. 

P r o o f . We shall show that (6) holds for every x,y, zeS. Evidently, we 
have yxzxy = xyzyx e B(x). 

Corollary 6. (Cf. [2], Theorem 7). Let S be a commutative semigroup. Then 
(2) holds for every ideal J of S. 
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